張霞 周存宇 李俊凱 楊代勤 楊朝東
摘要:維管植物根的皮層具內(nèi)皮層和外皮層,這兩者之間的中間皮層分為內(nèi)側(cè)皮層、外側(cè)皮層、厚壁層和皮下層,有的植物缺乏外側(cè)皮層、厚壁層和外皮層。皮層具額外細胞分裂、細胞器狀結(jié)構(gòu)、“O”“C”“Φ”狀和均勻增厚或木質(zhì)化等結(jié)構(gòu)分化。這些皮層結(jié)構(gòu)分化與適應(yīng)水濕寡營養(yǎng)環(huán)境和陸生干旱、附生或氣生環(huán)境密切聯(lián)系;具有調(diào)節(jié)和限制離子自由出入的屏障保護功能,并與礦質(zhì)營養(yǎng)吸收和超聚集重金屬離子功能有關(guān)。皮層木質(zhì)化可能是作物高親和力/高容量礦質(zhì)養(yǎng)分吸收轉(zhuǎn)運系統(tǒng)的結(jié)構(gòu)性狀,這可以為作物選育高效利用水和礦質(zhì)營養(yǎng)的品種提供理論依據(jù),可以為選擇高效修復(fù)離子污染環(huán)境的植物提供結(jié)構(gòu)特征依據(jù),也為研究入侵植物的入侵機制等生態(tài)學問題提供新思路。
關(guān)鍵詞:根皮層;皮層分化;生態(tài)適應(yīng);離子吸收;生態(tài)修復(fù)
中圖分類號:S184 ? 文獻標志碼: A ?文章編號:1002-1302(2021)14-0033-07
植物群落、種群或表現(xiàn)型及其可塑性在相對較長的時間尺度上與自然環(huán)境協(xié)同進化,對環(huán)境的變化和干擾處于動態(tài)變化狀態(tài),根系由胚根發(fā)育來的主根和營養(yǎng)體產(chǎn)生的不定根組成,以適應(yīng)各種特定或者復(fù)雜多變的生態(tài)環(huán)境[1-7]。植物主要依靠根尖及根毛區(qū)吸收水和礦質(zhì)營養(yǎng),完成個體發(fā)育生活史,實現(xiàn)作物耐低磷和低肥增效,減輕農(nóng)業(yè)排放對環(huán)境的污染[8-11]。
維管植物(vascular plant)根解剖結(jié)構(gòu)的維管柱(vascular cylinder or stele)、皮層(cortex)、表皮(rhizodermis)和根冠(root cap)由其頂端分生組織分化而來[12-17]。根尖頂端分生組織(root apical meristems)分化發(fā)育過程主要有開放型根尖組織(open patterns)、封閉型根尖組織(closed patterns)以及介于這二者之間的過渡類型[15,18-20]。
本文綜述皮層隨物種、生態(tài)環(huán)境等因素變化,徑向和切向壁具有“O”“Φ”“C”狀和均勻增厚或木質(zhì)化,細胞器狀結(jié)構(gòu)分化,細胞層數(shù)變化,分裂形成新外皮層(exodermis)等結(jié)構(gòu)和組織化學特征;并具機械保護、耐淹沒適應(yīng)水濕環(huán)境、耐鹽脅迫和離子超積累等生理功能,對今后水體和土壤離子污染的生態(tài)修復(fù)有指導意義[21-30]。關(guān)于內(nèi)皮層、外皮層和通氣組織的結(jié)構(gòu)和生理功能已有綜述報道[17,27-29,31-34],在此就不再贅述。
1 維管植物根尖頂端分生組織分化類型
被子植物根尖頂端分生組織細胞分化發(fā)育過程可以分為開放型根尖組織和封閉型根尖組織。開放型根尖組織為祖先類型,即皮層、表皮和根冠之間缺乏明確的界限;封閉型根尖組織即皮層、表皮和根冠之間具有明確的界限[15,18-19]。菖蒲(Acorus calamus)根尖頂端分生組織介于開放型和封閉型根尖組織之間[18]。現(xiàn)存石松類植物根尖頂端分生組織細胞分化發(fā)育過程相對于被子植物更為復(fù)雜,在石松類植物和莖葉植物類中進化了好幾次,大致分為3種類型,其中2種類型與被子植物的開放型和封閉型有類似構(gòu)造[20]。根維管柱與表皮之間為薄壁組織皮層,皮層最內(nèi)側(cè)的內(nèi)皮層(endodermis)和表皮下的外皮層常有凱氏帶、栓質(zhì)化和木質(zhì)化特點而被稱為質(zhì)外體屏障結(jié)構(gòu)(apoplastic barriers),能夠阻礙水和礦質(zhì)離子自由出入[12-17,35-36]。根據(jù)凱氏帶蛋白分子發(fā)育證據(jù)和組織化學特征,現(xiàn)在認為內(nèi)皮層和外皮層為獨立的結(jié)構(gòu)單元并行使其相應(yīng)生理功能[17,37-39]。封閉型根尖組織的皮層組織由共同的原始細胞分裂而來,表皮由獨立的原始細胞分裂而來[15,19,40-42]。
2 皮層的解剖結(jié)構(gòu)和組織化學
以水稻(Oryza sativa)模式植物為例,根據(jù)免疫化學和組織化學研究結(jié)果,其根皮層從內(nèi)到外依次為內(nèi)皮層、鄰近內(nèi)皮層的內(nèi)側(cè)皮層(inner cortex or peri-endodermal)、鄰近厚壁層的外側(cè)皮層(outer cortex)、厚壁層(sclerenchyma ring)和僅1層細胞的外皮層[33,43-49];其木質(zhì)化厚壁層與菰(Zizania latifolia)類似,而不同于德國鳶尾(Iris germanica)和虉草(Phalaris arundinacea)等的多層細胞外皮層[32-33,50-51]。因物種不同,如擬南芥(Arabidopsis thaliana)和壺瓶碎米薺(Cardamine hupingshanensis)只有無凱氏帶分化的皮下層(hypodermis)而無外皮層[17,27,37-38,40-42]。水稻、德國鳶尾、香蒲屬植物(Typha spp.)和玉米(Zea mays)等主根、不定根及次級側(cè)根的中間皮層具有1層到數(shù)層細胞[48-50,52-55]。因此,本文提出根的皮層,除了明顯分化的內(nèi)皮層和外皮層,這兩者之間的中間皮層(middle cortex)包含內(nèi)側(cè)皮層、外側(cè)皮層、厚壁層和皮下層,或缺乏外側(cè)皮層、厚壁層和外皮層[17,25,27,40-42,49]。
