范秀梅,張勝茂,崔雪森,楊勝龍
?農業(yè)信息與電氣技術?
浙江省近海漁運船轉載信息提取
范秀梅,張勝茂※,崔雪森,楊勝龍
(中國水產科學研究院東海水產研究所,農業(yè)農村部遠洋與極地漁業(yè)創(chuàng)新重點實驗室,上海 200090)
漁運船是從事漁獲物運輸?shù)膶S么?,能夠提高捕撈漁船作業(yè)效率,增加捕撈漁船的作業(yè)強度。為掌握漁運船在海上的轉載情況,從而間接了解捕撈漁船作業(yè)強度,該研究提出一種基于北斗船位數(shù)據(jù)的以設定航速閾值、距離閾值和時間閾值來提取漁運船轉載信息的方法。如果漁運船和捕撈漁船距離小于50 m,且期間有持續(xù)3條以上的船舶監(jiān)控系統(tǒng)(Vessel Monitoring Systems,VMS)記錄,則認為可能發(fā)生了1次轉載,并記錄下相遇的時長、船名、空間位置。以浙江省為例,利用該方法從2018年浙江省的北斗船位數(shù)據(jù)中提取漁運船的海上轉載信息,并進行統(tǒng)計分析。結果表明,有轉載記錄的漁運船808條,參與轉載的捕撈漁船3 548條,共轉載28 916次。漁運船停船轉載占比21.0%,以1~1.4 m/s低速航行的作業(yè)狀態(tài)轉載占比53.7%,轉載時長小于12.5 min的占比81.3%,同時得到漁運船轉載的熱點分布,轉載累積時長最長的空間網格為122.5°E~123°E,31.5°N~32°N,轉載累積時長187 h,其次為122°E~122.5°E,28°N~28.5°N,轉載累積時長150 h。通過分析漁運船海上轉載位置和轉載累積時長的空間分布情況可掌握捕撈漁船作業(yè)的時空變化特點,為漁業(yè)限額捕撈精細化管理提供依據(jù)。
漁船;漁業(yè);北斗衛(wèi)星導航系統(tǒng);船舶監(jiān)控系統(tǒng);轉載
漁獲物漁運船(以下簡稱漁運船)屬于捕撈輔助船的一種,可同時為多艘捕撈漁船提供補給和轉載漁獲。漁運船進行漁獲的轉載一般在離港口較遠的海上,其中轉載地點為漁運船與漁船在海上會合后進行漁獲轉載的地點[1]。漁運船可以節(jié)省海洋捕撈機動漁船(以下簡稱捕撈漁船)往返漁港的航行時間,減少燃油消耗,增加作業(yè)時間,提高捕撈漁船作業(yè)效率,但也增加了漁船的捕撈強度,降低了捕撈漁船作業(yè)的透明度和漁獲物來源的可追溯性,增加了漁業(yè)資源管理的難度[2-3]。
船舶自動識別系統(tǒng)(Automatic Identification System,AIS)和船舶監(jiān)控系統(tǒng)(Vessel Monitoring Systems,VMS)提供了海量的漁船(漁運船、捕撈漁船)的船位數(shù)據(jù),包括時間、位置和速度等信息[4-5]。捕撈漁船的船位數(shù)據(jù)已被廣泛用來識別漁船作業(yè)類型[6]和作業(yè)狀態(tài)[7-8],計算捕撈努力量[9-12]等,漁運船船位數(shù)據(jù)的研究近些年也逐漸增多。Miller等[1, 13-15]開發(fā)了基于漁船AIS軌跡數(shù)據(jù)庫,自動探測和顯示遠洋捕撈漁船(拖網、延繩釣、魷釣、圍網)與漁運船在海上會合轉載的機器學習算法,可得到全球遠洋漁獲轉載的熱點區(qū)等。基于2012-2017年全球漁船與漁運船的AIS的軌跡數(shù)據(jù),Kristina等[14]從220億條AIS船位記錄中查到501條漁運船與1 856條捕撈漁船相遇,約發(fā)生10 510次轉載事件,其中35%的轉載發(fā)生在公海,65%在專屬經濟區(qū)(Exclusive Economic Zones, EZZ)。
基于北斗衛(wèi)星導航系統(tǒng)的VMS在國內漁業(yè)中的應用起步較晚,但發(fā)展較快[16-18],目前國內安裝北斗VMS終端的近海捕撈漁船和漁運船已超過7萬艘[19],初步實現(xiàn)了對船舶的實時聯(lián)絡及跟蹤監(jiān)控[20],同時也已累積了大量具有時空特性的船位數(shù)據(jù)。對捕撈漁船的北斗船位數(shù)據(jù)進行統(tǒng)計和挖掘分析已經有一些相關的研究成果[21-24],但對漁運船北斗船位數(shù)據(jù)的分析還未見有相關研究。為獲得近海漁運船的轉載信息,本文以浙江省2018年北斗船位數(shù)據(jù)為例,提出了一種漁運船海上轉載特征信息提取和分析的方法,以期為漁業(yè)資源可持續(xù)利用和管理政策制定提供參考。
