国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

小側(cè)隙薄輻板齒輪的嚙合剛度與準(zhǔn)靜態(tài)傳遞誤差計(jì)算方法

2021-09-09 12:36曹學(xué)晨陸鳳霞吳霞施蓓蓓
航空科學(xué)技術(shù) 2021年7期
關(guān)鍵詞:正交試驗(yàn)有限元

曹學(xué)晨 陸鳳霞 吳霞 施蓓蓓

摘要:側(cè)隙補(bǔ)償是高精密齒輪傳動(dòng)領(lǐng)域的研究熱點(diǎn),側(cè)隙變大會(huì)導(dǎo)致傳動(dòng)穩(wěn)定性變差,而過(guò)小的側(cè)隙會(huì)導(dǎo)致齒輪非工作面發(fā)生干涉。結(jié)合航空薄輻板齒輪的特點(diǎn),根據(jù)輪系傳動(dòng)鏈中的小側(cè)隙與傳動(dòng)精度間的幾何關(guān)系,提出了考慮側(cè)隙的齒輪結(jié)構(gòu)參數(shù)計(jì)算方法,基于有限元原理建立了小側(cè)隙薄輻板齒輪的嚙合剛度計(jì)算方法,通過(guò)正交試驗(yàn)法分析了齒輪參數(shù)對(duì)嚙合剛度的影響并構(gòu)建了考慮側(cè)隙與輻板參數(shù)變化的準(zhǔn)靜態(tài)傳遞誤差計(jì)算公式,為小側(cè)隙薄輻板齒輪副的剛度及準(zhǔn)靜態(tài)傳遞誤差計(jì)算提供了技術(shù)依據(jù)。

關(guān)鍵詞:側(cè)隙;薄輻板;有限元;嚙合剛度;正交試驗(yàn);準(zhǔn)靜態(tài)傳遞誤差

中圖分類號(hào):TH111文獻(xiàn)標(biāo)識(shí)碼:ADOI:10.19452/j.issn1007-5453.2021.07.008

航空作動(dòng)器是飛機(jī)飛行控制的關(guān)鍵部件[1-2],常采用“旋轉(zhuǎn)電機(jī)+機(jī)械變換”的傳動(dòng)形式[3-4],其長(zhǎng)傳動(dòng)鏈傳動(dòng)特點(diǎn)對(duì)齒輪側(cè)隙及輻板參數(shù)設(shè)計(jì)提出了極高的要求,薄輻板結(jié)構(gòu)引起的齒輪剛度下降及齒側(cè)間隙導(dǎo)致的傳動(dòng)誤差問(wèn)題均需開展深入研究。

圍繞小側(cè)隙及薄輻板結(jié)構(gòu)齒輪,有學(xué)者應(yīng)用商用有限元軟件[5]對(duì)其進(jìn)行了分析,陶棟材[6]、江波[7]等研究了薄輻板結(jié)構(gòu)對(duì)嚙合剛度的影響。Maruni?[8-9]等通過(guò)有限元法進(jìn)行齒輪網(wǎng)格劃分,研究了輻板厚度對(duì)齒根應(yīng)力及輪緣應(yīng)力的影響。Br??ek等[10]分析了齒向鍵槽方向轉(zhuǎn)動(dòng)對(duì)齒根應(yīng)力的影響并設(shè)計(jì)了相關(guān)試驗(yàn)。Li[11-13]對(duì)齒面接觸應(yīng)力、齒根彎曲應(yīng)力以及輪緣與輻板的接合應(yīng)力進(jìn)行了分析。Liu等[14]以含形位誤差的直齒圓柱齒輪為對(duì)象,對(duì)加入側(cè)隙后的齒輪進(jìn)行了剛度分析。Yu等[15]提出了基于外部平行軸齒輪傳動(dòng)的雙偏心模型,發(fā)現(xiàn)了偏心誤差對(duì)傳動(dòng)誤差的影響規(guī)律。張磊磊等[16]發(fā)現(xiàn)側(cè)隙在穩(wěn)定旋向齒輪副中產(chǎn)生的影響較小,但卻能直接導(dǎo)致齒輪副回差。Park[17]對(duì)齒輪時(shí)變嚙合剛度進(jìn)行了分析,發(fā)現(xiàn)側(cè)隙增大亦會(huì)引起嚙合力增大。

