于海洋,張廣斌,馬 靜,徐 華*
稻田CH4和N2O排放對(duì)大氣CO2濃度升高響應(yīng)的研究進(jìn)展①
于海洋1, 2,張廣斌1,馬 靜1,徐 華1*
(1 土壤與農(nóng)業(yè)可持續(xù)發(fā)展國(guó)家重點(diǎn)實(shí)驗(yàn)室(中國(guó)科學(xué)院南京土壤研究所),南京 210008;2 中國(guó)科學(xué)院大學(xué),北京 100049)
大氣CO2濃度升高是全球氣候變化的主要驅(qū)動(dòng)力,可直接或間接影響陸地生態(tài)系統(tǒng)碳氮循環(huán)。闡明稻田生態(tài)系統(tǒng)CH4和N2O排放對(duì)大氣CO2濃度升高的響應(yīng)及其機(jī)制,是農(nóng)業(yè)生產(chǎn)應(yīng)對(duì)全球氣候變化的重要組成部分。本文綜述了國(guó)內(nèi)外不同大氣CO2濃度升高模擬技術(shù)平臺(tái)條件下稻田CH4和N2O排放的響應(yīng)規(guī)律,進(jìn)一步討論分析了大氣CO2濃度升高影響CH4和N2O排放的相關(guān)機(jī)制,并展望了今后稻田CH4和N2O排放對(duì)大氣CO2濃度升高響應(yīng)的主要研究方向,以期為應(yīng)對(duì)全球氣候變化提供理論依據(jù)和技術(shù)支撐。
CO2濃度升高;稻田;CH4;N2O;排放機(jī)制
CH4和N2O是大氣重要的溫室氣體,對(duì)全球氣候變化具有深刻影響。稻田是CH4和N2O的重要人為排放源[1],約占全球農(nóng)業(yè)生產(chǎn)活動(dòng)CH4和N2O排放總量的15%[2]和11%[3]。大氣CO2濃度升高是全球氣候變化的重要內(nèi)容之一[1]。自20世紀(jì)末,大氣CO2濃度升高影響稻田溫室氣體排放的研究備受國(guó)際密切關(guān)注[4-6]。
探究大氣CO2濃度升高對(duì)稻田溫室氣體排放的影響多以CH4為研究對(duì)象。前人通過(guò)整合分析(meta-analysis)發(fā)現(xiàn):大氣CO2濃度升高顯著增加稻田CH4排放43%(24% ~ 72%)[7]和34%(4% ~ 118%)[8],其原因可能是大氣CO2濃度升高可促進(jìn)水稻植株生長(zhǎng),導(dǎo)致根系分泌物增加,產(chǎn)CH4底物增加,從而促進(jìn)稻田CH4排放[6, 9-18]。也有研究發(fā)現(xiàn),大氣CO2濃度升高促進(jìn)水稻生長(zhǎng)的同時(shí)也可能促進(jìn)O2通過(guò)植株向下傳輸,從而促進(jìn)稻田土壤CH4氧化,降低稻田CH4排放[5]。有關(guān)大氣CO2濃度升高影響稻田N2O 排放的研究較少[10, 12, 14, 19-21],主要原因可能是稻田處于長(zhǎng)期淹水狀態(tài),即使其間有中期烤田和間歇灌溉等農(nóng)業(yè)措施,其排放量也很少,相對(duì)于CH4對(duì)綜合溫室效應(yīng)的貢獻(xiàn)幾乎可以忽略不計(jì)。有的研究表明,大氣CO2濃度升高增加稻田N2O排放量約19% ~ 140%[10, 14, 19];而有的研究卻發(fā)現(xiàn),大氣CO2濃度升高對(duì)稻田N2O排放并無(wú)明顯影響[12, 20, 21]。
可見,受限于復(fù)雜的土壤環(huán)境及多樣的農(nóng)藝措施等因素,相應(yīng)的稻田CH4和N2O排放規(guī)律和機(jī)制尚不統(tǒng)一。因此,系統(tǒng)闡明大氣CO2濃度升高條件下稻田溫室氣體排放規(guī)律以及相關(guān)機(jī)制是水稻種植應(yīng)對(duì)氣候變化亟需解決的任務(wù)之一。
當(dāng)前模擬未來(lái)氣候的技術(shù)平臺(tái)主要有開頂式氣室(open-top chambers,OTCs)、土壤–植物–大氣研究箱(soil-plant-atmosphere research chambers,SPAR)、溫度梯度室(temperature-gradient chambers,TGCs)、人工氣候室(climatron或growth chambers)和開放式CO2濃度升高平臺(tái)(free air carbon-dioxide enrichment,F(xiàn)ACE)等。利用這些平臺(tái)開展大氣CO2濃度升高對(duì)稻田CH4和N2O排放影響的研究主要分布在日本、中國(guó)、韓國(guó)、菲律賓、印度、美國(guó)以及葡萄牙等國(guó)家[4-6, 9-32]。
稻田氣候變化模擬試驗(yàn)研究主要采用開頂式氣室(OTCs),這是一種具有較好控制效果的模擬平臺(tái)[33]。最早研究稻田溫室氣體排放的OTCs位于菲律賓國(guó)際水稻研究所[6]。OTCs系統(tǒng)通常將CO2和溫度控制在所需設(shè)定值(誤差小于10%),并安排3 ~ 5個(gè)固定處理[10, 14, 19],即:①無(wú)室對(duì)照UC(開放體系,實(shí)際CO2濃度和空氣溫度);②室內(nèi)對(duì)照CC(保持實(shí)際CO2濃度和空氣溫度);③室內(nèi)升高CO2濃度處理EC(提高空氣CO2濃度,保持實(shí)際空氣溫度);④室內(nèi)升高溫度處理ET(保持實(shí)際CO2濃度,提高空氣溫度);⑤室內(nèi)同時(shí)升高CO2濃度和溫度處理ETEC(同時(shí)提高CO2濃度和空氣溫度)。利用OTCs觀測(cè)印度持續(xù)淹水稻田CH4和N2O排放的結(jié)果表明,與正常大氣CO2濃度相比,大氣CO2濃度升高分別增加CH4和N2O排放26% 和25%[10]。而葡萄牙的OTCs試驗(yàn)卻表明,在溫度升高2℃條件下,大氣CO2濃度升高并未顯著影響間歇灌溉稻田CH4和N2O排放量[19]。但是中國(guó)雙季稻OTCs試驗(yàn)表明,大氣CO2濃度升高可分別增加間歇灌溉稻田CH4和N2O的排放量20% ~ 53% 和102% ~ 140%;溫度升高條件下,大氣CO2濃度升高可進(jìn)一步增加稻田CH4排放,但對(duì)N2O排放有抵消作用[14]。
土壤–植物–大氣研究箱(SPAR)是控制環(huán)境變量的研究設(shè)施平臺(tái)之一,其主要優(yōu)勢(shì)在于可將大田試驗(yàn)中出現(xiàn)的許多協(xié)同的多因素影響最小化,可嚴(yán)格控制環(huán)境變量,多用于植物生長(zhǎng)對(duì)多種環(huán)境因素的響應(yīng),通常比大田試驗(yàn)更方便和經(jīng)濟(jì)[34]。SPAR平臺(tái)能夠精確控制影響作物生長(zhǎng)過(guò)程的主要環(huán)境變量,包括溫度、濕度和大氣CO2濃度等,曾被認(rèn)為是研究作物冠層光合、呼吸、蒸騰等氣體交換最現(xiàn)實(shí)的方法[35]。然而,依托SPAR平臺(tái)研究稻田溫室氣體排放的研究較少[9]。研究發(fā)現(xiàn),大氣CO2濃度升高可顯著增加稻田稻季CH4總排放量53% ~ 118%,溫度與大氣CO2濃度同時(shí)升高對(duì)稻田CH4排放具有協(xié)同作用[9]。另外,基于SPAR平臺(tái)的稻田N2O排放研究未見報(bào)道。