北斗VMS船位數(shù)據(jù)由北斗民用分理服務商提供,數(shù)據(jù)的時間分辨率約為3 min,空間分辨率約為10 m,測速精度約為0.2 m/s。數(shù)據(jù)的文件名為年份+船名,一條船對應于一個文件,文件中的信息包括船名、時間、經度、緯度、航速、航向等。文中使用的數(shù)據(jù)為浙江省2018年漁運船和捕撈漁船的北斗VMS船位數(shù)據(jù)。原始數(shù)據(jù)存儲在.csv文件中,每次讀取時都需要轉變變量類型,而將字符串變量轉變?yōu)槿掌陬愋洼^耗時[25]。為了提高讀取速度,可先將數(shù)據(jù)讀入內存,轉變成正確的數(shù)據(jù)類型變量后,再將變量保存至.mat文件中。matlab可以直接加載.mat文件中的變量到內存中,無需再次轉變數(shù)據(jù)類型,與直接加載.csv文件相比,可以提高約5倍的運算速度。
北斗船位數(shù)據(jù)中存在幾種異常數(shù)據(jù)[26]:第一種是時間異常,通過設置時間范圍剔除,本文設置的有效時間范圍為2018年1月1日0時0分0秒至2018年12月31日23時59分59秒;第二種是經緯度異常,例如經度或者緯度出現(xiàn)0值,可直接剔除?;蛘叱霈F(xiàn)漁船定位在內陸地區(qū)的異常,表現(xiàn)為經度、緯度記錄與相鄰記錄值相差較大,可通過設置閾值刪除,例如將經緯度與前后記錄值相差超過1°的值刪除。在數(shù)據(jù)載入內存后,算法執(zhí)行前直接在內存中剔除異常數(shù)據(jù),不改變原始文件中的數(shù)據(jù)記錄。
文中漁運船轉載信息的提取流程如圖1所示,主要分為3個步驟:首先查找所有航速值小于1.5 m/s(經過統(tǒng)計分析得到,細節(jié)見下文)時間段;其次得到漁運船各航次的開始時間和結束時間,并獲得各航次中航速值小于1.5 m/s時間段;最后查找漁運船在各航次的航速值小于1.5 m/s時間段內與捕撈漁船距離小于50 m,且期間有持續(xù)3條以上的船舶監(jiān)控系統(tǒng)(Vessel Monitoring Systems,VMS)記錄的事件。
1)查找航速值小于1.5 m/s時間段
首先,將漁運船的數(shù)據(jù)讀入內存,船名、時間、航速、經度、緯度分別存儲于字符串類型數(shù)組SHIPE_NAME、日期類型數(shù)組TIME、浮點數(shù)類型數(shù)組V、浮點數(shù)類型數(shù)組LON、浮點數(shù)類型數(shù)組LAT,其中∈(1,2,3,…,)表示漁運船的序號,表示漁運船總數(shù)。
漁運船轉載時的航速分布范圍0~1.5 m/s通過統(tǒng)計浙江省1 052條漁運船的航速分布得到。將所有漁運船的航速離散到以0.3 m/s(可調參數(shù),只要能將漁運船的3種狀態(tài)區(qū)分開即可)為間隔的數(shù)值上,再進行航速值的頻次統(tǒng)計分析,結果如圖2所示。由圖2可知漁運船主要有3種狀態(tài):第一種是停船狀態(tài)(靠港或者轉運),0~7 m/s航速值頻次占比分布中,0值附近的航速值占比較高,占比46.4%,對應于停船狀態(tài);第二種是低速航行轉運,0.3~7 m/s航速值頻次占比分布中,第一個峰值在0.6 m/s附近,對應低速航行轉運狀態(tài);第三種是正常航行狀態(tài),對應于第二個峰值區(qū),在4.5 m/s附近。轉運時船速對應于第一種和第二種狀態(tài),這2種狀態(tài)的峰值在0~1.5 m/s之間,當速度小于1.5 m/s時,認為有正在轉載的可能。
2)查找漁運船各航次的開始時間和結束時間,并獲得各航次中航速值小于1.5 m/s時間段
3)查找漁運船在各航次的航速值小于1.5 m/s時間段與捕撈漁船之間轉載信息
最后,計算同一時間段內的漁運船和捕撈漁船的距離,如果小于50 m,且持續(xù)時間大于3條記錄,則認為2條船軌跡重疊,正在轉載。根據(jù)經緯度計算任意2個點(如C,D點)球面距離的公式為
式中Radius為地球半徑,取WGS84標準參考橢球中的地球長半徑[27]6 378.137 km,C、C表示點的經度和緯度,D、D表示點的經度和緯度。
以浙江省2018年的4條漁運船北斗VMS終端記錄的船位數(shù)據(jù)為例,利用上述方法,查找2018年浙江省所有與這4條漁運船進行轉載的近海捕撈漁船,并對漁運船的轉載信息進行分析。結果如圖3所示。