3 皮層的結(jié)構(gòu)分化類型
3.1 皮層額外細胞分裂和細胞器狀結(jié)構(gòu)
野艾蒿(Artemisia lavandulaefolia)和藜蒿(A. selengensis)根的皮層細胞繼續(xù)分裂擴大通氣組織的體積,并在破壞的外皮層內(nèi)側(cè)形成新的外皮層[24]。水生水杉(Metasequoia glyptostroboides)根的中間皮層細胞繼續(xù)分裂擴大通氣組織體積,也有“Φ”狀木質(zhì)化增厚[28],把野艾蒿、藜蒿和水生水杉根的皮層稱為分裂型皮層(dilated cortex)。龍膽草(Gentiana asclepiadea)根的內(nèi)、外皮層細胞分裂增加根周徑[56]。但是椴樹(Tilia americana)和水花生(Alternanthera philoxeroides)根的次生韌皮部薄壁細胞分裂擴大根的周徑和通氣組織體積[14,29],把這種分裂方式稱為韌皮部薄壁細胞分裂(dilated parenchyma)。這些根中額外細胞分裂主要是擴大通氣組織的體積,是植物適應(yīng)和耐水淹的結(jié)構(gòu)特征[17,27-29,31-34,51]。
千里光屬植物Senecio coronatus超聚鎳基因型內(nèi)側(cè)皮層具明顯球形細胞器狀細胞質(zhì)(organelle-rich cytoplasm),并富含生物堿;而其非超聚鎳基因型內(nèi)側(cè)皮層極少有細胞器狀細胞質(zhì),含少量生物堿,外皮層凱氏帶較明顯,推測該結(jié)構(gòu)強烈阻擋鎳離子進入根內(nèi)[57-58]。
3.2 皮層“O”狀增厚
蕨類植物二歧鹿角蕨(Platycerium bifurcatum)、黑心蕨屬植物Doryopteris triphylla、Pleopeltis macrocarpa等根中內(nèi)側(cè)皮層具有1層或數(shù)層纖維素“O”狀增厚的厚壁細胞層,增強了機械強度,可以適應(yīng)陸生干旱或附生環(huán)境[59-67]。伏貼石杉(Lycopodium appressum)和小翠云(Selaginella kraussiana)根內(nèi)側(cè)皮層細胞壁有明顯的“O”狀木質(zhì)化增厚,外側(cè)皮層均勻木質(zhì)化增厚[60]。
3.3 皮層均勻木質(zhì)化增厚
水生水花生根皮層明顯均勻木質(zhì)化,而且黃連素不能透過;陸生水花生根僅有微弱木質(zhì)化或無木質(zhì)化[29]。黃花柳(Salix caprea)、簇根類植物(cluster roots)的銀樺(Grevillea robusta)和榮樺屬植物Hakea prostrata根皮層為均勻木質(zhì)化[68-70]。超聚硒植物壺瓶碎米薺外側(cè)皮層和皮下層主要為均勻木質(zhì)化,兼有少量較小“Φ”狀木質(zhì)化增厚[27]。鳳梨科根皮層中部和皮下層具木質(zhì)化厚壁層,而不同于水稻和菰的根只有外皮層為木質(zhì)化厚壁層[33,43-45,71]。
3.4 皮層“C”狀增厚
南美棯(Feijoa sellowiana)根內(nèi)側(cè)皮層具“C”狀增厚[72]。超積累鋅和鎘山菥蓂屬植物Noccaea caerulescens根內(nèi)側(cè)皮層具富含果膠木質(zhì)化“C”狀增厚,染料不能透過該結(jié)構(gòu),與“Φ”狀增厚功能類似;但非超積累鋅和鎘的N. arvense的根缺乏“C”狀增厚;1% 蔗糖溶液可以誘導N. caerulescens根皮層“C”狀增厚[21,30,73-74]。在旱生條件下,楊梅(Myrica rubra)和石榴(Punica granatum)根內(nèi)側(cè)皮層具“C”狀木質(zhì)化增厚[75-76]。在水淹條件下,洋蒲桃(Syzygium samarangense)根內(nèi)側(cè)皮層具“C”狀木質(zhì)化增厚[23,77]。
3.5 皮層“Φ”狀木質(zhì)化增厚
按照Aleamotua 等的觀點,種子植物根皮層“Φ”增厚類型Ⅰ是內(nèi)側(cè)皮層木質(zhì)化增厚最為普遍的[25],本文認為該類型發(fā)生在內(nèi)側(cè)皮層或者外側(cè)皮層,“Φ”狀增厚程度由內(nèi)而外逐漸減小,主要包括一些裸子植物、木欖(Bruguiera gymnorrhiza)、附生蘭科、薔薇科和十字花科植物[22,27,78-88]。附生蘭科植物根皮層富含果膠、木栓質(zhì),“Φ”狀木質(zhì)化增厚有助于水和礦質(zhì)的吸收、機械支持和保護作用[89]。根“Φ”狀增厚類型Ⅱ是根皮下層木質(zhì)化增厚,天竺葵(Pelargonium hortorum)根從皮下層向內(nèi)部皮層細胞壁有由大到小的“Φ”狀木質(zhì)化增厚[50,78,90-92],并能透過并結(jié)合熒光染料cellufluor[92]。根“Φ”狀增厚類型Ⅲ是根皮層中部木質(zhì)化增厚,見于花生(Arachis hypogaea)、歐洲榿木(Alnus glutinosa)、加拿大黃樺(Betula alleghaniensis)和美洲紅樹(Rhizophora mangle)中[93-97]。