目前尚未見到以小側(cè)隙薄腹板齒輪為研究對(duì)象,從齒輪嚙合原理與有限元載荷分布原理出發(fā),對(duì)其嚙合剛度計(jì)算方法的深入研究。本文針對(duì)航空作動(dòng)器精密傳動(dòng)需求,推導(dǎo)了計(jì)入側(cè)隙后的齒輪壓力角與重合度的計(jì)算方法,依據(jù)有限元原理建立了小側(cè)隙薄輻板齒輪的嚙合剛度計(jì)算方法,分析了側(cè)隙量、輻板厚度、輪緣厚度與齒寬等結(jié)構(gòu)參數(shù)對(duì)嚙合剛度的影響規(guī)律并構(gòu)建了考慮側(cè)隙與輻板參數(shù)變化的準(zhǔn)靜態(tài)傳遞誤差計(jì)算模型,分析了各結(jié)構(gòu)參數(shù)對(duì)傳動(dòng)誤差的影響。

1計(jì)入側(cè)隙的齒輪結(jié)構(gòu)參數(shù)計(jì)算

2基于有限元原理的小側(cè)隙薄輻板齒輪嚙合剛度計(jì)算

本文采用基于有限元原理自主開發(fā)的程序[18-19]對(duì)小側(cè)隙薄輻板齒輪進(jìn)行了幾何建模與嚙合仿真。構(gòu)建輻板模型時(shí),輻板厚度C一般取0.2~0.3的齒寬,且通常不小于10mm,輪緣厚度δ通常為2.3~6.8倍法向模數(shù)[20]。齒輪剖面圖如圖5所示。

有限元建模中常采用四面體常應(yīng)變單元、八節(jié)點(diǎn)六面體等參單元、二十節(jié)點(diǎn)六面體等參單元、非協(xié)調(diào)單元等,針對(duì)小側(cè)隙薄輻板的結(jié)構(gòu)形式,本文采用八節(jié)點(diǎn)非協(xié)調(diào)QMM6單元(見圖6),包括8個(gè)頂點(diǎn)節(jié)點(diǎn)與三個(gè)內(nèi)部節(jié)點(diǎn),在模型產(chǎn)生的畸變較大時(shí),該單元仍可保持較高的計(jì)算精度,采用QMM6單元構(gòu)建的薄輻板齒輪節(jié)點(diǎn)模型如圖7所示。

以式(3)的漸開線方程為參照劃分網(wǎng)格,對(duì)所有單元的網(wǎng)格節(jié)點(diǎn)進(jìn)行編號(hào),并與相應(yīng)節(jié)點(diǎn)的坐標(biāo)值對(duì)應(yīng),將單元?jiǎng)偠染仃噷?duì)照單元編號(hào)矩陣進(jìn)行組裝,得到小側(cè)隙薄輻板齒輪的總剛度矩陣。

由于總剛度矩陣缺乏邊界約束條件,則為半正定矩陣,若對(duì)此剛度方程進(jìn)行求解將無(wú)法得到定解,因此需按實(shí)際齒輪約束情況對(duì)有限元模型設(shè)定合理的邊界條件。圖8為對(duì)薄輻板齒輪邊界施加的約束,通過(guò)置大數(shù)法處理約束,使得總剛度矩陣轉(zhuǎn)化為正定矩陣,最后通過(guò)在嚙合齒面施加單位載荷以計(jì)算得到齒面嚙合剛度。

在求得齒面離散節(jié)點(diǎn)剛度矩陣后,采用上述方法可獲得齒輪從嚙入到嚙出過(guò)程中所有接觸線對(duì)應(yīng)的嚙合剛度。但由于有限元法所獲得的接觸線數(shù)目有限,因此要獲得整個(gè)嚙合過(guò)程中的嚙合剛度變化曲線,還需對(duì)離散接觸線對(duì)應(yīng)的嚙合剛度進(jìn)行擬合。

