国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于充電電壓片段的鋰離子電池狀態(tài)聯(lián)合估計(jì)方法

2021-09-14 16:01:32王萍張吉昂程澤于耀先

王萍 張吉昂 程澤 于耀先

摘? ?要:鋰離子電池的荷電狀態(tài)(SOC)、健康狀態(tài)(SOH)和剩余使用使命(RUL)是鋰離子電池安全穩(wěn)定運(yùn)行的重要狀態(tài)參數(shù),本文提出一種基于充電電壓上升片段的鋰離子電池狀態(tài)聯(lián)合估計(jì)方法,實(shí)現(xiàn)對(duì)電池預(yù)測(cè)起點(diǎn)(SP)到壽命終點(diǎn)(EOL)的較長(zhǎng)運(yùn)行周期內(nèi)SOC、SOH和RUL的聯(lián)合估計(jì). 該框架在充電階段進(jìn)行SOH和RUL估計(jì),在放電階段進(jìn)行SOC估計(jì). 首先提取電池恒流充電電壓曲線片段的上升時(shí)間作為健康特征(HF),以HF作為輸入,循環(huán)容量作為輸出,建立最小二乘支持向量機(jī)(LSSVM)電池老化模型,對(duì)當(dāng)前健康狀態(tài)進(jìn)行估計(jì);采用等效電路模型對(duì)該電壓區(qū)段進(jìn)行非線性擬合,用擬合參數(shù)建立狀態(tài)空間模型,結(jié)合無(wú)跡卡爾曼濾波算法進(jìn)行SOC估計(jì);用高斯過(guò)程回歸時(shí)間序列模型對(duì)電池的健康特征序列進(jìn)行建模,通過(guò)循環(huán)次數(shù)外推預(yù)測(cè)健康特征的變化趨勢(shì),并結(jié)合LSSVM老化模型,對(duì)RUL進(jìn)行預(yù)測(cè)并給出置信區(qū)間. 實(shí)驗(yàn)結(jié)果表明,所提方法具有較高的估計(jì)精度和較好的穩(wěn)定性.

關(guān)鍵詞:荷電狀態(tài);健康狀態(tài);剩余使用壽命;等效電路模型;數(shù)據(jù)驅(qū)動(dòng)方法

中圖分類號(hào):TM912.1? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼:A

A Coupled State Estimation Method of Lithium

Batteries Based on Partial Charging Voltage Segment

WANG Ping,ZHANG Jiang,CHENG Ze,YU Yaoxian?覮

(School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China )

Abstract:The state of charge (SOC), state of health (SOH) and residual mission (RUL) of lithium-ion battery are important state parameters for the safe and stable operation of lithium-ion battery. In this paper, a coupled estimation method of lithium-ion battery state based on the rising segment of charging voltage is proposed to realize the coupled estimation of SOC, SOH and RUL in a long operation cycle from the starting point of battery prediction (SP) to the end of life (EOL). The framework estimates SOH and RUL in the charging phase and SOC in the discharge phase. Firstly, the rising time of constant current charging voltage curve segment is extracted as the health feature (HF), and the HF as the input and cycle capacity as the output are used to establish the? least squares support vector machine (LSSVM) battery aging model for SOH estimation; The equivalent circuit model is used for nonlinear fitting of the voltage segment, and the state space model is established with the fitting parameters, which is combined with the unscented Kalman filter algorithm to estimate SOC; Gaussian process regression time series model is used to model the health feature series, and the change trend of HF is predicted by extrapolation of cycle times,which is combined with LSSVM model to predict RUL and the corresponding confidence interval. The experimental results show that the proposed method has high estimation accuracy and good stability.