水生水杉根皮層細胞繼續(xù)分裂不僅擴大通氣組織體積和其細胞層數(shù),從內(nèi)皮層外側(cè)到外皮層以內(nèi)細胞壁依次有由大到小的“Φ”狀木質(zhì)化增厚;而旱生水杉根僅有內(nèi)側(cè)皮層的“Φ”狀木質(zhì)化增厚[28]。水淹環(huán)境誘導云實屬植物Caesalpinia peltophoroides根皮層“Φ”狀木質(zhì)化增厚,其機械保護能力得到增強[98]。適應(yīng)陸生的日本柳杉(Cryptomeria japonica),在壓實或者壓實水淹土壤環(huán)境中根皮層“Φ”狀木質(zhì)化增厚程度略減輕和細胞層減少,誘導效果不顯著[82]。
甘藍(Brassica oleracea)和歐洲油菜(Brassica napus)根在瓊脂培養(yǎng)基添加鹽或蔗糖,或者田間栽培環(huán)境誘導皮層形成強烈的“Φ”狀木質(zhì)化增厚,并具有調(diào)節(jié)和限制離子自由出入的屏障保護功能,是該物種響應(yīng)水和鹽脅迫的結(jié)構(gòu)基礎(chǔ)[22,75,85,99]。在旱生條件下,枇杷(Eriobotrya japonica)根皮層迅速形成“Φ”狀木質(zhì)化增厚,可能與響應(yīng)水分脅迫有關(guān)[83,100]。
美堇蘭屬(Miltoniopsis)植物根在去離子水中誘導出現(xiàn)“Φ”狀增厚,但無質(zhì)外體屏障保護功能;在瓊脂培養(yǎng)基和潮濕土壤中根無“Φ”狀增厚;在有良好排水基質(zhì)和缺水脅迫時形成“Φ”狀增厚,表明其適應(yīng)附著氣生環(huán)境[26]。此外,玉米在礦渣培養(yǎng)條件下,誘導根表皮“Φ”狀木質(zhì)化增厚,而在水培和通氣水培條件下則沒有“Φ”狀增厚[101]。
4 皮層木質(zhì)化組織化學染色法和細胞發(fā)育生物學
細胞壁木質(zhì)化,以往常用鹽酸-間苯三酚對染呈現(xiàn)櫻桃紅色;現(xiàn)在用硫酸氫黃連素-苯胺蘭對染、fluorol yellow-Congo red對染、Fluorol yellow-acridine orange對染、Acridine orange等熒光染料染色,皮層木質(zhì)化細胞壁與木質(zhì)部顯色一致,即認為細胞壁木質(zhì)化[89,91,102-105],同時這些熒光染料也作為離子示蹤劑。因此,筆者認為黃花柳、銀樺和Hakea prostrata根皮層發(fā)生了木質(zhì)化,盡管原文作者沒有指出這一點[68-69]。
附生美堇蘭屬植物皮層生活細胞次生壁“Φ”狀木質(zhì)化、“Φ”狀增厚形成經(jīng)歷3個階段,早期微管縱向?qū)R將增厚的位置,過渡期胼胝質(zhì)類似微管對齊將要增厚的位置,隨后微管、胼胝質(zhì)和小麥胚凝集素(wheat germ agglutinin)標記都消失,最后皮層“Φ”狀木質(zhì)化增厚[22,25,106]。
5 皮層結(jié)構(gòu)分化與適應(yīng)環(huán)境關(guān)系
根分裂型皮層的野艾蒿、藜蒿和水生水杉擴大氣腔,同時野艾蒿和藜蒿外側(cè)皮層產(chǎn)生新的外皮層保護空氣不外泄;黃花柳和疏花水柏枝皮層均勻木質(zhì)化;水淹洋蒲桃根呈“C”狀增厚,木欖和水杉水生根具“Φ”狀木質(zhì)化增厚增強機械強度忍耐水力沖刷,也可能在寡營養(yǎng)水體易于獲得礦質(zhì)離子,而適應(yīng)水濕寡營養(yǎng)環(huán)境[22-24,28,31,45,70,76,89]。
蕨類植物根皮層呈“O”狀增厚或者發(fā)生木質(zhì)化[60-67];鳳梨科皮層木質(zhì)化厚壁層[77];南美棯、楊梅和石榴皮層具“C”狀木質(zhì)化增厚[73,74-75];種子植物根皮層有“Φ”狀木質(zhì)化增厚類型Ⅰ、Ⅱ、Ⅲ,如日本柳杉、天竺葵、花生、枇杷以及附生蘭科、薔薇科和十字花科植物[25-27,79,82-83,91,100],增強機械強度適應(yīng)陸生干旱、附生或氣生環(huán)境。
甘藍、歐洲油菜和Caesalpinia peltophoroides在響應(yīng)水和鹽脅迫下,誘導皮層發(fā)生“Φ”狀木質(zhì)化增厚,具有調(diào)節(jié)和限制離子自由出入的屏障保護功能[22,30,73,85,98-99]。簇根植物銀樺和Hakea prostrata皮層均勻木質(zhì)化;附生蘭科植物根皮層的果膠、木栓質(zhì)和“Φ”狀木質(zhì)化增厚利于吸收水和礦質(zhì)離子[68-71,89,107]。
Senecio coronatus超聚鎳基因型的根皮層具球形細胞器狀細胞質(zhì)和富含生物堿[57-58],超積累鋅和鎘的Noccaea caerulescens根皮層富含果膠和“C”狀木質(zhì)化增厚[21,30,74,108],超聚硒和鎘的壺瓶碎米薺皮層具“Φ”狀和均勻木質(zhì)化增厚[27,109-110],推測這些物種皮層結(jié)構(gòu)和組織化學分化可能與其超聚集重金屬離子功能有關(guān)[22,30,73,89,108]。此外,十字花科植物蕪青(Brassica rapa)和Stanleya pinnata var. pinnata也有超聚硒功能[111-112]。
著名入侵植物水花生[113-120]易于入侵富營養(yǎng)化水體,并具有較強的去除氮磷和重金屬離子能力,與本土物種競爭中占有明顯優(yōu)勢,可能是它們根皮層的木質(zhì)化而使根具有較強的離子吸收能力[22,29-30,71,87,105]。因此,水花生與本土植物相比,根的較強離子吸收能力是其重要入侵機制之一。
6 皮層結(jié)構(gòu)研究展望