可升高CO2濃度的溫度梯度室(TGCs)試驗(yàn)始于日本[36-37]。這種TGCs一般分為正常的CO2濃度和升高的CO2濃度兩個(gè)氣室,其構(gòu)造和運(yùn)行成本相對(duì)便宜,氣候條件類似于野外大田,可密切跟蹤室外溫度、太陽(yáng)輻射和濕度的日變化及季節(jié)變化,并能夠重復(fù)觀測(cè)整個(gè)生育期內(nèi)作物的響應(yīng)[36]。這種特性在解釋作物對(duì)大氣CO2濃度升高的響應(yīng)方面簡(jiǎn)單有效。利用TGCs平臺(tái)的研究表明,大氣CO2濃度加倍升高可顯著降低稻田CH4排放量,降幅達(dá)10倍 ~ 45倍,其原因可能是大氣CO2濃度升高增加了根系生物量,促使更多的O2向根際傳輸,從而抑制CH4產(chǎn)生[5]。當(dāng)然,該稻田極低的土壤有機(jī)碳含量(<1%)也可能對(duì)CH4產(chǎn)生造成影響。而韓國(guó)的TGCs試驗(yàn)發(fā)現(xiàn),大氣CO2濃度升高能夠顯著增加稻田CH4排放量17%;在溫度升高情況下,大氣CO2濃度升高顯著增加稻田CH4排放18%[17]。這表明大氣CO2濃度升高可能對(duì)稻田CH4排放產(chǎn)生不同的反饋?zhàn)饔?。然而,利用TGCs平臺(tái)對(duì)稻田N2O排放的研究目前未見報(bào)道。
人工氣候室(climatron或 growth chambers),也稱為受控環(huán)境室(controlled-environment chambers)。這種生長(zhǎng)箱成本較低,可嚴(yán)格控制CO2濃度、濕度和溫度等環(huán)境因素,但是相對(duì)密閉,模擬正常大氣環(huán)境能力較差。早期的Climatron用于研究大氣CO2濃度升高對(duì)水稻生長(zhǎng)的影響[11]。而利用Climatron技術(shù)開展大氣CO2濃度升高對(duì)稻田溫室氣體排放的影響試驗(yàn)始于1994年[4]。研究表明,大氣CO2濃度升高能夠促進(jìn)稻田CH4排放,增幅為4% ~ 58%[11-13, 24]。利用Growth chambers開展的最新研究發(fā)現(xiàn),無(wú)秸稈還田條件下,大氣CO2濃度升高顯著增加稻田CH4排放24% ~ 117%;而秸稈還田條件下,大氣CO2濃度升高可降低稻田CH4排放3% ~ 15%[38]。這表明,秸稈還田條件下,大氣CO2濃度升高對(duì)稻田CH4排放的促進(jìn)效應(yīng)低于預(yù)期值,實(shí)踐中可通過(guò)創(chuàng)新農(nóng)業(yè)管理措施減少未來(lái)氣候條件下稻田CH4排放。利用Climatron平臺(tái)的研究發(fā)現(xiàn),大氣CO2濃度升高對(duì)持續(xù)淹水稻田N2O排放無(wú)顯著影響[12]。
20世紀(jì)80年代末,有關(guān)學(xué)者開始利用近地表面增加CO2濃度的研究平臺(tái)(FACE平臺(tái))來(lái)模擬未來(lái)大氣CO2濃度升高的微生態(tài)環(huán)境[39]。FACE平臺(tái)是一個(gè)開放式體系,相對(duì)于其他研究手段,可真實(shí)反映作物對(duì)大氣CO2濃度升高的響應(yīng)情況。FACE系統(tǒng)根據(jù)作物冠層的實(shí)際CO2濃度,由控制系統(tǒng)調(diào)節(jié)FACE圈內(nèi)的CO2濃度,具有較高的精度[40],被公認(rèn)為是目前研究作物對(duì)CO2濃度升高響應(yīng)的最佳平臺(tái)[39]。利用FACE平臺(tái)研究大氣CO2濃度升高對(duì)稻田溫室氣體排放的響應(yīng),以日本和中國(guó)的大型稻田FACE平臺(tái)尤為突出。更值得關(guān)注的是,中國(guó)江都稻田FACE平臺(tái)是全球連續(xù)運(yùn)行最長(zhǎng)的水稻FACE平臺(tái)。依托FACE平臺(tái),研究未來(lái)大氣CO2濃度升高對(duì)稻田溫室氣體排放的影響已有大量文獻(xiàn)報(bào)道[15-16, 18, 21-32]。其結(jié)果與其他平臺(tái)的結(jié)果基本一致:大氣CO2濃度升高顯著增加稻田CH4排放,但對(duì)于稻田N2O排放則促進(jìn)效果不顯著[7-8, 20, 41]。當(dāng)然,大部分FACE平臺(tái)同時(shí)具有增溫系統(tǒng)(也稱T-FACE平臺(tái))[15, 20, 27, 42],其結(jié)果也同樣表明,溫度和大氣CO2濃度同時(shí)升高(T+C)促進(jìn)稻田CH4排放,而對(duì)稻田N2O排放并無(wú)顯著影響。然而,這些研究試驗(yàn)基本開展于平臺(tái)建立后的5年之內(nèi),CO2熏氣年限較短。運(yùn)行10年的FACE平臺(tái)結(jié)果[29]表明,對(duì)比正常大氣CO2濃度,大氣CO2濃度升高增加稻田CH4排放26%,但差異并未達(dá)到顯著水平。以上分析表明,大氣CO2濃度升高對(duì)稻田CH4排放的促進(jìn)作用可能隨著高CO2濃度熏氣年限的增加而減弱,相應(yīng)機(jī)理值得深入研究。
不同大氣CO2濃度升高平臺(tái)對(duì)稻田CH4和N2O排放的影響存在著一定差異,為此本文整理分析了全球觀測(cè)數(shù)據(jù)。從圖1可見,研究大氣CO2濃度升高對(duì)稻田CH4和N2O排放較多的平臺(tái)是OTCs、Climatron和FACE平臺(tái)。對(duì)于稻田CH4排放對(duì)大氣CO2濃度升高的響應(yīng),OTCs、Climatron和FACE平臺(tái)模擬效果相近,而SPAR和TGCs的模擬效果低于平均水平。通過(guò)估算的全球稻田CH4排放總量(30 Tg/a)[2]和聯(lián)合國(guó)糧食及農(nóng)業(yè)組織(FAO)公布的全球稻田總面積(16 429萬(wàn)hm2)[43]可計(jì)算出每年全球稻田平均CH4排放量約為(183 ± 37) kg/hm2,這與OTCs、Climatron和FACE平臺(tái)的對(duì)照處理(正常大氣CO2濃度處理)平均CH4排放量(155 ± 15)、(210 ± 33)和(207 ± 22 )kg/hm2相當(dāng)(圖1A)。利用所有平臺(tái)觀測(cè)的正常大氣CO2濃度處理和大氣CO2濃度升高處理的平均稻田CH4排放量(分別為(195 ± 15)和(236 ± 15)kg/hm2),可估算當(dāng)未來(lái)大氣CO2濃度平均升高200 μmol/mol時(shí),全球稻田CH4排放可能增加約(7 ± 1)Tg/a。對(duì)于N2O排放,各平臺(tái)模擬效果差別較大。其中,OTCs平臺(tái)條件下,大氣CO2濃度升高促進(jìn)N2O排放71%,F(xiàn)ACE平臺(tái)卻只有17%,而Climatron平臺(tái)卻減少N2O排放1%(圖1B)。FACE平臺(tái)對(duì)照處理的平均稻田N2O排放系數(shù)EFs(N-rate-dependent effect factors)約為0.56%,與前人估算的排放系數(shù)(0.46% ~ 0.54%)[44]很接近,因此其模擬效果最佳(圖1B)。
