歐陽(yáng)柏平 肖勝中
摘 要:研究了非線性邊界條件下高維空間上具有時(shí)變系數(shù)和吸收項(xiàng)的多孔介質(zhì)拋物系統(tǒng)解的爆破問題。 通過構(gòu)造能量表達(dá)式,運(yùn)用Sobolev不等式和其他微分不等式技巧,得到了該問題解的全局存在性以及爆破發(fā)生時(shí)解的爆破時(shí)間下界估計(jì)。
關(guān)鍵詞:爆破;多孔介質(zhì)拋物系統(tǒng);全局存在性;時(shí)變系數(shù);吸收項(xiàng)
中圖分類號(hào):O175.29
文獻(xiàn)標(biāo)志碼:A
最近幾十年來,有關(guān)拋物方程和拋物系統(tǒng)解的爆破問題受到學(xué)者們廣泛關(guān)注。 爆破問題的研究主要涉及解的全局存在、爆破時(shí)間的上界和下界、爆破率等,依賴于方程和系統(tǒng)的線性或非線性、空間維數(shù)、初始數(shù)據(jù)以及邊界條件。文獻(xiàn)[1-4]考慮了三維空間上齊次邊界條件(Dirichlet條件和Neumann條件)和Robin邊界條件下解的全局存在和爆破問題。文獻(xiàn)[5-14]研究了高維空間上非線性邊界條件下解的全局存在和爆破問題。文獻(xiàn)[15-17]考慮了時(shí)變或空變系數(shù)的局部和非局部拋物方程和拋物系統(tǒng)解的爆破。文獻(xiàn)[18-22]研究了其他偏微分方程解的爆破。從某種意義上,非局部的偏微分方程比局部的偏微分方程更有實(shí)際應(yīng)用價(jià)值,因而探討非局部的拋物方程和拋物系統(tǒng)解的爆破有更強(qiáng)的理論價(jià)值和實(shí)際意義。然而,對(duì)于非局部的數(shù)學(xué)模型的研究目前存在不少困難,因?yàn)榫植康臄?shù)學(xué)模型的理論和方法不適用于非局部的情況。關(guān)于爆破發(fā)生時(shí)解的爆破時(shí)間界的估計(jì),研究上界的方法較多,而下界較少。
參考文獻(xiàn):
[1]PAYNE L E, SCHAEFER P W. Lower bounds for blow-up time in parabolic problems under Dirichlet conditions[J]. Journal of Mathematical Analysis and Applications, 2007, 328(2): 1196-1205.
[2]LIU Y. Blow up phenomena for the nonlinear nonlocal porous medium equation under Robin boundary condition[J]. Computers and Mathematical with Applications, 2013, 66(10): 2092-2095.
[3]李遠(yuǎn)飛. Robin邊界條件下更一般化的非線性拋物問題全局解的存在性和爆破[J]. 應(yīng)用數(shù)學(xué)學(xué)報(bào), 2018, 41(2): 257-267.
[4]李遠(yuǎn)飛. 一類系數(shù)依賴于時(shí)間的拋物系統(tǒng)解的全局存在性和爆破現(xiàn)象[J]. 數(shù)學(xué)的實(shí)踐與認(rèn)識(shí), 2019, 49(4): 193-200.
[5]LIU Z Q, FANG Z B. Blow-up phenomena for a nonlocal quasilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux[J]. Discrete and Continuous Dynamical Systems-Series B, 2016, 21(10): 3619-3635.
[6]SHEN X H, DING J T. Blow-up phenomena in porous medium equation systems with nonlinear boundary conditions[J]. Computers and Mathematics with Applications, 2019, 77(12): 3250-3263.
[7]BAGHAEI K, HESAARAKI M. Blow-up for a system of semilinear parabolic equation with nonlinear boundary conditions[J]. Mathematical Methods in the Applied Sciences, 2015, 38(3): 527-536.