3側(cè)隙及輻板對(duì)齒輪嚙合剛度的影響分析

為了避免齒對(duì)嚙合干涉以及保證齒面充分潤(rùn)滑,常通過(guò)去除齒面材料的方式預(yù)留齒側(cè)間隙;而輻板厚度對(duì)嚙合剛度影響較小,因此分別討論側(cè)隙及輻板厚度對(duì)嚙合剛度的影響規(guī)律。

3.1側(cè)隙對(duì)嚙合剛度的影響分析

側(cè)隙的加入會(huì)導(dǎo)致嚙合位置壓力角以及齒間載荷分布產(chǎn)生變化,本文選取的齒輪副算例參數(shù)見表1。

從圖9可以發(fā)現(xiàn),側(cè)隙在由0增大至0.5mm時(shí),齒面最大嚙合剛度由1.225×106N/mm逐漸減小至1.192×106N/mm。側(cè)隙量對(duì)最大剛度的影響系數(shù)為側(cè)隙每增加1mm,剛度下降6.6×104N/mm。

為驗(yàn)證本文小側(cè)隙薄輻板齒輪有限元計(jì)算程序的精確性,采用商用軟件對(duì)小側(cè)隙薄輻板齒輪嚙合剛度進(jìn)行計(jì)算。表2為自主開發(fā)的有限元程序與Romax計(jì)算結(jié)果的對(duì)比,由于本文采用基于有限元原理的方法計(jì)算齒面剛度,相對(duì)于部分商用軟件在考慮輻板等結(jié)構(gòu)參數(shù)計(jì)算剛度方面更具有準(zhǔn)確性,尤其當(dāng)輻板厚度、側(cè)隙等參數(shù)較小時(shí)。

3.2輻板對(duì)嚙合剛度的影響分析

設(shè)計(jì)正交試驗(yàn)以獲得輻板厚度、齒寬與輪緣厚度對(duì)齒輪嚙合剛度的影響。表3為正交試驗(yàn)數(shù)據(jù),試驗(yàn)有三個(gè)因子,8個(gè)試驗(yàn)。為得到精確的分析結(jié)果,試驗(yàn)中設(shè)置了兩個(gè)仿行,總試驗(yàn)數(shù)為22次。其中輻板厚度的試驗(yàn)范圍為5~ 50mm,齒寬試驗(yàn)范圍為5~30mm,并且認(rèn)為算例的實(shí)際齒寬為輻板厚度與齒寬之和,輪緣厚度試驗(yàn)范圍為5~50mm。從圖10的分析可知,對(duì)齒面嚙合剛度影響程度由大至小的單因素結(jié)構(gòu)參數(shù)分別為輻板厚度、齒寬與輪緣厚度,對(duì)應(yīng)的每單位厚度變化對(duì)最大嚙合剛度的影響分別為0.0213×106,0.0199×106,0.0036×106。

從圖11的分析可發(fā)現(xiàn),齒寬越大,輪緣厚度對(duì)齒面最大嚙合剛度的增益效果最為顯著;輪緣厚度越大,輻板厚度的增加對(duì)齒面最大剛度呈現(xiàn)微小的增加趨勢(shì);輪緣厚度越大,齒寬的增加對(duì)齒面最大嚙合剛度幾乎不產(chǎn)生影響。

綜上,對(duì)齒面最大嚙合剛度影響最顯著的是輻板厚度,齒寬次之,輪緣最小。

3.3側(cè)隙對(duì)齒間載荷分配的影響分析

由于側(cè)隙的加入,重合度εj減小,單齒嚙合區(qū)域增大,齒間載荷分配也會(huì)發(fā)生變化,如圖12所示。載荷分配發(fā)生變化的幾何原因是側(cè)隙增加而導(dǎo)致齒輪需要比無(wú)側(cè)隙多轉(zhuǎn)過(guò)一個(gè)角度,從而造成嚙合角的變化。