影響稻田CH4排放的因素有很多,包括:氣候因素(CO2濃度、溫度、降水、濕度)、作物因素(品種、根系活力、通氣作用)、土壤特性(水分、O2、Eh、pH、質(zhì)地、有機(jī)質(zhì)、礦物質(zhì)營(yíng)養(yǎng))以及田間管理(水肥管理、作物品種、耕作方式、土地利用轉(zhuǎn)換)等[45-50]。大氣CO2濃度升高可促進(jìn)水稻光合生長(zhǎng),改變土壤理化性質(zhì),進(jìn)而影響稻田微環(huán)境,直接或間接影響稻田CH4排放。大氣CO2濃度升高增加稻田CH4排放的可能機(jī)制主要包括3個(gè)方面:①水稻根際分泌物增多,產(chǎn)CH4底物增加,產(chǎn)甲烷菌豐度增加,進(jìn)而促進(jìn)CH4產(chǎn)生;②稻田土壤甲烷氧化菌豐度減少,CH4氧化能力減弱;③水稻分蘗數(shù)增加,CH4傳輸能力增強(qiáng)[45]。也有研究發(fā)現(xiàn),大氣CO2濃度升高并未顯著增加稻田CH4排放,其原因可能是大氣CO2濃度升高并未增加產(chǎn)甲烷菌群落豐度;然而,當(dāng)溫度和大氣CO2濃度同時(shí)升高時(shí),稻田CH4排放顯著增加,這說(shuō)明其他環(huán)境因素可與大氣CO2濃度升高交互影響稻田CH4排放[29]。另外,大氣CO2濃度升高可能減少稻田CH4排放,主要由于大氣CO2濃度升高促進(jìn)水稻植株生長(zhǎng)、根系發(fā)育,促進(jìn)O2通過(guò)水稻植株向根部運(yùn)輸,增加稻田土壤CH4氧化能力[5]。綜上,大氣CO2濃度升高對(duì)稻田CH4排放的影響機(jī)制主要有以下幾個(gè)方面。
2.1.1 產(chǎn)甲烷菌和甲烷氧化菌 稻田CH4產(chǎn)生和氧化過(guò)程與產(chǎn)甲烷菌和甲烷氧化菌的數(shù)量及活性密切相關(guān)[51]。大氣CO2濃度升高增加稻田CH4排放的原因之一可能是增加了稻田土壤產(chǎn)甲烷菌的群落豐度,進(jìn)而提高了CH4產(chǎn)生潛力[52]。中國(guó)常熟FACE平臺(tái)的研究結(jié)果也表明,對(duì)比正常CO2濃度條件,大氣CO2濃度升高可增加稻田土壤產(chǎn)甲烷菌的群落豐度17% ~ 77%,并且產(chǎn)甲烷菌的群落豐度與CH4排放通量呈顯著正相關(guān)關(guān)系;然而,在溫度升高1.5 ~ 2 ℃條件下,大氣CO2濃度升高并未顯著增加水稻根際土壤產(chǎn)甲烷菌的群落豐度。另外,大氣CO2濃度升高增加稻田CH4排放可能與降低甲烷氧化菌的群落豐度有關(guān)[15]。日本Tsukuba FACE平臺(tái)研究結(jié)果發(fā)現(xiàn),大氣CO2濃度升高條件下,產(chǎn)甲烷功能基因(甲基輔酶 M 還原酶)含量提高,而甲烷氧化功能基因(甲烷單加氧酶)含量下降,這表明大氣CO2濃度升高促進(jìn)CH4產(chǎn)生的同時(shí)能夠抑制CH4氧化,從而影響稻田碳循環(huán)[25, 53]。但是,也有研究指出,整個(gè)水稻生長(zhǎng)季,大氣CO2濃度升高并未減少稻田CH4氧化潛力和甲烷氧化菌的群落豐度;并且,在溫度升高2℃條件下,大氣CO2濃度升高會(huì)顯著增加CH4氧化潛力[26]。
稻田CH4產(chǎn)生有兩條途徑:乙酸型和H2/CO2型[54]。若按產(chǎn)甲烷途徑劃分產(chǎn)甲烷菌屬,則乙酸型的產(chǎn)甲烷菌屬主要有甲烷八疊球菌屬()和甲烷鬃菌屬(),而H2/CO2型主要有甲烷胞菌屬()、甲烷規(guī)則菌屬()、甲烷桿菌屬()和Rice Cluster I in(簡(jiǎn)稱:RC-I)。大氣CO2濃度升高可增加甲烷胞菌屬和甲烷桿菌屬的相對(duì)豐度,降低甲烷鬃菌屬和甲烷規(guī)則菌屬的相對(duì)豐度,進(jìn)而顯著影響產(chǎn)甲烷菌群落組成[15]。中國(guó)常熟FACE平臺(tái)研究結(jié)果表明,雖然大氣CO2濃度升高在屬水平上并未顯著影響稻田土壤產(chǎn)甲烷菌群落的多樣性,但可導(dǎo)致乙酸型甲烷菌相對(duì)豐度向H2/CO2型的轉(zhuǎn)變[15, 26]。這說(shuō)明,目前稻田土壤乙酸型產(chǎn)甲烷菌占主導(dǎo)地位,但當(dāng)大氣CO2濃度升高時(shí),H2/CO2型產(chǎn)甲烷菌可能會(huì)發(fā)揮更重要的作用[52, 55]。
淹水稻田一般為厭氧環(huán)境,根際和土水界面的好氧區(qū)域決定了稻田甲烷氧化菌主要以I型和II型的好氧甲烷氧化菌為主[56]。在好氧甲烷氧化菌的參與下,約一半的稻田CH4在傳輸?shù)酱髿庵氨桓H和土水界面的好氧區(qū)域甲烷氧化菌氧化[57]。大氣CO2濃度升高條件下,稻田根際和土水界面甲烷氧化菌受水稻品種及水稻生長(zhǎng)期影響,但其組成和分布基本保持穩(wěn)定,并且甲基球菌屬(I型)、甲基暖菌屬(I型)以及甲基包囊菌屬(II型)是水稻根際主導(dǎo)菌屬[26]。大氣CO2濃度升高往往伴隨著大氣溫度升高,甲烷氧化菌對(duì)大氣CO2濃度和溫度升高有不同的反應(yīng),因此,需要進(jìn)一步研究大氣CO2濃度和溫度同時(shí)升高對(duì)稻田CH4排放的長(zhǎng)期交互作用[14]。此外,長(zhǎng)期的產(chǎn)甲烷菌和甲烷氧化菌群落豐度、群落組成及活性對(duì)大氣CO2濃度和溫度升高的響應(yīng)研究,有必要在mRNA水平上進(jìn)一步分析。