2018年漁運船1總共出海204個航次,轉載213次,總轉載時長為1315 min,??窟^1個地點,經緯度之一為(121.635 4°E,28.293 4°N)。根據(jù)經緯度坐標調用高德地圖[28]的逆地理編碼web服務查詢具體的地址,即船只所在的省、市、縣。調用的url格式為https://restapi.amap.com/v3/geocode/regeo?location=Lon,Lat&key=yourkey&output=json,其中‘Lon’,‘Lat’替換為實際的經度和緯度,‘yourkey’為在高德平臺上申請的web應用服務的Key碼。根據(jù)逆地理編碼查詢到漁運船1停靠地點為浙江省臺州市溫嶺市石塘鎮(zhèn)。漁運船2出海航次為185次,共轉載191次,總轉載時長為185 5 min,??窟^1個地點,經緯度之一為(121.570 9°E,28.256 5°N),對應的地點為浙江省臺州市溫嶺市石塘鎮(zhèn)。漁運船3出海航次為259次,轉載285次,總轉載時長為3372 min,停靠過1個地點,經緯度之一為(121.571 8°E,28.263 6°N),對應的地點為浙江省臺州市溫嶺市石塘鎮(zhèn)。漁運船4出海航次為287次,轉載323次,總轉載時長為2 325 min,??窟^3個地點,分別為浙江省舟山市普陀區(qū)沈家門,經緯度之一為(122.2815°E,29.9402°N);浙江省臺州市溫嶺市石塘鎮(zhèn),經緯度之一為(121.6419°E,28.3016°N),浙江省溫州市蒼南縣,經緯度為(120.6439°E,28.3017°N)。
漁運船轉載信息查詢程序執(zhí)行過程中不斷輸出查詢到的轉載信息,輸出的內容如表1所示??梢愿鶕?jù)這些記錄查找漁運船轉載時的航速,計算轉載時長,轉載所在的月份,時間,并進行統(tǒng)計分析,另外還可以查找轉載所在的經緯度分布,統(tǒng)計累計轉載時長的空間分布。
表1 漁運船轉載信息輸出結果
從北斗民用分理服務商處獲得了2018年浙江省1 052條漁運船的北斗船位數(shù)據(jù),7 249條捕撈漁船船位數(shù)據(jù),經過計算,有轉載記錄的漁運船有808條,共轉載28 916次,參與轉載的捕撈漁船3 548條。
將漁運船轉載時的航速離散至0.1 m/s(可調,能體現(xiàn)航速分布的特征即可)間隔的航速上,然后統(tǒng)計各航速值出現(xiàn)的占比(結果見圖4a),圖4a中可見轉載速度分布有2個峰值,第一個峰值船速為0 m/s,即停船轉載,占比21.0%。第二個峰值在1.2 m/s左右,即航行轉載,捕撈漁船在低速航行的作業(yè)狀態(tài)下完成漁獲物的轉載。以1~1.4 m/s船速進行轉載的占比53.7%,故捕撈漁船在低速航行的作業(yè)狀態(tài)下轉載為主。以小時為單位統(tǒng)計0:00—24:00之間24個時間段(1 h為1個時間段)中轉載頻次的占比,得到23:00—24:00轉載頻次占比接近0,00:00—5:00之間的5個時間段轉載頻次稍低,占比2%~4%,其他時間段轉載頻次稍高,占比4%~5%(圖4b)。統(tǒng)計各月轉載頻次的占比,圖4c中5、6、7月處于禁漁期,故這期間的轉載頻次占比接近0,其他月份的頻次占比位于5%~16%之間。統(tǒng)計28 916次轉載時長的分布結果見圖4d,轉載時長在(5±2.5)min的頻次最高,占比49.0%,轉載時長在(10±2.5)min的頻次占比30.7%,小于12.5 min的轉載占比81.3%。
近海海上漁獲轉載地點基本位于捕撈漁船作業(yè)海域,如低速航行時轉載地點是捕撈漁船正在作業(yè)的位置,停泊轉載地點也在捕撈漁船作業(yè)海域的附近。因此,漁運船的轉載時長可以反映捕撈漁船的作業(yè)強度,轉載地點反映捕撈漁船作業(yè)的空間分布。圖5a顯示了轉載累計時長的空間分布,位于122.5°E~123°E,31.5°N~32°N內的轉載時長最長,為187 h,位于122°E~122.5°E,28°N~28.5°N內的轉載時長次之,為150 h。圖5b中彩色小實心圓點顯示了浙江省2018年808條漁運船28 916次轉載位置的空間分布,紅色至綠色的顏色漸變表示轉載時間1月至12月的變化。根據(jù)4a,捕撈漁船在作業(yè)狀態(tài)下完成轉載的頻次占比53.7%,表明轉載的位置主要在捕撈漁船作業(yè)的位置,轉載時間的長短可作為漁獲物多少的一個衡量指標,漁獲物越多需要轉載的時間越長,故轉載時長的空間分布一定程度上可以反映捕撈強度的分布。
在海上漁運船和捕撈漁船出現(xiàn)持續(xù)一段時間的軌跡重疊(漁運船和捕撈漁船相遇)有很大的概率是正在轉載,且一般漁獲物越多,所需的轉載時間也會越長。本研究基于北斗衛(wèi)星導航系統(tǒng)的高時空分辨率的VMS船位數(shù)據(jù),給出了一個提取漁運船轉載信息的方法。該方法將漁運船航速小于1.5 m/s,與捕撈漁船之間的距離小于50 m,且2條船距離小于50 m的連續(xù)船位記錄大于3條的情況判斷為二者在海上相遇,可能正在轉載。使用到的數(shù)據(jù)包括浙江省2018年1 052條漁運船和7 249條捕撈漁船的北斗船位數(shù)據(jù),獲得了28 916次的漁運船轉載時的經緯度位置、時間、航速、轉載時長等。