采用表1的齒輪參數(shù)作為算例,由于載荷分配與齒面綜合嚙合剛度以及齒輪幾何結(jié)構(gòu)有關(guān),這里可以直接推導(dǎo)出對(duì)于漸開線直齒輪較為通用的齒面載荷分配受側(cè)隙變化影響大小,即側(cè)隙量每增加1mm,齒間載荷分配中的單齒嚙合段即載荷分配為100%的部分增加了26%。

3.4多參數(shù)影響的薄輻板齒輪準(zhǔn)靜態(tài)傳遞誤差分析

側(cè)隙量的增加導(dǎo)致QSTE峰值以及重合度的增加,由圖13可以直觀看出QSTE最大值變大的同時(shí),誤差峰值時(shí)間變長(zhǎng)。齒寬大小對(duì)齒面剛度的影響與輻板厚度相近,但是齒寬的減小會(huì)使得在總嚙合力不變的情況下,單位齒寬上的載荷變大,齒根彎曲與齒面變形相應(yīng)變大,導(dǎo)致QSTE增大。

QSTE的產(chǎn)生源于齒面彈性變形與齒根彎曲應(yīng)力等,由于側(cè)隙與齒輪結(jié)構(gòu)參數(shù)的影響,齒面剛度下降,齒面接觸變形與齒根彎曲程度增加。尤其當(dāng)主動(dòng)輪接觸位置在齒頂位置時(shí),齒根彎曲程度變大,QSTE峰值變大,嚙出時(shí)間延后。這就解釋了QSTE曲線在側(cè)隙加入后,右側(cè)QSTE增量增大,峰值時(shí)間延長(zhǎng)。

4結(jié)束語(yǔ)

本文從齒輪嚙合原理與有限元理論出發(fā),建立了小側(cè)隙薄輻板齒輪嚙合剛度與準(zhǔn)靜態(tài)傳遞誤差的計(jì)算方法,主要結(jié)論包括:

(1)推導(dǎo)了計(jì)入側(cè)隙的齒輪嚙合剛度計(jì)算方法,計(jì)算并分析了側(cè)隙參數(shù)對(duì)剛度的影響規(guī)律,隨著側(cè)隙的增加,嚙合點(diǎn)向齒根偏移,重合度下降,齒輪剛度逐漸減小。

(2)依據(jù)有限元原理建立了小側(cè)隙薄輻板齒輪嚙合剛度計(jì)算方法并進(jìn)行了驗(yàn)證,通過(guò)正交試驗(yàn)發(fā)現(xiàn)對(duì)齒面嚙合剛度影響程度由大至小的結(jié)構(gòu)參數(shù)分別為側(cè)隙、輻板厚度、齒寬與輪緣厚度。

(3)構(gòu)建了考慮側(cè)隙與輻板參數(shù)的準(zhǔn)靜態(tài)傳遞誤差計(jì)算公式,比較了各參數(shù)對(duì)準(zhǔn)靜態(tài)傳遞誤差的影響,影響程度由大至小為齒寬、側(cè)隙、輻板厚度與輪緣厚度,為進(jìn)一步的動(dòng)力學(xué)分析奠定了基礎(chǔ)。

參考文獻(xiàn)

[1]于勁松,劉浩,張平,等.航空機(jī)電作動(dòng)器健康管理驗(yàn)證系統(tǒng)研究[J].計(jì)算機(jī)測(cè)量與控制, 2014,22(6):1835-1838. Yu Jinsong, Liu Hao, Zhang Ping, et al. Research on health management verification system of aviation electromechanical actuator [J]. Computer Measurement and Control, 2014,22(6): 1835-1838. (in Chinese)

[2]孫歡慶.基于多電技術(shù)的民用飛機(jī)艙門電作動(dòng)器研究[J].航空科學(xué)技術(shù), 2014,25(11):14-18. Sun Huanqing. Research on electric actuator of civil aircraft door based on multi-electric technology[J]. Aeronautical Science & Technology, 2014,25(11):14-18. (in Chinese)

[3]Benarous M,Panella I. Flap system power drive unit(PDU)architecture optimisation[J]. The Journal of Engineering,2019(17):3500-3504.