2.1.2 根系分泌物與泌氧能力 水稻光合產(chǎn)物碳是產(chǎn)甲烷菌代謝底物的重要來(lái)源,稻田排放的大部分CH4(超過(guò)60%)底物源自水稻的光合作用[58-59]。根系分泌物可直接為產(chǎn)甲烷菌提供產(chǎn)CH4底物[60]。大氣CO2濃度升高顯著促進(jìn)植物的光合作用[61],加快碳的同化和遷移過(guò)程的同時(shí),刺激水稻根系生長(zhǎng),從而進(jìn)一步導(dǎo)致根系分泌物增加。這可以促使參與產(chǎn)CH4的根際產(chǎn)甲烷菌群落豐度及活性提高,進(jìn)而可能增加稻田CH4排放[45]。對(duì)于水稻根的泌氧能力而言,盡管大氣CO2濃度升高促進(jìn)植物生長(zhǎng)的同時(shí)加快了O2的消耗,但也可能促進(jìn)大氣中更多的O2通過(guò)水稻植株進(jìn)入根際土壤,從而增加根系呼吸和CH4氧化[5]。另外,稻田土壤中O2的有效性受諸多因素影響,如土壤質(zhì)地、光照能力、自養(yǎng)水生生物以及水稻品種等。多種因素影響加大了根區(qū)CH4氧化的研究難度,導(dǎo)致稻田CH4的氧化率可能被低估[62]。因此,亟需從方法學(xué)上研究定量原位稻田CH4氧化的微生物機(jī)制。
2.1.3 水稻分蘗數(shù)與通氣組織 淹水稻田CH4排放多通過(guò)植株傳輸,水稻生長(zhǎng)期內(nèi)稻田CH4排放量約有60% ~ 90% 由水稻植株傳輸[63]。大氣CO2濃度升高影響水稻生長(zhǎng),可增加產(chǎn)量、水稻地下生物量以及有效分蘗數(shù)等。OTCs平臺(tái)[6]和FACE平臺(tái)[21]的研究結(jié)果均表明:大氣CO2濃度升高增加稻田CH4排放量可能與大氣CO2濃度升高增加水稻分蘗數(shù),促進(jìn)CH4通過(guò)水稻植物傳輸有關(guān)。當(dāng)然,不同水稻品種的植株通氣組織形態(tài)和數(shù)量不一,這與CH4輸送能力(methane transport capacity,MTC)有直接關(guān)系[64]。高CH4排放的水稻品種在形態(tài)、生理和解剖上的特征主要有較大的葉面積、較多的分蘗數(shù)、較高的氣孔開合頻率、較快的蒸騰速率以及較寬植株氣腔直徑等[65]。因此,未來(lái)大氣CO2濃度升高條件下,如何培育高產(chǎn)低排的水稻品種值得深入研究。
2.1.4 水稻品種 不同水稻品種植株類型、根系特征及代謝特性等對(duì)大氣CO2濃度升高響應(yīng)不一,勢(shì)必導(dǎo)致稻田產(chǎn)CH4能力的差異。高產(chǎn)水稻可將光合產(chǎn)物充分地分配到地下部,增大根系,增強(qiáng)根系對(duì)氮的吸收、同化及轉(zhuǎn)運(yùn)能力,保證葉片中碳和氮代謝的協(xié)調(diào)[66]。Meta分析表明,與低生物量水稻品種相比,高產(chǎn)水稻品種會(huì)顯著減少CH4排放[67]。其原因主要由于高產(chǎn)水稻品種根系生物量和根系空隙率較高,增加了O2向根部的運(yùn)輸,促進(jìn)CH4氧化[68]。另外,對(duì)比粳稻,秈稻具有更強(qiáng)的分蘗能力,更利于O2向根部的傳輸,促進(jìn)CH4氧化[69]。大氣CO2濃度升高是否會(huì)進(jìn)一步促進(jìn)高產(chǎn)水稻的根系泌氧,達(dá)到增強(qiáng)氧化、減少排放的效果目前尚不清楚。
已有研究結(jié)果表明,大氣CO2濃度升高能夠促進(jìn)水稻品種武香粳14和增產(chǎn)約10% ~ 15%,這類水稻品種被稱為低應(yīng)答水稻[70-72]。另外,中國(guó)江都FACE平臺(tái)連續(xù)3年試驗(yàn)發(fā)現(xiàn),水稻品種汕優(yōu)63和兩優(yōu)培九的增產(chǎn)比率均高于30%,此類水稻品種被稱為高應(yīng)答水稻[66, 71]。目前有關(guān)大氣CO2濃度升高對(duì)稻田CH4排放影響的研究主要集中在低應(yīng)答水稻品種上[24, 30, 32],而關(guān)于高應(yīng)答水稻品種的稻田CH4排放對(duì)大氣CO2濃度升高的響應(yīng)規(guī)律及其與低應(yīng)答水稻品種差異機(jī)制的系統(tǒng)研究尚未見報(bào)道。未來(lái)大氣CO2濃度升高條件下,高應(yīng)答水稻品種具有較高的收獲指數(shù)、較少的無(wú)效分蘗數(shù)以及較高的根際泌氧能力等多項(xiàng)優(yōu)點(diǎn),兼具經(jīng)濟(jì)和環(huán)境雙重效益[67]。另外,研究大氣CO2濃度升高在篩選水稻品種影響環(huán)境效應(yīng)的同時(shí),應(yīng)特別注意大氣CO2濃度升高對(duì)稻米品質(zhì)和糧食安全問(wèn)題[73]。
2.1.5 溫度 大氣CO2濃度升高一般伴隨著溫度升高,因此研究稻田CH4排放對(duì)未來(lái)氣候條件的響應(yīng)及其機(jī)制時(shí),應(yīng)考慮區(qū)分溫度升高和大氣CO2濃度升高,同時(shí)也應(yīng)將兩者的協(xié)同作用作為綜合處理[6, 9, 15, 29]。溫度是影響稻田CH4排放的重要因素之一,它影響著稻田土壤水分的去向以及產(chǎn)甲烷菌和甲烷氧化菌的活性從而影響稻田CH4的排放[59, 74-76]。以往研究考察大氣CO2濃度和溫度升高對(duì)稻田CH4排放的影響主要是指土壤溫度[6, 29]。一般而言,稻田CH4排放隨土壤溫度的升高呈指數(shù)型增長(zhǎng)[77],這可能加劇大氣CO2濃度升高對(duì)稻田CH4排放的促進(jìn)作用。但實(shí)際上,大氣CO2濃度升高導(dǎo)致的是氣溫升高。稻田生態(tài)系統(tǒng)前期淹水時(shí),稻田表面水對(duì)溫度升高的緩沖作用以及水稻植株“封行”后對(duì)土壤的隔熱降溫作用,可能導(dǎo)致土壤溫度無(wú)明顯變化[74]。因此,大氣CO2濃度升高引起的空氣溫度升高對(duì)土壤CH4產(chǎn)生并無(wú)直接作用。然而,氣溫上升加快呼吸作用和葉片老化,導(dǎo)致更多光合產(chǎn)物轉(zhuǎn)運(yùn)到土壤中,為CH4產(chǎn)生提供更多底物,間接影響CH4的排放[15, 78]。另外,氣溫上升可能導(dǎo)致水稻植株葉片以及葉鞘氣孔適當(dāng)關(guān)閉,從而抑制稻田CH4通過(guò)水稻植株的傳輸。綜上,關(guān)于大氣CO2濃度升高與溫度升高的綜合效應(yīng)還需進(jìn)一步深入研究。
硝化和反硝化過(guò)程是稻田N2O主要產(chǎn)生途徑[79]。涉及稻田N2O排放對(duì)大氣CO2濃度升高的響應(yīng)及其機(jī)制的研究并不多,利用的技術(shù)平臺(tái)主要有OTCs[10, 14, 19]、Climatron[12]和FACE[20-21, 80]等。
一般認(rèn)為,大氣CO2濃度升高增加稻田N2O排放,其可能機(jī)制包括:①大氣CO2濃度升高提高碳的有效性,更多的碳源為硝化和反硝化作用提供了能量,增加了凈硝化作用以及反硝化作用潛勢(shì),從而增加了稻田N2O排放[10, 81-83];②大氣CO2濃度升高,導(dǎo)致溫度升高,增加了硝化和反硝化菌的活性,增加了氮通過(guò)N2O形式損失[84]。