Key words:state of charge;sate of health;remaining useful life;equivalent circuit model;data-driven method

鋰離子電池具有成本低、能量密度高、循環(huán)壽命長(zhǎng)的優(yōu)點(diǎn),在全球能源和環(huán)境危機(jī)不斷加劇的背景下,正逐漸成為電動(dòng)汽車、直流變電站和光伏電網(wǎng)的重要儲(chǔ)能裝置[1]. 對(duì)鋰離子電池配備電池管理系統(tǒng)(battery management system,BMS)可以對(duì)電池進(jìn)行科學(xué)評(píng)估、風(fēng)險(xiǎn)預(yù)警和定期更換,保障電池的健康穩(wěn)定運(yùn)行. 鋰離子電池的荷電狀態(tài)(state of charge,SOC)、健康狀態(tài)(state of health,SOH)和剩余使用壽命(remaining useful life,RUL)是BMS運(yùn)維的重要參數(shù)[2]. SOC是電池短時(shí)間尺度的狀態(tài)變化,其實(shí)時(shí)估計(jì)可以預(yù)測(cè)系統(tǒng)運(yùn)行時(shí)間,制定合理的充放電策略. SOH用來(lái)描述電池在不同循環(huán)次數(shù)下的老化程度,是對(duì)長(zhǎng)時(shí)間尺度下當(dāng)前狀態(tài)的描述,其準(zhǔn)確估計(jì)有利于對(duì)電池的健康診斷,及時(shí)更換老化電池. 此兩者是對(duì)電池當(dāng)前狀態(tài)的描述,而RUL定義為電池從當(dāng)前時(shí)刻衰減至壽命終止(End of Life,EOL)所需的循環(huán)次數(shù),是對(duì)電池未來(lái)狀態(tài)的描述,其準(zhǔn)確估計(jì)有利于合理規(guī)劃電池的投運(yùn),提前排除隱患. 三者從不同方面保障系統(tǒng)的平穩(wěn)運(yùn)行.

不同于電壓電流等可測(cè)參數(shù),鋰離子電池的SOC、SOH和RUL參數(shù)無(wú)法用傳感器直接測(cè)量,只能根據(jù)一些外部可測(cè)量,結(jié)合數(shù)學(xué)算法進(jìn)行定量估計(jì). 電池的狀態(tài)估計(jì)方法主要有間接測(cè)量法、模型法和數(shù)據(jù)驅(qū)動(dòng)法等,下面分別展開介紹.

SOC估計(jì)的方法中,測(cè)量法主要是直接利用定義推出的基于電流積分的安時(shí)積分法和通過(guò)測(cè)量電池充放電過(guò)程中的開路電壓進(jìn)行SOC估計(jì)的開路電壓法[3],但是前者容易受到初始SOC誤差的影響,且估計(jì)誤差會(huì)隨著時(shí)間不斷積累,無(wú)法進(jìn)行校正和補(bǔ)償;后者需要耗費(fèi)較長(zhǎng)的時(shí)間,不適合在線使用. 數(shù)據(jù)驅(qū)動(dòng)方法[4]用算法來(lái)學(xué)習(xí)電壓、電流、溫度等可測(cè)量與SOC的映射關(guān)系,訓(xùn)練量和計(jì)算量較大,不易在線應(yīng)用. 模型法需要建立等效電路模型(equivalent circuit model,ECM),包含電壓源、電阻電容等元件,以模擬電池的外部工作狀態(tài),并結(jié)合濾波算法進(jìn)行閉環(huán)SOC估計(jì)[5]. 這種方法的穩(wěn)定性較好,可以校正初值誤差,避免測(cè)量誤差的時(shí)間累積. 缺點(diǎn)是模型的阻容參數(shù)的適應(yīng)性較差,隨著電池老化,電池的阻容參數(shù)會(huì)發(fā)生較大變化[6],模型參數(shù)的辨識(shí)值會(huì)產(chǎn)生較大的擬合誤差,不適合電池全周期的SOC估計(jì). 此外,當(dāng)前可用容量或健康狀態(tài)會(huì)對(duì)SOC的估計(jì)結(jié)果造成較大的影響,不宜單獨(dú)進(jìn)行SOC估計(jì).