研究植物根系及解剖結(jié)構(gòu)特征,明確其適應(yīng)復(fù)雜多變的生態(tài)環(huán)境,更好服務(wù)農(nóng)業(yè)生產(chǎn)和改善生態(tài)環(huán)境,一是改善作物高效吸收水和礦質(zhì)營養(yǎng),減少農(nóng)業(yè)排放對環(huán)境的污染,二是高效植物修復(fù)土壤重金屬離子污染和水體離子污染。本文主要探討了根皮層結(jié)構(gòu)分化類型與其適應(yīng)各種環(huán)境的關(guān)系,皮層木質(zhì)化具有調(diào)節(jié)和限制離子自由出入的屏障結(jié)構(gòu)功能,有利于吸收水和礦質(zhì)營養(yǎng),超積累重金屬離子及與入侵植物的入侵機制有密切關(guān)系。在植物高效修復(fù)污染環(huán)境實踐中,本文為選擇適合的植物種類及結(jié)構(gòu)特征提供了參考依據(jù),也為研究入侵植物的入侵機制提供新思路。根皮層木質(zhì)化或許就是作物育種中高親和力/高容量的礦質(zhì)養(yǎng)分吸收轉(zhuǎn)運系統(tǒng)的結(jié)構(gòu)性狀,可以實現(xiàn)低肥增效和減少農(nóng)業(yè)污染[1-4,6-9,11,13,17,25,35]。
參考文獻:
[1]Gratani L. Plant phenotypic plasticity in response to environmental factors[J]. Advances in Botany,2014(4):1-17.
[2]Pham B,McConnaughay K. Plant phenotypic expression in variable environments[M]//Monson R. Ecology and the environment. New York:Springer,2015:1-19.
[3]Steffens B,Rasmussen A. The physiology of adventitious roots[J]. Plant Physiology,2016,170(2):603-617.
[4]Gonin M,Bergougnoux V,Nguyen T D,et al. What makes adventitious roots?[J]. Plants,2019,8(7):240.
[5]Mittelbach G G,McGill B J. Community ecology[M]. 2nd ed. Oxford:Oxford University Press,2019.
[6]Rasmussen A,Dobrijevic D P,Ola A,et al. Aerial root physiology:reaching for the sky or down to earth?[J]. Annual Plant Reviews,2019,2:1-32.
[7]van Veen H,Sasidharan R. Shape shifting by amphibious plants in dynamic hydrological niches[J]. The New Phytologist,2021,229(1):79-84.
[8]Lynch J P. Roots of the second green revolution[J]. Australian Journal of Botany,2007,55(5):493-512.
[9]Lynch J P. Root phenotypes for improved nutrient capture:an underexploited opportunity for global agriculture[J]. The New Phytologist,2019,223(2):548-564.
[10]Paez-Garcia A,Motes C M,Scheible W R,et al. Root traits and phenotyping strategies for plant improvement[J]. Plants,2015,4(2):334-355.
[11]White P J. Root traits benefitting crop production in environments with limited water and nutrient availability[J]. Annals of Botany,2019,124(6):883-890.
[12]Fahn A. Plant anatomy[M]. 4th ed. Oxford,UK:Pergamon Press,1990.
[13]Lux A,Luxová M,Abe J,et al. Root cortex:structural and functional variability and responses to environmental stress[J]. Root Research,2004,13(3):117-131.
[14]Evert R F. Esaus plant anatomy:meristems,cells,and tissues of the plant body:their structure,function,and development[M]. 3rd ed. Hoboken,New Jersey,USA:Wiley-Interscience,2006.
[15]Seago J L,F(xiàn)ernando D D. Anatomical aspects of angiosperm root evolution[J]. Annals of Botany,2013,112(2):223-238.
[16]Crang R,Lyons-Sobaski S,Wise R. Periderm:a concept-based approach to the structure of seed plants[M]//Plant anatomy. Gewerbestrasse,Switzerland:Springer,2018:553-575.