稻田N2O排放受水肥影響,多集中于施肥后、烤田階段以及后期干濕交替。淹水時(shí)期,盡管有肥料施入,但由于土壤處于還原性條件,N2O產(chǎn)生和排放很少,即便大氣CO2濃度升高促進(jìn)水稻植株生長(zhǎng),N2O產(chǎn)生和排放依然會(huì)受到一定程度的限制;而當(dāng)?shù)咎锾幱谥衅诳咎锘蚝笃诟蓾窠惶?,水分條件適宜N2O產(chǎn)生和排放,此時(shí)大氣CO2濃度升高對(duì)N2O排放的影響才可能表現(xiàn)出來(lái)[80, 85, 86]。另一方面,由于農(nóng)業(yè)灌溉水源愈發(fā)緊張,由此發(fā)展起來(lái)的節(jié)水灌溉措施可能導(dǎo)致稻田CH4排放減少,但與此同時(shí)也極有可能促進(jìn)稻田N2O排放[87-89]。而大氣CO2濃度升高導(dǎo)致的氣溫上升可能會(huì)增加稻田水分的蒸發(fā),進(jìn)而加劇這一現(xiàn)象。
當(dāng)然,大氣CO2濃度升高能夠促進(jìn)植物生長(zhǎng),提高植物的氮素利用率,促使土壤氮的殘留量減少,進(jìn)而可能降低土壤N2O排放[90]。大氣CO2濃度升高可能增加定量施氮的稻田土壤C/N比,進(jìn)而導(dǎo)致有效氮向微生物氮轉(zhuǎn)移,減少參與硝化和反硝化作用的氮量[21],進(jìn)而減少稻田N2O排放。同時(shí),溫度和大氣CO2濃度同時(shí)升高的交互作用也可能存在抵消稻田N2O排放的作用[14],相關(guān)機(jī)制研究目前比較欠缺,亟需進(jìn)一步加深。
1)為滿足日益增長(zhǎng)的人口對(duì)糧食的需求,種植高產(chǎn)水稻品種對(duì)提高糧食產(chǎn)量、保障國(guó)家糧食安全顯得尤為重要。大氣CO2濃度升高有助于篩選適合未來(lái)氣候條件的高產(chǎn)水稻品種。未來(lái)氣候條件下,高產(chǎn)水稻品種的種植也可能會(huì)改變現(xiàn)有的水肥管理模式。在此背景下,稻田溫室氣體排放可能隨之發(fā)生相應(yīng)變化。因此,未來(lái)氣候條件下高產(chǎn)水稻品種的減排潛力及調(diào)控機(jī)制值得探究。
2)實(shí)際大氣CO2濃度升高是一個(gè)緩慢過(guò)程,并非驟增結(jié)果。以往研究發(fā)現(xiàn),大氣CO2濃度驟增高估了模擬植物–土壤系統(tǒng)的微生物群落響應(yīng)[91]。并且,最新研究表明,F(xiàn)ACE平臺(tái)高CO2濃度的試驗(yàn)環(huán)境與未來(lái)高CO2的自然環(huán)境存在差異,主要表現(xiàn)在試驗(yàn)中CO2濃度的波動(dòng)頻率很高[92]。這表明,驟增的模擬效果對(duì)植物–土壤系統(tǒng)的影響效果可能失真。另外,不同的CO2濃度對(duì)水稻生長(zhǎng)發(fā)育的影響程度不同,可能對(duì)稻田溫室氣體排放的影響也會(huì)存在差異。因此,有必要深入方法學(xué)研究,提高現(xiàn)有試驗(yàn)的模擬效果。同時(shí),也有必要進(jìn)一步深入研究不同梯度的大氣CO2濃度升高水平,即大氣CO2濃度漸增,對(duì)稻田溫室氣體排放的影響及其機(jī)理。盡管已有極少關(guān)于不同大氣CO2濃度水平對(duì)稻田生態(tài)系統(tǒng)作物生長(zhǎng)和產(chǎn)量形成影響的研究報(bào)道[93-96],但大氣CO2濃度漸增對(duì)稻田溫室氣體排放的影響及其差異機(jī)制尚不清楚,有待亟需解決。
3)目前,關(guān)于稻田溫室氣體排放對(duì)大氣CO2濃度升高響應(yīng)的研究年限較短,絕大部分低于5年。大氣CO2濃度升高的短期效應(yīng)會(huì)急劇促進(jìn)與CH4和N2O排放相關(guān)的微生物生長(zhǎng),并可能進(jìn)一步激發(fā)土壤本底有機(jī)碳的轉(zhuǎn)化,增加CH4和N2O產(chǎn)生和排放。然而,隨著時(shí)間推移,高濃度CH4會(huì)刺激甲烷氧化菌的生長(zhǎng)和活性,可能促使氧化能力逐漸增強(qiáng),從而降低CH4排放。因此,長(zhǎng)期(5 ~ 10年以上)大氣CO2濃度升高對(duì)稻田CH4和N2O排放的影響很可能與其短期效應(yīng)存在一定差異。本課題組基于連續(xù)運(yùn)行時(shí)間最長(zhǎng)的稻麥輪作FACE平臺(tái)(2004—2018年),觀測(cè)了大氣CO2濃度升高13 ~ 15年后稻田的CH4和N2O排放通量,發(fā)現(xiàn)大氣CO2濃度升高明顯降低CH4和N2O排放量,并初步明確了其減排機(jī)理(未發(fā)表數(shù)據(jù))。全球范圍內(nèi),不同稻田生態(tài)系統(tǒng)該現(xiàn)象是否具有普遍性還有待更多觀測(cè)數(shù)據(jù)加以證實(shí),這將是未來(lái)相當(dāng)長(zhǎng)一段時(shí)期內(nèi)的研究熱點(diǎn)。
4)近幾年,再生稻在東南亞主要水稻生產(chǎn)國(guó)家得到了快速發(fā)展,這為國(guó)際糧食安全提供了有力保障[97]?!霸偕尽笔侵割^季水稻收割后,利用稻樁重新發(fā)苗、長(zhǎng)穗,再收一季[98]。適合蓄留再生稻的地區(qū)主要是陽(yáng)光和熱量不夠種植雙季稻,但種植單季稻又有余的地區(qū)。大氣CO2濃度升高通常伴隨溫度升高,這將導(dǎo)致熱量資源增多,有利于擴(kuò)大水稻潛在種植面積,增加糧食總生產(chǎn)能力。這充分說(shuō)明大氣CO2濃度升高不僅有助于提升水稻光合效率,有利于提高單產(chǎn),又可能擴(kuò)大再生稻潛在種植面積,從而增加水稻總產(chǎn)量。不難預(yù)見,未來(lái)大氣CO2濃度升高條件下,再生稻種植面積的可能進(jìn)一步擴(kuò)大,將對(duì)現(xiàn)有稻田生態(tài)系統(tǒng)的溫室氣體排放產(chǎn)生巨大影響。因此,探討大氣CO2濃度升高可能導(dǎo)致的稻田耕作制度轉(zhuǎn)變將是未來(lái)稻田生態(tài)系統(tǒng)溫室氣體排放的又一重要研究方向。
[1] IPCC. Climate change 2014: Synthesis report. contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change[M]. Cambridge University Press, Cambridge, 2014.
[2] Saunois M, Stavert A R, Poulter B, et al. The global methane budget 2000-2017[J]. Earth System Science Data, 2020, 12(3): 1561–1623.