SOH估計(jì)方法中,測(cè)量法主要是通過(guò)小電流放電進(jìn)行核容,精確度高但是費(fèi)時(shí)費(fèi)力. 基于模型的方法主要包括電化學(xué)模型和經(jīng)驗(yàn)退化模型. 電化學(xué)模型對(duì)于電池的內(nèi)部工作機(jī)理的描述更為細(xì)致,通過(guò)建立一系列的偏微分方程來(lái)描述電池的容量衰退理化機(jī)制,如基于多孔電極理論搭建的準(zhǔn)二維多孔電極模型(pseudo two-dimensional model,P2D model)[7]及其簡(jiǎn)化方案[8],但電化學(xué)模型參數(shù)辨識(shí)困難,方程計(jì)算復(fù)雜,不適合BMS系統(tǒng)的在線估計(jì). 經(jīng)驗(yàn)退化模型可以對(duì)電池全周期的容量衰退趨勢(shì)進(jìn)行建模[9],參數(shù)辨識(shí)簡(jiǎn)單,但是難以適應(yīng)電池的個(gè)體差異導(dǎo)致的不同容量衰退趨勢(shì),同時(shí)難以刻畫鋰離子電池的容量再生現(xiàn)象,即電池容量的局部波動(dòng),常與其他方法結(jié)合使用[10].基于數(shù)據(jù)驅(qū)動(dòng)的SOH估計(jì)方法無(wú)須分析電池的內(nèi)部機(jī)理,通過(guò)提取和分析與電池容量衰退密切相關(guān)的外部健康特征(health factor,HF)[11],并通過(guò)機(jī)器學(xué)習(xí)的算法來(lái)建立HF與電池SOH之間的非線性映射關(guān)系,避免了物理建模和參數(shù)辨識(shí)問(wèn)題,靈活性較強(qiáng),應(yīng)用廣泛. 這類方法主要依賴于所選健康特征的合理性和訓(xùn)練算法的泛化能力[12].

RUL預(yù)測(cè)方法中的模型方法包括隨機(jī)過(guò)程模型和經(jīng)驗(yàn)退化模型,隨機(jī)過(guò)程模型將鋰離子電池的衰退過(guò)程看作一個(gè)隨機(jī)的時(shí)間序列,對(duì)其進(jìn)行建模,常見的隨機(jī)過(guò)程模型包括Wiener模型[13],馬爾可夫(Markov)模型[14],布朗運(yùn)動(dòng)模型[15]等,這類模型中包含隨機(jī)項(xiàng),每次計(jì)算結(jié)果的波動(dòng)性較大;經(jīng)驗(yàn)?zāi)P屠脭?shù)學(xué)公式對(duì)電池的歷史數(shù)據(jù)進(jìn)行擬合建立退化模型,外推迭代模型實(shí)現(xiàn)對(duì)鋰離子電池RUL的預(yù)測(cè). 常見的經(jīng)驗(yàn)?zāi)P桶ㄖ笖?shù)模型[16]、多項(xiàng)式模型[17]和組合模型[18]等,模型方法通常只能提供點(diǎn)預(yù)測(cè)結(jié)果,模型跟蹤能力差,在RUL長(zhǎng)期預(yù)測(cè)中表現(xiàn)不佳. 基于數(shù)據(jù)驅(qū)動(dòng)的RUL預(yù)測(cè)方法包括神經(jīng)網(wǎng)絡(luò)(neural network,NN)[19]、相關(guān)向量機(jī)(Relevance vector machine,RVM)[20]、高斯過(guò)程回歸(Gauss process regression,GPR)[21]等. 數(shù)據(jù)驅(qū)動(dòng)方法有較好的非線性建模能力,在RUL長(zhǎng)期預(yù)測(cè)中表現(xiàn)良好[22],并提供區(qū)間預(yù)測(cè)結(jié)果.