[17]楊朝東,張 霞,劉國鋒,等. 植物根中質(zhì)外體屏障結(jié)構(gòu)和生理功能研究進展[J]. 植物研究,2013,33(1):114-119.
[18]Soukup A,Seago J J,Votrubová O. Developmental anatomy of the root cortex of the basal monocotyledon,Acorus calamus (Acorales,Acoraceae)[J]. Annals of Botany,2005,96(3):379-385.
[19]Heimsch C,Seago J L. Organization of the root apical meristem in angiosperms[J]. American Journal of Botany,2008,95(1):1-21.
[20]Fujinami R,Yamada T,Nakajima A,et al. Root apical meristem diversity in extant lycophytes and implications for root origins[J]. The New Phytologist,2017,215(3):1210-1220.
[21]Zelko I,Lux A,Czibula K. Difference in the root structure of hyperaccumulator Thlaspi caerulescens and non-hyperaccumulator Thlaspi arvense[J]. International Journal of Environment and Pollution,2008,33(2/3):123-132.
[22]Fernandez-Garcia N,Lopez-Perez L,Hernandez M,et al. Role of phi cells and the endodermis under salt stress in Brassica oleracea[J]. The New Phytologist,2009,181(2):347-360.
[23]Tuladhar A,Nii N. Anatomical studies on Myrtaceae roots[J]. Acta horticulturae,2017,1166:55-62.
[24]Zhang X,Yang C D,Seago Jr. J L. Anatomical and histochemical traits of roots and stems of Artemisia lavandulaefolia and A. selengensis (Asteraceae) in the Jianghan Floodplain,China[J]. Flora,2018,239:87-97.
[25]Aleamotua M,McCurdy D W,Collings D. Phi thickenings in roots:novel secondary wall structures responsive to biotic and abiotic stresses[J]. Journal of Experimental Botany,2019,70(18):4631-4642.
[26]Idris N,Collings D A. The induction and roles played by phi thickenings in orchid roots[J]. Plants (Basel,Switzerland),2019,8(12):574.
[27]Xiang J Q,Ming J J,Yin H Q,et al. Anatomy and histochemistry of the roots and shoots in the aquatic selenium hyperaccumulator Cardamine hupingshanensis (Brassicaceae) [J]. Open Life Science,2019,14(1):318-326.
[28]Yang C D,Zhang X,Wang T,et al. Phenotypic plasticity in the structure of fine adventitious Metasequoia glyptostroboides roots allows adaptation to aquatic and terrestrial environments[J]. Plants,2019,8(11):501.
[29]Yang C D,Yang X L,Zhang X,et al. Anatomical structures of alligator weed (Alternanthera philoxeroides) suggest it is well adapted to the aquatic-terrestrial transition zone[J]. Flora,2019,253:27-34.
[30]Ková cˇ J,Lux A,Soukup M,et al. A new insight on structural and some functional aspects of peri-endodermal thickenings,a specific layer in Noccaea caerulescens roots[J]. Annals of Botany,2020,126(3):423-434.
[31]Seago J J,Marsh L C,Stevens K J,et al. A re-examination of the root cortex in wetland flowering plants with respect to aerenchyma[J]. Annals of Botany,2005,96(4):565-579.
[32]Yang C D,Zhang X,Zhou C Y,et al. Root and stem anatomy and histochemistry of four grasses from the Jianghan Floodplain along the Yangtze River,China[J]. Flora,2011,206(7):653-661.
[33]Yang C D,Zhang X,Li J K,et al. Anatomy and histochemistry of roots and shoots in wild rice (Zizania latifolia Griseb.) [J]. Journal of Botany,2014:181727.
[34]Yang C D,Zhang X,Seago Jr. J L,et al. Anatomical and histochemical features of Brasenia schreberi (Cabombaceae) shoots[J]. Flora,2020,263:151524.
[35]Enstone D E,Peterson C A,Ma F S. Root endodermis and exodermis:structure,function,and responses to the environment[J]. Journal of Plant Growth Regulation,2002,21(4):335-351.
[36]Lux A,Rost T L. Plant root research:the past,the present and the future[J]. Annals of Botany,2012,110(2):201-204.
[37]Roppolo D,De Rybel B,Dénervaud T V,et al. A novel protein family mediates Casparian strip formation in the endodermis[J]. Nature,2011,473(7347):380-383.
[38]Geldner N. The endodermis[J]. Annual Review of Plant Biology,2013,64:531-558.
[39]Barberon M. The endodermis as a checkpoint for nutrients[J]. The New Phytologist,2017,213(4):1604-1610.
[40]Pauluzzi G,Divol F,Puig J,et al. Surfing along the root ground tissue gene network[J]. Developmental Biology,2012,365(1):14-22.
[41]di Mambro R,Sabatini S,Dello I R. Patterning the axes:a lesson from the root[J]. Plants,2018,8(1):8.
[42]di Ruocco G,di Mambro R,Dello I R. Building the differences:a case for the ground tissue patterning in plants[J]. Proceedings Biological Sciences,2018,285(1890):20181746.
[43]Krishnamurthy P,Ranathunge K,F(xiàn)ranke R,et al. The role of root apoplastic transport barriers in salt tolerance of rice (Oryza sativa L.)[J]. Planta,2009,230(1):119-134.
[44]Krishnamurthy P,Ranathunge K,Nayak S,et al. Root apoplastic barriers block Na+transport to shoots in rice (Oryza sativa L.)[J]. Journal of Experimental Botany,2011,62(12):4215-4228.