[4]劉錦濤.襟縫翼控制運(yùn)動(dòng)機(jī)構(gòu)及特點(diǎn)分析[J].中國(guó)科技縱橫, 2014(13):286-287. Liu Jintao. Motion mechanism and characteristic analysis of flat flat control[J]. China Science and Technology Review, 2014(13):286-287. (in Chinese)

[5]于斌,溫力,劉芳,等.基于Ansys的伺服作動(dòng)器殼體工程分析與應(yīng)用[J].航天制造技術(shù), 2015(6):23-25. Yu Bin, Wen Li, Liu Fang, et al. Engineering analysis and application of servo actuator shell based on ANSYS[J]. Aerospace Manufacturing Technology, 2015(6): 23-25. (in Chinese)

[6]陶棟材.薄輪輻齒輪傳動(dòng)嚙合剛度計(jì)算分析[J].湖南農(nóng)學(xué)院學(xué)報(bào), 1995(3):287-292. Tao Dongcai. Calculation and analysis of meshing stiffness of thin spoke gear transmission [J]. Journal of Hunan Agricultural College, 1995(3):287-292. (in Chinese)

[7]江波.薄輪緣輻板齒輪結(jié)構(gòu)的有限元分析研究[D].西安:西北工業(yè)大學(xué), 2006. Jiang Bo. Finite element analysis of gear structure of thin flanged spoke plate [D]. Xian: Northwestern Polytechnical University, 2006. (in Chinese)

[8]Maruni?G. Effects of rim and web thickness on gear tooth root,rim and web stresses[J]. Key Engineering Materials,2008,385-387:117-120.

[9]Maruni?G. Rim stress analysis of thin-rimmed gear[J]. Key Engineering Materials,2007,348-349:141-144.

[10]Br??ek B,Leidich E. Numerical simulation of stresses in thinrimmed spur gears with keyway[J]. Acta Polytechnica,2003,43(5):47-53.

[11]Li Shuting. Contact stress and root stress analyses of thinrimmedspurgearswithinclinedwebs[J].Journalof Mechanical Design,2012,5(134):1-13.

[12]Li Shuting.Deformation and bending stress analysis of a three- dimensional,thin-rimmed gear[J]. Journal of Mechanical Design,2002,124(1):129-135.

[13]Li Shuting. Gear contact model and loaded tooth contact analysis of a three-dimensional,thin-rimmed gear[J]. Journal of Mechanical Design,2002,124(3):511-517.

[14]Liu Bingdong,Gao Zhihui,Li Keke. Backlash analysis of spur gear drive based on form and position Errors[C]// International Conference Machinery,Electronics and Control Simulation,2014:3-6.

[15]Yu Li,Wang Guangjian,Zou Shuaidong. The experimental research on gear eccentricity error of backlash-compensation gear device based on transmission error[J]. International Journal of Precision Engineering and Manufacturing,2018,19(1):5-12.

[16]張磊磊,范元?jiǎng)?齒輪側(cè)隙對(duì)齒輪傳動(dòng)精度的影響分析[J].機(jī)床與液壓, 2017,45(17):114-116. Zhang Leilei, Fan Yuanxun. Analysis of influence of gear backclearance on gear transmission accuracy [J]. Machine Tool& Hydraulics, 2017,45(17):114-116. (in Chinese)

[17]Park C I. Dynamic behavior of the spur gear system with time varying stiffness by gear positions in the backlash[J]. Journal of Mechanical Science and Technology,2020,34(2):565-572.