鋰離子電池的狀態(tài)估計(jì)研究中,對(duì)于SOC、SOH和RUL參數(shù)的單獨(dú)估計(jì)最為常見[3-5,9-12,16-22],其次是對(duì)兩個(gè)參數(shù)進(jìn)行聯(lián)合估計(jì),如SOC-SOH聯(lián)合估計(jì)[23-24],SOH-RUL聯(lián)合估計(jì)[25-26]. 文獻(xiàn)[23]提出一種基于粒子濾波的SOC-SOH多時(shí)間尺度估計(jì)方案;文獻(xiàn)[24]采用動(dòng)態(tài)神經(jīng)網(wǎng)絡(luò)對(duì)SOC-SOH進(jìn)行閉環(huán)觀測(cè);文獻(xiàn)[25]用布朗運(yùn)動(dòng)模擬電池SOH衰退時(shí)間序列,對(duì)短期SOH和長(zhǎng)期RUL進(jìn)行聯(lián)合估計(jì);文獻(xiàn)[26]采用長(zhǎng)短時(shí)記憶神經(jīng)網(wǎng)絡(luò)分別對(duì)SOH和RUL進(jìn)行多對(duì)一和一對(duì)一映射. 但是由于SOC、SOH和RUL都是電池運(yùn)行的重要參數(shù),且三者之間也存在復(fù)雜的相互影響,伴隨電池全周期運(yùn)行的始終,只考慮其中的一個(gè)或部分會(huì)導(dǎo)致較大的估計(jì)誤差. 比如電池不斷老化中,電池等效模型的阻容參數(shù)會(huì)明顯變化,造成SOC估計(jì)的不準(zhǔn)確;電池的當(dāng)前健康狀態(tài)也影響著對(duì)電池壽命未來(lái)變化趨勢(shì)的研判,影響RUL值[25]. 所以在電池較長(zhǎng)生命周期內(nèi)對(duì)SOC、SOH和RUL進(jìn)行聯(lián)合估計(jì)具有現(xiàn)實(shí)的必要性.

估計(jì)算法方面,純模型法或者純數(shù)據(jù)驅(qū)動(dòng)法不能完全令人滿意,前者的魯棒性較好,但是無(wú)法適應(yīng)電池的不斷老化而自動(dòng)調(diào)整;后者泛化能力較強(qiáng),但比較依賴訓(xùn)練樣本的數(shù)量和代表性. 由于電池長(zhǎng)時(shí)間運(yùn)行的數(shù)據(jù)量比較大,采用純數(shù)據(jù)法會(huì)造成較大的計(jì)算負(fù)擔(dān),無(wú)法在線應(yīng)用. 所以有必要探索兩種方法的有機(jī)融合,提高聯(lián)合狀態(tài)估計(jì)算法的準(zhǔn)確度和穩(wěn)定性.

鋰離子電池的充電電壓與電池狀態(tài)具有較好的聯(lián)系,且容易獲取,因此本文以充電電壓片段為切入點(diǎn),將等效電路模型(equivalent circuit model,ECM)與數(shù)據(jù)驅(qū)動(dòng)(data driven method,DDM)有機(jī)融合,在鋰離子電池較長(zhǎng)生命周期內(nèi),實(shí)現(xiàn)SOC-SOH-RUL聯(lián)合估計(jì).

本文的創(chuàng)新性貢獻(xiàn)如下:

1)利用電壓片段進(jìn)行電池建模和狀態(tài)估計(jì),能夠適應(yīng)完全充電和局部充電情形,適應(yīng)直流放電和隨機(jī)放電工況,計(jì)算量小,可操作性強(qiáng).

2)提出了等效電路模型和數(shù)據(jù)驅(qū)動(dòng)方法相融合的聯(lián)合估計(jì)方案,該方案結(jié)合了模型法的穩(wěn)定性和數(shù)據(jù)法的學(xué)習(xí)能力,能夠在同一個(gè)框架下聯(lián)合估計(jì)電池的SOC、SOH和RUL三個(gè)狀態(tài)參數(shù),估計(jì)精度高.

3)考慮了電池使用過(guò)程中狀態(tài)參數(shù)的關(guān)聯(lián)影響,能夠?qū)崿F(xiàn)各狀態(tài)參數(shù)的長(zhǎng)期穩(wěn)定預(yù)測(cè).