[3] Datta A, Santra S C, Adhya T K. Environmental and economic opportunities of applications of different types and application methods of chemical fertilizer in rice paddy[J]. Nutrient Cycling in Agroecosystems, 2017, 107(3): 413–431.
[4] Allen L H, Albercht S L J, Colon W, et al. Effects of carbon dioxide and temperature on methane emission of rice[J]. International Rice Research Newsletter, 1994, 19(3): 43.
[5] Schrope M K, Chanton J P, Allen L H, et al. Effect of CO2enrichment and elevated temperature on methane emissions from rice,[J]. Global Change Biology, 1999, 5: 587–599.
[6] Ziska L H, Moya T B, Wassmann R, et al. Long-term growth at elevated carbon dioxide stimulates methane emission in tropical paddy rice[J]. Global Change Biology, 1998, 4(6): 657–665.
[7] van Groenigen K J, Osenberg C W, Hungate B A. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2[J]. Nature, 2011, 475(7355): 214–216.
[8] Liu S W, Ji C, Wang C, et al. Climatic role of terrestrial ecosystem under elevated CO2: a bottom-up greenhouse gases budget[J]. Ecology Letters, 2018, 21(7): 1108–1118.
[9] Allen L H, Jr., Albrecht S L, Colon-Guasp W, et al. Methane emissions of rice increased by elevated carbon dioxide and temperature[J]. Journal of Environmental Quality, 2003, 32(6): 1978–1991.
[10] Bhattacharyya P, Roy K S, Neogi S, et al. Impact of elevated CO2and temperature on soil C and N dynamics in relation to CH4and N2O emissions from tropical flooded rice (L.)[J]. Science of the Total Environment, 2013, 461/462: 601–611.
[11] Cheng W G, Sakai H, Hartley A, et al. Increased night temperature reduces the stimulatory effect of elevated carbon dioxide concentration on methane emission from rice paddy soil[J]. Global Change Biology, 2008, 14(3): 644–656.
[12] Cheng W G, Yagi K, Sakai H, et al. Effects of elevated atmospheric CO2concentrations on CH4and N2O emission from rice soil: an experiment in controlled-environment chambers[J]. Biogeochemistry, 2006, 77(3): 351–373.
[13] Lou Y S, Inubushi K, Mizuno T, et al. CH4emission with differences in atmospheric CO2enrichment and rice cultivars in a Japanese paddy soil[J]. Global Change Biology, 2008, 14: 2678–2687.
[14] Wang B, Li J L, Wan Y F, et al. Responses of yield, CH4and N2O emissions to elevated atmospheric temperature and CO2concentration in a double rice cropping system[J]. European Journal of Agronomy, 2018, 96: 60–69.
[15] Wang C, Jin Y G, Ji C, et al. An additive effect of elevated atmospheric CO2and rising temperature on methane emissions related to methanogenic community in rice paddies[J]. Agriculture, Ecosystems and Environment, 2018, 257: 165–174.
[16] Xu Z J, Zheng X H, Wang Y S, et al. Effects of elevated CO2and N fertilization on CH4emissions from paddy rice fields[J]. Global Biogeochemical Cycles, 2004, 18(3): GB3009.
[17] Yun S I, Kang B M, Lim S S, et al. Further understanding CH4emissions from a flooded rice field exposed to experimental warming with elevated [CO2][J]. Agricultural and Forest Meteorology, 2012, 154/155: 75–83.
[18] 馬紅亮, 朱建國(guó), 謝祖彬, 等. 自由大氣CO2濃度升高對(duì)稻田CH4排放的影響研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2010, 29(6): 1217–1224.
[19] Pereira J, Figueiredo N, Goufo P, et al. Effects of elevated temperature and atmospheric carbon dioxide concentration on the emissions of methane and nitrous oxide from Portu-guese flooded rice fields[J]. Atmospheric Environment, 2013, 80: 464–471.
[20] 王從. 稻麥輪作生態(tài)系統(tǒng)溫室氣體排放對(duì)大氣CO2濃度和溫度升高的響應(yīng)研究[C]. 南京: 南京農(nóng)業(yè)大學(xué), 2017.
[21] 徐仲均, 鄭循華, 王躍思. 大氣CO2增加對(duì)陸地生態(tài)系統(tǒng)微量氣體地氣交換的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2002, 13(10): 1344–1348.
[22] Cheng W G, Inubushi K, Hoque M M, et al. Effect of elevated [CO2] on soil bubble and CH4emission from a rice paddy: A test by13C pulse-labeling under free-air CO2enrichment[J]. Geomicrobiology Journal, 2008, 25(7/8): 396–403.
[23] Fumoto T, Hasegawa T, Cheng W G, et al. Application of a process-based biogeochemistry model, DNDC-Rice, to a rice field under free-air CO2enrichment (FACE)[J]. Journal of Agricultural Meteorology, 2013, 69(3): 173–190.
[24] Inubushi K, Cheng W, Mizuno T, et al. Microbial biomass carbon and methane oxidation influenced by rice cultivars and elevated CO2in a Japanese paddy soil[J]. European Journal of Soil Science, 2011, 62(1): 69–73.
[25] Liu D Y, Tago K, Hayatsu M, et al. Effect of elevated CO2concentration, elevated temperature and no nitrogen fertilization on methanogenic archaeal and methane- oxidizing bacterial community structures in paddy soil[J]. Microbes and Environments, 2016, 31(3): 349–356.
[26] Liu Y, Liu X Y, Cheng K, et al. Responses of methanogenic and methanotrophic communities to elevated atmospheric CO2and temperature in a paddy field[J]. Frontiers in Micro-biology, 2016, 7: 1895.
[27] Tokida T, Adachi M, Cheng W G, et al. Methane and soil CO2production from current-season photosynthates in a rice paddy exposed to elevated CO2concentration and soil temperature[J]. Global Change Biology, 2011, 17(11): 3327–3337.
[28] Tokida T, Cheng W, Adachi M, et al. The contribution of entrapped gas bubbles to the soil methane pool and their role in methane emission from rice paddy soil in free-air [CO2] enrichment and soil warming experiments[J]. Plant and Soil, 2012, 364(1/2): 131–143.
[29] Tokida T, Fumoto T, Cheng W, et al. Effects of free-air CO2enrichment (FACE) and soil warming on CH4emission from a rice paddy field: impact assessment and stoichiometric evaluation[J]. Biogeosciences, 2010, 7(9): 2639–2653.
[30] Xie B H, Zhou Z X, Mei B L, et al. Influences of free-air CO2enrichment (FACE), nitrogen fertilizer and crop residue incorporation on CH4emissions from irrigated rice fields[J]. Nutrient Cycling in Agroecosystems, 2012, 93(3): 373–385.
[31] Yang B, Chen Z Z, Zhang M, et al. Effects of elevated atmospheric CO2concentration and temperature on the soil profile methane distribution and diffusion in rice-wheat rotation system[J]. Journal of Environmental Sciences, 2015, 32: 62–71.
[32] Zheng X H, Zhou Z X, Wang Y S, et al. Nitrogen-regulated effects of free-air CO2enrichment on methane emissions from paddy rice fields[J]. Global Change Biology, 2006, 12(9): 1717–1732.
[33] 萬(wàn)云帆, 游松財(cái), 李玉娥, 等. 開頂式氣室原位模擬溫度和CO2濃度升高在早稻上的應(yīng)用效果[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2014, 30(5): 123–130.
[34] Raddy K R, Hodges H F, Read J J, et al. Soil-Plant-Atmosphere-Research (SPAR) facility: A tool for plant research and modeling[J]. Biotronics, 2001, 30: 17–50.