[45]Kotula L,Ranathunge K,Schreiber L,et al. Functional and chemical comparison of apoplastic barriers to radial oxygen loss in roots of rice (Oryza sativa L.) grown in aerated or deoxygenated solution[J]. Journal of Experimental Botany,2009,60(7):2155-2167.
[46]Ranathunge K,Lin J X,Steudle E,et al. Stagnant deoxygenated growth enhances root suberization and lignifications,but differentially affects water and NaCl permeabilities in rice (Oryza sativa L.) roots[J]. Plant,Cell & Environment,2011,34(8):1223-1240.
[47]Ranathunge K,Schreiber L,Bi Y M,et al. Ammonium-induced architectural and anatomical changes with altered suberin and lignin levels significantly change water and solute permeabilities of rice (Oryza sativa L.) roots[J]. Planta,2016,243(1):231-249.
[48]Shiono K,Ogawa S,Yamazaki S,et al. Contrasting dynamics of radial O2-loss barrier induction and aerenchyma formation in rice roots of two lengths[J]. Annals of Botany,2011,107(1):89-99.
[49]Henry S,Divol F,Bettembourg M,et al. Immunoprofiling of rice root cortex reveals two cortical subdomains[J]. Frontiers in Plant Science,2015,6:1139.
[50]Meyer C J,Seago J J,Peterson C A. Environmental effects on the maturation of the endodermis and multiseriate exodermis of Iris germanica roots[J]. Annals of Botany,2009,103(5):687-702.
[51]Zhang X,Hu L J,Yang C D,et al. Structural features of Phalaris arundinacea in the Jianghan Floodplain of the Yangtze River,China[J]. Flora,2017,229:100-106.
[52]Seago Jr. J L,Peterson C A,Enstone D E,et al. Development of the endodermis and hypodermis of Typha glauca Godr. and T. angustifolia L. roots[J]. Canadian Journal of Botany,1999,77(1):122-134.
[53]Husakova E,Hochholdinger F,Soukup A. Lateral root development in the maize (Zea mays) lateral rootless1 mutant[J]. Annals of Botany,2013,112(2):417-428.
[54]Tylová E,Pecková E,Blascheová Z,et al. Casparian bands and suberin lamellae in exodermis of lateral roots:an important trait of roots system response to abiotic stress factors[J]. Annals of Botany,2017,120(1):71-85.
[55]Dowd T G,Braun D M,Sharp R E. Maize lateral root developmental plasticity induced by mild water stress. Ⅰ:Genotypic variation across a high-resolution series of water potentials[J]. Plant,Cell & Environment,2019,42(7):2259-2273.
[56]ottniková A,Lux A. Development,dilation and subdivision of cortical layers of gentian (Gentiana asclepiadea) root[J]. New Phytologist,2003,160:135-143.
[57]Mesjasz-Przybyowicz J,Barnabas A,Przybyowicz W. Comparison of cytology and distribution of nickel in roots of Ni-hyperaccumulating and non-hyperaccumulating genotypes of Senecio coronatus[J]. Plant & Soil,2007,293:61-78.
[58]Mesjasz-Przybyowicz J,Barnabas A,Przybyowicz W J. Root ultrastructure of Senecio coronatus genotypes differing in Ni uptake[J]. Northeastern Naturalist,2009,16:351-365.
[59]Chapple C S,Peterson R L. Root structure in the fern Platycerium bifurcatum (Cav.) C.Chr.(Polypodiaceae)[J]. Botanical Gazette,1987,148(2):180-187.
[60]Damus M,Peterson R L,Enstone D E,et al. Modifications of cortical cell walls in roots of seedless vascular plants[J]. Plant Biology,1997,110(2):190-195.
[61]Schneider H. Root anatomy of Aspleniaceae and the implications for systematics of this fern family[J]. Fern Gazette,1997,15:160-168.
[62]Leroux O,Bagniewska-Zadworna A,Rambe S K,et al. Non-lignified helical cell wall thickenings in root cortical cells of Aspleniaceae (Polypodiales):histology and taxonomical significance[J]. Annals of Botany,2011,107(2):195-207.
[63]Hernández M A,Teran L,Mata M,et al. Helical cell wall thickenings in root cortical cells of Polypodiaceae species from Northwestern Argentina[J]. The American Fern Journal,2013,103(4):225-240.
[64]Neira D A,Andrada A R,Páez V D L ,et al. Anatomical,histochemical and cytogenetic features of Doryopteris triphylla (Pteridaceae) [J]. American Journal of Plant Sciences,2017,8(4):907-920.
[65]Wetzel M L R,Sylvestre L D S,Barros C F,et al. Vegetative anatomy of Aspleniaceae newman from Brazilian Atlantic rainforest and its application in taxonomy[J]. Flora,2017,233:118-126.
[66]Lagoria M ,Avila G,Neira D A,et al. Morphoanatomical and histochemical characteristics of the epiphytic fern Pleopeltis macrocarpa (Polypodiaceae)[J]. Brazilian Journal of Botany,2018,41(3):739-750.
[67]Wu D,Li L B,Ma X B,et al. Morphological and anatomical adaptations to dry,shady environments in Adiantum reniforme var. sinense (Pteridaceae)[J]. PeerJ-Life & Environment,2020,8:e9937.
[68]Skene K R,Sutherland J M,Raven J A,et al. Cluster root development in Grevillea robusta (Proteaceae). Ⅱ. The development of the endodermis in a determinate root and in an indeterminate,lateral root[J]. New Phytologist,1998,138(4):733-742.
[69]Shane M W,Lambers H. Cluster roots:a curiosity in context[J]. Plant and Soil,2005,274(1):101-125.