[8]LIU Y. Lower bounds for the blow-up time in a nnonlocal reaction diffusion problem under nonlinear boundary conditions[J]. Mathematical and Computer Modeling, 2013, 57(3/4): 926–931.
[9]LIU Y, LUO S G, YE Y H. Blow-up phenomena for a parabolic problem with a gradient nonlinearity under nonlinear boundary conditions[J]. Computers and Mathematical with Applications, 2013, 65(8): 1194-1199.
[10]CHEN W H, LIU Y. Lower bound for the blow up time for some nonlinear parabolic equations[J]. Boundary Value Problems, 2016, 2016: 1-6.
[11]TANG G S. Blow-up phenomena for a parabolic system with gradient nonlinearity under nonlinear boundary conditions[J]. Computers and Mathematics with Applications, 2017, 74(3): 360-368.
[12]鄭亞東,方鐘波. 一類具有時(shí)變系數(shù)梯度源項(xiàng)的弱耦合反應(yīng)-擴(kuò)散方程組解的爆破分析[J]. 數(shù)學(xué)物理學(xué)報(bào), 2020, 40(3): 735-755.
[13]李遠(yuǎn)飛. 非線性邊界條件下高維拋物方程解的全局存在性及爆破現(xiàn)象[J]. 應(yīng)用數(shù)學(xué)學(xué)報(bào), 2019, 42(6): 721-735.
[14]PAYNE L E, PHILIPPIN G A, VERNIER PIRO S. Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition, Ⅱ[J]. Nonlinear Analysis: Theory, Methods and Applications, 2010, 73(4): 971-978.
[15]XIAO S P, FANG Z B. Blow-up phenomena for a porous medium equation with time-dependent coefficients and inner absorption term under nonlinear boundary flux[J]. Taiwanese Journal of Mathematics, 2018, 22(2): 349-369.
[16]DING J T, SHEN X H. Blow-up analysis in quasilinear reaction-diffusion problems with weighed nonlocal source[J]. Computers and Mathematics with Applications, 2017, 75(4): 1288-1301.
[17]張環(huán),方鐘波.一類具有空變系數(shù)的非線性反應(yīng)-擴(kuò)散方程組解的爆破時(shí)間下界[J].中國(guó)海洋大學(xué)(自然科學(xué)版), 2019, 49(增刊I): 181-186.
[18]曹春玲,李行, 李雨桐, 等. 一類具超臨界源的非線性黏彈性雙曲方程解的爆破時(shí)間下界估計(jì)[J]. 吉林大學(xué)學(xué)報(bào)(理學(xué)版), 2019, 57(2): 324-326.
[19]王雪, 郭悅, 祖閣. 一類具超臨界源非線性雙曲方程解的爆破時(shí)間下界估計(jì)[J]. 吉林大學(xué)學(xué)報(bào)(理學(xué)版), 2019, 57(3): 567-570.
[20]CHEN W H, PALMIERI A. Nonexistence of global solutions for the semilinear Moore-Gibson-Thompson equation in the conservative case[J]. Discrete and Continuous Dynamical Systems, 2020, 40(9): 5513-5540.
[21]CHEN W H. Dissipative structure and diffusion phenomena for doubly dissipative elastic waves in two Space dimensions[J]. Journal of Mathematical Analysis and Applications, 2020, 486 (2): 123922-123936.
[22]CHEN W H. Cauchy problem for thermoelastic plate equations with different damping mechanisms[J]. Communications in Mathematical Sciences, 2020, 18(2): 429-457.
[23]BREZIS H. Functional analysis, sobolev spaces and partial differential equations[M]. New York: Springer, 2011.
(責(zé)任編輯:周曉南)
Abstract:
Blow-up of solutions to a porous medium parabolic system with time-dependent coefficients and inner absorption terms under nonlinear boundary conditions in high dimension is studied. By formulating energy expressions and using methods of Sobolev inequalities and other differential inequalities, the global existence and lower bound estimate of blow up time for the solutions to the problem are obtained.
Key words:
blow-up; porous medium parabolic system; global existence; time-dependent coefficient; absorption term