[18]劉海年,欒旭,李昌紅,等.軍用航空發(fā)動(dòng)機(jī)成附件研制程序研究[J].航空科學(xué)技術(shù),2018,29(9):48-52. Liu Hainian, Luan Xu, Li Changhong, et al. Research on development program of military aero-engine accessories [J]. Aeronautical Science & Technology, 2018, 29(9): 48-52. (in Chinese)

[19]劉偉平.人字齒星型齒輪傳動(dòng)系統(tǒng)動(dòng)態(tài)效率研究[D].南京.南京航空航天大學(xué), 2017. Liu Weiping. Research on dynamic efficiency of herringtooth star gear transmission system [D]. Nanjing:Nanjing University ofAeronautics andAstronautics, 2017. (in Chinese)

[20]《航空發(fā)動(dòng)機(jī)設(shè)計(jì)手冊(cè)》總編委.航空發(fā)動(dòng)機(jī)設(shè)計(jì)手冊(cè):第12冊(cè)[M].北京:航空工業(yè)出版社, 2002. The General Editorial Board Compilates the Aircraft Engine Design Manual. The Aircraft Engine Design Manual Volume 12 [M]. Beijing:Aviation Industry Press, 2002. (in Chinese)

[21]Sánchez M B,Pleguezuelos M,Pedrero J I. Approximate equations for the meshing stiffness and the load sharing ratio of spur gears including hertzian effects[J]. Mechanism and Machine Theory,2017,109:231-249.

[22]賈濤,南盟.基于滑毯式貨運(yùn)系統(tǒng)同步性的傳動(dòng)分系統(tǒng)剛度計(jì)算方法研究[J].航空科學(xué)技術(shù),2018,29(4):42-46. Jia Tao, Nan Meng. Study on stiffness calculation method of transmission sub-system based on synchronization of sliding blanque freight system[J]. Aeronautical Science & Technology, 2018, 29(4):42-46. (in Chinese)

[23]Sánchez M B,Pleguezuelos M,Pedrero J I. Influence of profile modifications on meshing stiffness,load sharing,and trasnsmission error of involute spur gears[J]. Mechanism & Machine Theory,2019,29:506-525.

[24]Pleguezuelos M,Sánchez M B,Pedrero J I. Control of transmission error of high contact ratio spur gears with symmetric profile modifications[J]. Mechanism and Machine Theory,2020,149:103839.

Calculation Method of Meshing Stiffness and Quasi-static Transmission Error of Small Backlash and Thin-Spoke Gear

Cao Xuechen1,Lu Fengxia1,Wu Xia2,Shi Beibei2

1. National Key Laboratory of Science and Technology on Helicopter Transmission,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China

2. Aviation Key Laboratory of Science and Technology on Aero Electromechanical System Integration,Nanjing 210001,China

Abstract: Backlash compensation is a research hotspot in the field of high precision gear transmission. Large backlash would lead to poor transmission stability, while small backlash would result in non-working face interference of the gear. Combined with the characteristics of the thin-spoke aviation gear, structure parameter calculation method is proposed according to geometric relation of small backlash and transmission accuracy of chain. Based on finite element theory, the meshing stiffness model of small backlash and thin-spoke gear is established. The effects of parameters on meshing stiffness are analyzed through orthogonal experiment, furthermore meshing stiffness calculation model is obtained using radial basis function neural network which would provide technical support for rapid perdiction of small backlash and thin-spoke gear.

Key Words: backlash; thin-spoke; finite element; meshing stiffness; orthogonal experiment; quasi-static transfer error

猜你喜歡
正交試驗(yàn)有限元
有限元基礎(chǔ)與應(yīng)用課程專業(yè)賦能改革與實(shí)踐
基于有限元的Q345E鋼補(bǔ)焊焊接殘余應(yīng)力的數(shù)值模擬
將有限元分析引入材料力學(xué)組合變形的教學(xué)探索
大型壓濾機(jī)主梁的彈性力學(xué)計(jì)算及有限元分析設(shè)計(jì)
大型壓濾機(jī)主梁的彈性力學(xué)計(jì)算及有限元分析設(shè)計(jì)
起重機(jī)吊臂振動(dòng)模態(tài)的有限元分析
正交試驗(yàn)法篩選白虎定喘口服液提取工藝研究
不同載荷形式下型鋼支架承載能力的正交優(yōu)化
傾斜式子棉清理機(jī)工作質(zhì)量影響因素分析
基于MADYMO的航空座椅約束系統(tǒng)優(yōu)化設(shè)計(jì)