[70]Vaculík M,Konlechner C,Langer I,et al. Root anatomy and element distribution vary between two Salix caprea isolates with different Cd accumulation capacities[J]. Environmental Pollution,2012,163:117-126.
[71]Kowalski V K,de Oliveira F M C,Voltolini C H,et al. Velamen or uniseriate epidermis? Root apices in Bromeliaceae Juss[J]. Flora,2019,250:9-17.
[72]Nii N,Ohtsuka S,Ye L H,et al. Formation of endodermis-like cells with Casparian strip and thick wall cells derived from pericycle in the roots of Feijoa sellowiana (Myrtaceae)[J]. Journal of the Japanese Society for Horticultural Science,2012,81(4):314-319.
[73]van de Mortel J E,Almar V L,Schat H,et al. Large expression differences in genes for iron and zinc homeostasis,stress response,and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens[J]. Plant Physiology,2006,142(3):1127-1147.
[74]Aleamotua M,Tai Y T,McCurdy D W,et al. Developmental biology and induction of phi thickenings by abiotic stress in roots of the brassicaceae[J]. Plants,2018,7(2):47.
[75]Song Y,Ye L H,Nii N. Effects of soil water availability on development of suberin lamellae in the endodermis and exodermis and on cortical cell wall thickening in red bayberry (Myrica rubra Sieb.et Zucc.)tree roots[J]. Scientia Horticulturae,2011,129(4):554-560.
[76]Tuladhar A,Ohtsuka S,Nii N. Formation of exclusive pattern during accumulation of ligno-suberic material in cell wall of Myrtaceae root tissues including epidermis,exodermis,endodermis and polyderm[J]. Plant Root,2014,8:24-32.
[77]Tuladhar A,Ohtsuka S,Nii N. Anatomical study on wax apple (Syzygium samarangense) roots under long-term water-logged conditions[J]. Tropical Agriculture Development,2015,59:1-6.
[78]Mackenzie K. The development of the endoder mis and phi layer of apple roots[J]. Protoplasma,1979,100(1):21-32.
[79]Peterson C A,Emanu M E,Weerdenbu C A. The permeabiiity of phi thickenings in apple (Pyrus malus) and geranium (Pelargonium hortorum) roots to an apopiastic fluorescent dye tracer[J]. Canadian Journal of Botany,1981,59(6):1107-1110.
[80]Weerdenburcg C A,Peterson C A. Structural changes in phi thickenings during primary and secondary growth in roots. Ⅰ. Apple (Pyrus malus) Rosaceae[J]. Canadian Journal of Botany,1983,61(10):2570-2576.
[81]Christodoulakis N S,Psaras G K. A contribution to the root study of the evergreen sclerophyllous anatomy of the primary root of Quercus coccifera L.[J]. Flora,1988,180(5/6):445-453.
[82]Gerrath J M,Matthes U,Purich M,et al. Root environmental effects on phi thickening production and root morphology in three gymnosperms[J]. Canadian Journal of Botany,2005,83(4):379-385.
[83]Nii N,Pan C X,Ogawa Y,et al. Anatomical features of the cell wall ingrowth in the cortical cells outside the endodermis and the development of the Casparian strip in loquat roots[J]. Japanese Society for Horticultural Science,2004,73(5):411-414.
[84]Soukup A,Malá J,Hrubcová M,et al. Differences in anatomical structure and lignin content of roots of pedunculate oak and wild cherry-tree plantlets during acclimation[J]. Biologia Plantarum,2004,48(4):481-489.
[85]López-Pérez L,F(xiàn)ernández-García N,Olmos E,et al. The phi thickening in roots of broccoli plants:an adaptation mechanism to salinity?[J]. International Journal of Plant Sciences,2007,168(8):1141-1149.
[86]Bonacorsi N K,Seago J J. Root development and structure in seedlings of Ginkgo biloba[J]. American Journal of Botany,2016,103(2):355-363.
[87]Song C W,Shen W W,Du L,et al. Development and chemical characterization of Casparian strips in the roots of Chinese fir (Cunninghamia lanceolata)[J]. Trees,2019,33(3):827-836.
[88]Kitin P B,Nakaba S,Hunt C G,et al. Direct fluorescence imaging of lignocellulosic and suberized cell walls in roots and stems[J]. AoB PLANTS,2020,12(4):plaa032.
[89]Joca T A C,de Oliveira D C,Zotz G,et al. Chemical composition of cell walls in velamentous roots of epiphytic Orchidaceae[J]. Protoplasma,2020,257(1):103-118.
[90]Haas D L,Carothers Z B,Robbins R R. Observations on the phi-thickenings and casparian strips in Pelargonium roots[J]. American Journal of Botany,1976,63(6):863-867.
[91]Peterson R L,Peterson C A,Meiville L H. Teaching plant anatomy through creative laboratory exercise[M]. Ottawa,Ontartio:NRC Press,2008.
[92]Perumalla C J,Peterson C A,Enstone D E. A survey of angiosperm species to detect hypodermal Casparian bands. Ⅰ. Roots with a uniseriate hypodermis and epidermis[J]. Botanical Journal of the Linnean Society,1990,103(2):93-112.
[93]Wilcox H E,Wang C J K. Mycorrhizal and pathological associations of dematiaceous fungi in roots of 7-month-old tree seedlings[J]. Canadian Journal of Forest Research,1987,17(8):884-899.
[94]Massicotte H B,Melville L H,Peterson R L,et al. Comparative studies of ectomycorrhiza formation in Alnus glutinosa and Pinus resinosa with Paxillus involutus[J]. Mycorrhiza,1999,8(5):229-240.