[35] Sang W G, Kim J H, Shin P, et al. Current Research Works on Climate Change Issue using SPAR (Soil-Plant- Atmosphere-Research) System in USDA-ARS[J]. Journal of the Korean Society of International Agricultue, 2017, 29(4): 382–388.
[36] Horie T, Nakagawa H, Nakano J, et al. Temperature- gradient chambers for research on global environment change. 3. A system designed for rice in Kyoto, Japan[J]. Plant Cell and Environment, 1995, 18(9): 1064–1069.
[37] Kim H Y, Horie T, Nakagawa H, et al. Effects of elevated CO2concentration and high temperature on growth and yield of rice[J]. Japanese Journal of Crop Science, 1996, 65(4): 634–643.
[38] Qian H Y, Huang S, Chen J, et al. Lower-than-expected CH4emissions from rice paddies with rising CO2concen-trations[J]. Global Change Biology, 2020, 26: 2368–2376.
[39] Long S P, Ainsworth E A, Rogers A, et al. Rising atmospheric carbon dioxide: plants FACE the future[J]. Annual review of plant biology, 2004, 55: 591–628.
[40] 劉鋼, 韓勇, 朱建國(guó), 等. 稻麥輪作FACE系統(tǒng)平臺(tái)I.系統(tǒng)結(jié)構(gòu)與控制[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2002, 13(10): 1253–1258.
[41] Dijkstra F A, Prior S A, Runion G B, et al. Effects of elevated carbon dioxide and increased temperature on methane and nitrous oxide fluxes: evidence from field experiments[J]. Frontiers in Ecology and the Environment, 2012, 10(10): 520–527.
[42] 周超, 劉樹偉, 張令, 等. 溫度和CO2濃度升高對(duì)稻田CH4的影響: T-FACE平臺(tái)觀測(cè)研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2013, 32(10): 2077–2083.
[43] FAO. Food and agriculture data[M]. Rome, Italy, 2014.
[44] Wang Q H, Zhou F, Shang Z Y, et al. Data-driven estimates of global nitrous oxide emissions from croplands[J]. National science review, 2020, 7(2): 441–452.
[45] Malyan S K, Bhatia A, Kumar A, et al. Methane production, oxidation and mitigation: A mechanistic understanding and comprehensive evaluation of influencing factors[J]. Science of the Total Environment, 2016, 572: 874–896.
[46] Wang C, Lai D Y, Sardans J, et al. Factors related with CH4and N2O emissions from a paddy field: clues for management implications[J]. PLoS One, 2017, 12(1): e0169254.
[47] Wu X, Liu H F, Zheng X H, et al. Responses of CH4and N2O fluxes to land-use conversion and fertilization in a typical red soil region of southern China[J]. Scientific Reports, 2017, 7(1): 10571.
[48] Yuan Y, Dai X Q, Wang H M, et al. Effects of land-use conversion from double rice cropping to vegetables on methane and nitrous oxide fluxes in southern China[J]. PLoS One, 2016, 11(5): e0155926.
[49] Zhang G, Ma J, Yang Y, et al. Achieving low methane and nitrous oxide emissions with high economic incomes in a rice-based cropping system[J]. Agricultural and Forest Meteorology, 2018, 259: 95–106.
[50] 鄒建文, 黃耀, 宗良綱, 等. 稻田CO2、CH4和N2O排放及其影響因素[J]. 環(huán)境科學(xué)學(xué)報(bào), 2003, 23(6): 758–764.
[51] Holmes A J, Costello A, Lidstrom M E, et al. Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related[J]. FEMS Microbiology Letters, 1995, 132: 203–208.
[52] Das S, Adhya T K. Dynamics of methanogenesis and methanotrophy in tropical paddy soils as influenced by elevated CO2and temperature interaction[J]. Soil Biology and Biochemistry, 2012, 47: 36–45.
[53] Okubo T, Liu D Y, Tsurumaru H, et al. Elevated atmospheric CO2levels affect community structure of rice root-associated bacteria[J]. Frontiers in Microbiology, 2015, 6: 136.
[54] 蔡祖聰, 徐華, 馬靜. 稻田生態(tài)系統(tǒng)CH4和N2O排放[M]. 中國(guó)科學(xué)技術(shù)大學(xué)出版社, 合肥, 2009.
[55] Conra R. Soil microbial communities and global climate change-methanotrophic and methanogenic communities as paradigms[M]. CRC Press, Boca Raton, FL, USA, 2006.
[56] Hu A, Lu Y H. The differential effects of ammonium and nitrate on methanotrophs in rice field soil[J]. Soil Biology and Biochemistry, 2015, 85: 31–38.
[57] Thauer R K. Functionalization of methane in anaerobic microorganisms[J]. Angew Chem Int Ed Engl, 2010, 49(38): 6712–6713.
[58] Pump J, Pratscher J, Conrad R. Colonization of rice roots with methanogenic archaea controls photosynthesis-derived methane emission[J]. Environmental Microbiology, 2015, 17(7): 2254–2260.
[59] Peng J J, Lv Z, Rui J P, et al. Dynamics of the methano-genic archaeal community during plant residue decompo-sition in an anoxic rice field soil[J]. Applied and Environmental Microbiology, 2008, 74(9): 2894–2901.
[60] Maurer D, Kiese R, Kreuzwieser J, et al. Processes that determine the interplay of root exudation, methane emission and yield in rice agriculture[J]. Plant Biology, 2018, 20(6): 951–955.
[61] Prior S A, Runion G B, Marble S C, et al. A review of elevated atmospheric CO2effects on plant growth and water relations: Implications for horticulture[J]. Hortscience, 2011, 46(2): 158–162.
[62] Cho R, Schroth M H, Zeyer J. Circadian methane oxidation in the root zone of rice plants[J]. Biogeochemistry, 2011, 111(1/2/3): 317–330.
[63] Aulakh M S, Bodenbender J, Wassmann R, et al. Methane transport capacity of rice plants. II. Variations among different rice cultivars and relationship with morphological characteristics[J]. Nutrient Cycling in Agroecosystems, 2000, 58(1/2/3): 367–375.
[64] Aulakh M S, Wassmann R, Rennenberg H, et al. Pattern and amount of aerenchyma relate to variable methane transport capacity of different rice cultivars[J]. Plant Biology, 2000, 2(2): 182–194.
[65] Das K, Baruah K K. Methane emission associated with anatomical and morphophysiological characteristics of rice (Oryza sativa) plant[J]. Physiologia Plantarum, 2008, 134(2): 303–312.
[66] Liu H J, Yang L X, Wang Y L, et al. Yield formation of CO2-enriched hybrid rice cultivar Shanyou 63 under fully open-air field conditions[J]. Field Crops Research, 2008, 108(1): 93–100.
[67] Jiang Y, van Groenigen K J, Huang S, et al. Higher yields and lower methane emissions with new rice cultivars[J]. Global Change Biology, 2017, 23(11): 4728–4738.
[68] Ma K, Qiu Q F, Lu Y H. Microbial mechanism for rice variety control on methane emission from rice field soil[J]. Global Change Biology, 2010, 16: 3085–3095.
[69] Singh S, Singh J S, Kashyap A K. Methane flux from irrigated rice fields in relation to crop growth and N-fertilization[J]. Soil Biology and Biochemistry, 1999, 31(9): 1219–1228.
[70] Kim H Y, Lieffering M, Kobayashi K, et al. Effects of free-air CO2enrichment and nitrogen supply on the yield of temperate paddy rice crops[J]. Field Crops Research, 2003, 83(3): 261–270.