在Oxford數(shù)據(jù)集和NASA電池?cái)?shù)據(jù)集上進(jìn)行實(shí)驗(yàn)驗(yàn)證,結(jié)果表明了所提方法的可行性.

1? ?健康特征和等效電路模型

1.1? ?鋰離子電池SOC、SOH和RUL定義

1.2? ?數(shù)據(jù)來(lái)源

1.3? ?健康特征提取

1.4? ?等效電路模型

2? ?相關(guān)數(shù)學(xué)方法

2.1? ?UKF

2.1.1? ?系統(tǒng)初始化

2.2? ?LSSVM和GPR算法

4? ?實(shí)驗(yàn)結(jié)果與分析

4.1? ?牛津數(shù)據(jù)集

4.1.1? ?SOH和RUL估計(jì)結(jié)果

4.1.2? ?SOC估計(jì)結(jié)果

SOC估計(jì)在放電階段進(jìn)行. 圖7展示了Cell1和Cell4電池從預(yù)測(cè)起點(diǎn)到EOL各放電周期的SOC估計(jì)結(jié)果,更多電池結(jié)果見表3. 放電工況為恒流放電. 由于實(shí)際中SOC的初值一般是不確定的,為了驗(yàn)證算法的魯棒性,設(shè)置SOC的初始誤差為0.5,定義跟隨時(shí)間為SOC估計(jì)值與真實(shí)值的誤差小于0.1的時(shí)間和放電總時(shí)間的比值,計(jì)算跟隨時(shí)刻之后的MAE和RMSE,繪制各指標(biāo)隨循環(huán)次數(shù)的變化趨勢(shì). 從SP到EOL的總循環(huán)次數(shù)中等間隔取四次循環(huán),四次循環(huán)的放電階段SOC估計(jì)效果如圖7左邊四個(gè)子圖的紅線所示.

4.2? ?NASA數(shù)據(jù)集

4.2.1? ?SOH和RUL估計(jì)結(jié)果

4.2.2? ?SOC估計(jì)結(jié)果

5? ?結(jié)? ?論

本文以鋰離子電池充電電壓片段為切入點(diǎn),進(jìn)行等效電路模型建模和健康特征(HF)提取,在預(yù)測(cè)起點(diǎn)(SP)之前建立反映電池老化的LSSVM老化模型. SP之后循環(huán)工作時(shí)采集該壓升片段,將HF代入LSSVM模型中實(shí)現(xiàn)SOH估計(jì);用每次循環(huán)所建立的等效電路模型,構(gòu)建SOC估計(jì)的狀態(tài)空間模型,對(duì)放電的SOC進(jìn)行估計(jì);用高斯過(guò)程回歸時(shí)間序列模型對(duì)健康特征序列循環(huán)次數(shù)的變化進(jìn)行建模,通過(guò)循環(huán)次數(shù)外推對(duì)DV_DT的變化趨勢(shì)進(jìn)行預(yù)測(cè),將變化趨勢(shì)輸入LSSVM老化模型中,輸出SOH的退化軌跡,該軌跡與壽命閾值的交點(diǎn)即為RUL預(yù)測(cè)值,并給出區(qū)間預(yù)測(cè)結(jié)果. 采用Oxford和NASA數(shù)據(jù)集進(jìn)行算法驗(yàn)證,結(jié)果表明所提方法能夠在電池預(yù)測(cè)起點(diǎn)之后的較長(zhǎng)運(yùn)行周期內(nèi)實(shí)現(xiàn)SOC、SOH和RUL的準(zhǔn)確估計(jì).

本文提出的狀態(tài)聯(lián)合估計(jì)方案不需要鋰電池內(nèi)部的電化學(xué)機(jī)理,借助電壓、電流等常規(guī)物理量,通過(guò)等效電路模型和數(shù)據(jù)驅(qū)動(dòng)方法的有機(jī)融合,實(shí)現(xiàn)了SOC、SOH和RUL的聯(lián)合估計(jì),計(jì)算量小,實(shí)用性強(qiáng).