[95]de Menezes N L. Rhizophores in Rhizophora mangle L:an alternative interpretation of so-called “aerial roots”[J]. Anais da Academia Brasileira de Ciências,2006,78(2):213-226.
[96]Tajima R,Abe J,Lee O N,et al. Developmental changes in peanut root structure during root growth and root-structure modification by nodulation[J]. Annals of Botany,2008,101(4):491-499.
[97]Souza I C,Morozesk M,Duarte I D,et al. Matching pollution with adaptive changes in mangrove plants by multivariate statistics. A case study,Rhizophora mangle from four neotropical mangroves in Brazil[J]. Chemosphere,2014,108:115-124.
[98]Henrique P D C,Alves J D,Goulart P D F P,et al. Physiological and anatomical characteristics of Sibipiruna plants under hipoxia[J]. Ciência Rural,2010,40(1):70-76.
[99]Lopez-Perez L,F(xiàn)ernández-García N,Olmos E,et al. The phi thickening in roots of broccoli plants:an acclimation mechanism to salinity?[J] International Journal of Plant Sciences,2007,168(8):1141-1149.
[100]Pan C X,Nakao Y,Nii N. Anatomical development of phi thickening and the Casparian strip in loquat roots[J]. Japanese Society for Horticultural Science,2006,75(6):445-449.
[101]Degenhardt B,Gimmler H. Cell wall adaptations to multiple environmental stresses in maize roots[J]. Journal of Experimental Botany,2000,51(344):595-603.
[102]Brundrett M C,Enstone D,Peterson C A. A berberine-aniline blue fluorescent staining procedure for suberin,lignin,and callose in plant tissue[J]. Protoplasma,1988,146(2):133-142.
[103]Brundrett M C,Kendrick B,Peterson C A. Efficient lipid staining in plant material with sudan red 7B or fluorol [correction of fluoral]yellow 088 in polyethylene glycol-glycerol[J]. Biotechnic & Histochemistry,1991,66(3):111-116.
[104]Ruzin S E. Plant microtechnique and microscopy[M]. New York:Oxford University Press,1999.
[105]張 霞,胡露潔,周存宇,等. 植物細胞壁組織化學定位染色方法和技術(shù)的比較研究[J]. 植物研究,2017,37(1):147-154.
[106]Idris N A,Collings D A. The Life of phi:the development of phi thickenings in roots of the orchids of the genus Miltoniopsis[J]. Planta,2015,241(2):489-506.
[107]Fajardo A,Piper F I. Cluster root-bearing Proteaceae species show a competitive advantage over non-cluster root-bearing species[J]. Annals of Botany,2019,124(6):1121-1131.
[108]Milner M J,Mitani-Ueno N,Yamaji N,et al. Root and shoot transcriptome analysis of two ecotypes of Noccaea caerulescens uncovers the role of NcNramp1 in Cd hyperaccumulation[J]. Plant Journal,2014,78(3):398-410.
[109]白宏鋒,李曉明. 超積累植物壺瓶碎米薺的鎘富集[J]. 江蘇農(nóng)業(yè)學報,2012,28(1):76-79.
[110]龍勝橋,邵樹勛. 漁塘壩壺瓶碎米薺超富集鎘的地球化學特征[J]. 礦物學報,2015,35(增刊1):817.
[111]Li N N,Xie W W,Zhou X B,et al. Comparative effects on nutritional quality and selenium metabolism in two ecotypes of Brassica rapa exposed to selenite stress[J]. Environmental & Experimental Botany,2018,150:222-231.
[112]Wang J M,Cappa J J,Harris J P,et al. Transcriptome-wide comparison of selenium hyperaccumulator and nonaccumulator Stanleya species provides new insight into key processes mediating the hyperaccumulation syndrome[J]. Plant Biotechnology Journal,2018,16(9):1582-1594.
[113]吳振斌. 水生植物與水體生態(tài)修復(fù)[M]. 北京:科學出版社,2011.
[114]劉海琴,高運強,宋 偉,等. 水花生去除富營養(yǎng)化水體中氮磷及抑藻效果的實驗研究[J]. 現(xiàn)代農(nóng)業(yè)科學,2008,15(12):89-92.
[115]朱澤聰,胡春華,胡維平.水花生投放密度對富營養(yǎng)化湖水凈化效果影響的試驗研究[J]. 海洋湖沼通報,2008(4):49-55.
[116]Chang R Y,Wang R Q,Zhang Y R,et al. Effects of N ∶ P ratio and nutrient level on the competition between invasive Alternanthera philoxeroides and native Oenanthe javanica[J]. Advanced Materials Research,2012,534:337-342.
[117]Liao J X,Tao M,Jiang M X. Spatial arrangements affect suppression of invasive Alternanthera philoxeroides by native Hemarthria compressa[J]. Acta Oecologica,2014,59:46-51.
[118]Wang A,Jiang X X,Zhang Q Q,et al. Nitrogen addition increases intraspecific competition in the invasive wetland plant Alternanthera philoxeroides,but not in its native congener Alternanthera sessilis[J]. Plant Species Biology,2015,30(3):176-183.
[119]Lu L,Dong B C,Alpert P,et al. Effects of soil substrate heterogeneity and moisture on interspecific competition between Alternanthera philoxeroides and four native species[J]. Journal of Plant Ecology,2016,10(3):528-537.
[120]Wu H,Ismail M,Ding J Q. Global warming increases the interspecific competitiveness of the invasive plant alligator weed,Alternanthera philoxeroides[J]. Science of the Total Environment,2017,575:1415-1422.