[71] Yang L X, Liu H J, Wang Y X, et al. Yield formation of CO2-enriched inter-subspecific hybrid rice cultivar Liangyoupeijiu under fully open-air field condition in a warm sub-tropical climate[J]. Agriculture, Ecosystems and Environment, 2009, 129(1/2/3): 193–200.
[72] Yang L X, Wang Y L, Dong G C, et al. The impact of free-air CO2enrichment (FACE) and nitrogen supply on grain quality of rice[J]. Field Crops Research, 2007, 102(2): 128–140.
[73] Zhu C W, Kobayashi K, Loladze I, et al. Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice- dependent countries[J]. Science Advances, 2018, 4(5).
[74] Kuzyakov Y, Horwath W R, Dorodnikov M, et al. Review and synthesis of the effects of elevated atmospheric CO2on soil processes: No changes in pools, but increased fluxes and accelerated cycles[J]. Soil Biology and Biochemistry, 2019, 128: 66–78.
[75] Lu Y, Fu L, Lu Y H, et al. Effect of temperature on the structure and activity of a methanogenic archaeal community during rice straw decomposition[J]. Soil Biology and Biochemistry, 2015, 81: 17–27.
[76] Luo G J, Kiese R, Wolf B, et al. Effects of soil temperature and moisture on methane uptake and nitrous oxide emissions across three different ecosystem types[J]. Biogeosciences, 2013, 10(5): 3205–3219.
[77] Conrad R. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO)[J]. Micro-bio-logical Reviews, 1996, 60(4): 609–640.
[78] Cai C, Yin X Y, He S Q, et al. Responses of wheat and rice to factorial combinations of ambient and elevated CO2and temperature in FACE experiments[J]. Global Change Biology, 2016, 22(2): 856–874.
[79] Bremner J M, Blackmer A M. Nitrous oxide: emission from soils during nitrification of fertilizer nitrogen[J]. Science, 1978, 199(4326): 295–296.
[80] 王從, 李舒清, 劉樹偉, 等. 大氣CO2濃度和溫度升高對(duì)稻麥輪作生態(tài)系統(tǒng)N2O排放的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2018, 51(13): 2535–2550.
[81] Carnol M, Hogenboom L, Jach M E, et al. Elevated atmospheric CO2in open top chambers increases net nitrification and potential denitrification[J]. Global Change Biology, 2002, 8(6): 590–598.
[82] Li C S, Frolking S, Butterbach-Bahl K. Carbon sequestration in arable soils is likely to increase nitrous oxide emissions, offsetting reductions in climate radiative forcing[J]. Climatic Change, 2005, 72(3): 321–338.
[83] Smith M S, Tiedje J M. Effect of roots on soil denitrify-cation[J]. Soil Science Society of America Journal, 1979, 43(5): 951–955.
[84] Wrage N, Velthof G L, van Beusichem M L, et al. Role of nitrifier denitrification in the production of nitrous oxide[J]. Soil Biology and Biochemistry, 2001, 33(12/13): 1723– 1732.
[85] Ottman M J, Kimball B A, Pinter P J, et al. Elevated CO2increases sorghum biomass under drought conditions[J]. New Phytologist, 2001, 150(2): 261–273.
[86] 徐華, 邢光喜, 蔡祖聰, 等. 土壤水分狀況和質(zhì)地對(duì)稻田N2O 排放的影響[J]. 土壤學(xué)報(bào), 2000, 37(4): 499–505.
[87] Meijide A, Gruening C, Goded I, et al. Water management reduces greenhouse gas emissions in a Mediterranean rice paddy field[J]. Agriculture Ecosystems and Environment, 2017, 238: 168–178.
[88] Peyron M, Bertora C, Pelissetti S, et al. Greenhouse gas emissions as affected by different water management practices in temperate rice paddies[J]. Agriculture Ecosystems and Environment, 2016, 232: 17–28.
[89] Sun H F, Zhou S, Zhang J N, et al. Year-to-year climate variability affects methane emission from paddy fields under irrigated conditions[J]. Environmental Science and Pollution Research, 2020, 27(13): 14780–14789.
[90] Kim H Y, Lim S S, Kwak J H, et al. Dry matter and nitrogen accumulation and partitioning in rice (L.) exposed to experimental warming with elevated CO2[J]. Plant and Soil, 2011, 342(1/2): 59–71.
[91] Klironomos J N, Allen M F, Rillig M C, et al. Abrupt rise in atmospheric CO2overestimates community response in a model plant-soil system[J]. Nature, 2005, 433(7026): 621–624.
[92] Allen L H, Kimball B A, Bunce J A, et al. Fluctuations of CO2in Free-Air CO2Enrichment (FACE) depress plant photosynthesis, growth, and yield[J]. Agricultural and Forest Meteorology, 2020, 284: 107899.
[93] 范佩佩, 馮芳, 劉超, 等. 不同CO2濃度升高水平對(duì)粳稻葉片熒光特性的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2019, 30(11): 3735–3744.
[94] 馮芳, 范佩佩, 劉超, 等. 水稻葉綠素?zé)晒馓匦詫?duì)CO2濃度升高的代際響應(yīng)研究[J]. 生態(tài)環(huán)境學(xué)報(bào), 2019, 29(3): 463–471.
[95] 劉超, 胡正華, 陳健, 等. 不同CO2濃度升高水平對(duì)水稻光合特性的影響[J]. 生態(tài)環(huán)境學(xué)報(bào), 2018, 27(2): 246–254.
[96] 孫文娟, 張晨希, 劉曉萌, 等. 不同CO2濃度升高水平對(duì)粳稻灌漿速率的影響[J]. 農(nóng)業(yè)現(xiàn)代化研究, 2018, 39(1): 148–154.
[97] Torres R O, Natividad M A, Quintana M R, et al. Ratooning as a management strategy for lodged or drought-damaged rice crops[J]. Crop Science, 2020, 60(1): 367–380.
[98] 熊洪, 冉茂林, 徐富賢, 等. 南方稻區(qū)再生稻研究進(jìn)展及發(fā)展[J]. 作物學(xué)報(bào), 2000, 26(3): 297–304.
Response of CH4and N2O Emissions to Elevated Atmospheric CO2Concentration from Rice Fields: A Review
YU Haiyang1, 2, ZHANG Guangbin1, MA Jing1, XU Hua1*
(1 State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China)
Elevated atmospheric CO2concentration is the main driving force of global climate change, which directly or indirectly affects carbon (C) and nitrogen (N) biogeochemical cycles of terrestrial ecosystems. It is necessary to clarify the effects and mechanisms of elevated CO2concentration on CH4and N2O emissions from rice fields, for which is an important part of agricultural systems to mitigate global climate change. Therefore, this review focused on the mechanisms of CH4and N2O emissions from rice fields in response to elevated atmospheric CO2concentration under various facilities in different countries, discussed and prospected the effects of elevated atmospheric CO2concentration on CH4and N2O emissions from rice fields. The review would provide an important theoretical basis and technical support for responding to global climate change.
Elevated atmospheric CO2; Rice fields; CH4; N2O; Mechanism
S-3;S511
A
10.13758/j.cnki.tr.2021.03.003
于海洋, 張廣斌, 馬靜, 等. 稻田CH4和N2O排放對(duì)大氣CO2濃度升高響應(yīng)的研究進(jìn)展. 土壤, 2021, 53(3): 458–467.
國(guó)家自然科學(xué)基金項(xiàng)目(41671241,41877325)和中國(guó)科學(xué)院青年創(chuàng)新促進(jìn)會(huì)項(xiàng)目(2018349)資助。
(hxu@issas.ac.cn)
于海洋(1990—),男,山東煙臺(tái)人,博士研究生,主要研究方向?yàn)樘嫉h(huán)與全球變化。E-mail: yuhy@issas.ac.cn