參考文獻(xiàn)

[1]? ? SARMAH S B,KALITA P,GARG A,et al. A review of state of health estimation of energy storage systems:challenges and possible solutions for futuristic applications of Li-ion battery packs in electric vehicles[J]. Journal of Electrochemical Energy Conversion and Storage,2019,16(4):.DOI:10.1115/1.4042987.

[2]? ? RAHIMI-EICHI H,OJHA U,BARONTI F,et al. Battery management system:an overview of its application in the smart grid and electric vehicles[J]. IEEE Industrial Electronics Magazine,2013,7(2):4—16.

[3]? ? NG K S,MOO C S,CHEN Y P,et al. State-of-charge estimation for lead-acid batteries based on dynamic open-circuit voltage[C]//2008 IEEE 2nd International Power and Energy Conference. Johor Bahru,Malaysia:IEEE,2008:972—976.

[4]? ? DENG Z W,HU X S,LIN X K,et al. Data-driven state of charge estimation for lithium-ion battery packs based on Gaussian process regression[J]. Energy,2020,205:118000.

[5]? ? XIA B Z,SUN Z,ZHANG R F,et al. A comparative study of three improved algorithms based on particle filter algorithms in SOC estimation of lithium ion batteries[J]. Energies,2017,10(8):1149.

[6]? ? WAAG W,KAEBITZ S,SAUER D U. Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application[J]. Applied Energy,2013,102:885—897.

[7]? ? DOYLE M,F(xiàn)ULLER T F,NEWMAN J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of the Electrochemical Society,1993,140(6):1526—1533.

[8]? ? PANG H,MOU L J,GUO L,et al. Parameter identification and systematic validation of an enhanced single-particle model with aging degradation physics for Li-ion batteries[J]. Electrochimica Acta,2019,307:474—487.

[9]? ? JIANG Y Y,ZHANG J,XIA L,et al. State of health estimation for lithium-ion battery using empirical degradation and error compensation models[J]. IEEE Access,2020,8:123858—123868.

[10]? 王萍,張吉昂,程澤. 基于最小二乘支持向量機(jī)誤差補(bǔ)償模型的鋰離子電池健康狀態(tài)估計(jì)方法[J].電網(wǎng)技術(shù). https://doi.org/10.13335/j.1000—3673.pst.2021.0045.

[11]? GUO P Y,CHENG Z,YANG L. A data-driven remaining capacity estimation approach for lithium-ion batteries based on charging health feature extraction[J]. Journal of Power Sources,2019,412:442—450.

[12]? YUN Z H,QIN W H,SHI W P,et al. State-of-health prediction for lithium-ion batteries based on a novel hybrid approach[J]. Energies,2020,13(18):4858.

[13]? JIN G,MATTHEWS D E,ZHOU Z B. A Bayesian framework for on-line degradation assessment and residual life prediction of secondary batteries inspacecraft[J]. Reliability Engineering & System Safety,2013,113:7—20.

[14]? PATTIPATI B,SANKAVARAM C,PATTIPATI K. System identification and estimation framework for pivotal automotive battery management system characteristics[J]. IEEE Transactions on Systems,Man,and Cybernetics,Part C (Applications and Reviews),2011,41(6):869—884.

[15]? LONG B,XIAN W M,JIANG L,et al. An improved autoregressive model by particle swarm optimization for prognostics of lithium-ion batteries[J]. Microelectronics Reliability,2013,53(6):821—831.

[16]? WANG D,MIAO Q,PECHT M. Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model[J]. Journal of Power Sources,2013,239:253—264.

[17]? XING Y J,MA E W M,TSUI K L,et al. An ensemble model for predicting the remaining useful performance of lithium-ion batteries[J]. Microelectronics Reliability,2013,53(6):811—820.

[18]? CHEN L,LIN W L,LI J Z,et al. Prediction of lithium-ion battery capacity with metabolic grey model[J]. Energy,2016,106:662—672.

[19]? REZVANI M,ABUALI PHD M,LEE S,et al. A comparative analysis of techniques for electric vehicle battery prognostics and health management (PHM)[C]//SAE Technical Paper Series. Warrendale,PA,United States:SAE International,2011.

[20]? LIU D T,ZHOU J B,LIAO H T,et al. A health indicator extraction and optimization framework for lithium-ion battery degradation modeling and prognostics[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems,2015,45(6):915—928.

[21]? PATTIPATI B,SANKAVARAM C,PATTIPATI K. System identification and estimation framework for pivotal automotive battery management system characteristics[J]. IEEE Transactions on Systems,Man,and Cybernetics,Part C (Applications and Reviews),2011,41(6):869—884.

[22]? LIU J,SAXENA A,GOEBEL K,et al. An adaptive recurrent neural network for remaining useful life prediction of lithium-ion batteries[C]. Proceedings of Annual Conference of the Prognostics and Health Management Society,Portland,2010.

[23]? 印學(xué)浩,宋宇晨,劉旺,等. 基于多時(shí)間尺度的鋰離子電池狀態(tài)聯(lián)合估計(jì)[J]. 儀器儀表學(xué)報(bào),2018,39(8):118—126.

YIN X H,SONG Y C,LIU W,et al. Multi-scale state joint estimation for lithium-ion battery[J]. Chinese Journal of Scientific Instrument,2018,39(8):118—126. (In Chinese)

[24]? CHE Y B,LIU Y S,CHENG Z,et al. SOC and SOH identification method of Li-ion battery based on SWPSO-DRNN[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics,2021,9(4):4050—4061.

[25]? DONG G Z,CHEN Z H,WEI J W,et al. Battery health prognosis using Brownian motion modeling and particle filtering[J]. IEEE Transactions on Industrial Electronics,2018,65(11):8646—8655.

[26]? LI P H,ZHANG Z J,XIONG Q Y,et al. State-of-health estimation and remaining useful life prediction for the lithium-ion battery based on a variant long short term memory neural network[J]. Journal of Power Sources,2020,459:228069.

[27]? ABU-SHARKH S,DOERFFEL D. Rapid test and non-linear model characterisation of solid-state lithium-ion batteries[J]. Journal of Power Sources,2004,130(1/2):266—274.

[28]? TIAN Y,XIA B Z,SUN W,et al. A modified model based state of charge estimation of power lithium-ion batteries using unscented Kalman filter[J]. Journal of Power Sources,2014,270:619—626.1225—1236.

[29]? LIU K L,HU X S,WEI Z B,et al. Modified Gaussian process regression models for cyclic capacity prediction of lithium-ion batteries[J]. IEEE Transactions on Transportation Electrification,2019,5(4):1225—1236.

[30]? CHEN X K,LEI H,XIONG R,et al. A novel approach to reconstruct open circuit voltage for state of charge estimation of lithium ion batteries in electric vehicles[J]. Applied Energy,2019,255:113758.

[31]? YO KOBAYASHI,HAJIME MIYASHIRO,ATSUKO YAMAZAKI,et al. Unexpect fade and recovery mechanism of LiFePO4 /graphite cells for grid operation[J]. Journal of Power Sources,2020,449:227502—227510.

江西省| 松阳县| 洛南县| 关岭| 图木舒克市| 忻州市| 汽车| 盐山县| 田阳县| 五寨县| 云浮市| 花莲县| 株洲市| 阿合奇县| 达孜县| 介休市| 普陀区| 昆山市| 罗源县| 崇仁县| 鹤壁市| 读书| 东丰县| 泰州市| 阿拉善盟| 天镇县| 惠安县| 龙泉市| 武乡县| 卓尼县| 康马县| 桐城市| 麻阳| 三门峡市| 浦东新区| 托里县| 监利县| 彩票| 鹤岗市| 兰溪市| 上犹县|