需要注意的是,得到的28 916次轉載都是指可能發(fā)生的轉載(漁運船和捕撈漁船會合),雖然無法證實轉運是否真實發(fā)生,但通過分析實際的船位數(shù)據(jù)得到的漁運船和捕撈漁船在海上會合事件是真實發(fā)生的,也是得到漁獲物轉載信息的重要途徑。根據(jù)漁運船轉載時的航速分布可知漁運船轉載狀態(tài)有2種,分別為停船狀態(tài)轉載和以低速航行的作業(yè)狀態(tài)轉載。23:00—5:00轉載頻次較低,其他時間段轉載頻次較高。大部分的轉載時長小于12.5 min。通過統(tǒng)計各漁區(qū)轉載累積時長,得到轉載熱點主要分布在122.5°E~123°E,31.5°N~32°N,和122°E~122.5°E,28°N~28.5°N的漁區(qū)網格內。
為解決數(shù)據(jù)量大,計算慢的問題,將漁運船和捕撈漁船的.csv文件處理成matlab可以直接加載的.mat文件,并且將對漁運船的遍歷設置為并行運行,即程序分為多個線程同時為不同的漁運船查找轉載信息,使得程序運行比直接讀取.csv文件的單線程程序提速了約250倍。通過分析提取到的漁運船轉載特征數(shù)據(jù),不僅可以了解和掌握單個漁運船的轉載量和轉載位置等,還可獲得所有漁運船在各空間網格中的轉載累積時長,獲得轉載熱點分布,了解各漁區(qū)的捕撈強度,為漁業(yè)資源的養(yǎng)護和可持續(xù)利用政策的制定提供實際數(shù)據(jù)的支撐。
[1] Miller N A, Roan A, Hochberg T, et al. Identifying global patterns of transshipment behavior[J]. Frontiers in Marine Science, 2018, 5(240): 1-9.
[2] Telesetsky A. Laundering fish in the global undercurrents: illegal, unreported, and unregulated fishing and transnational organized crime[J]. Ecology Law Quarterly, 2014, 41(4): 939-997.
[3] Ewell C, Cullis-Suzuki S, Ediger M, et al. Potential ecological and social benefits of a moratorium on transshipment on the high seas[J]. Marine Policy, 2017, 81: 293-300.
[4] Dunn D C, Jablonicky C, Crespo G O, et al. Empowering high seas governance with satellite vessel tracking data[J]. Fish and Fisheries, 2018, 19: 729-739.
[5] Russo T, D'Andrea L, Parisi A, et al. Assessing the fishing footprint using data integrated from different tracking devices: Issues and opportunities[J]. Ecological Indicators, 2016, 69: 818-827.
[6] Marzuki M I, Gaspar P, Garello R, et al. Fishing gear identification from vessel-monitoring-system-based fishing vessel trajectories[J]. IEEE Journal of Oceanic Engineering. 2017, 43(3): 689-699.
[7] Souza E N, Boerder K, Matwin S, et al. Improving fishing pattern detection from satellite AIS using data mining and machine learning[J]. Plos One. 2016, 11(7): e0158248.
[8] Gascuel D. Identifying fishing trip behaviour and estimating fishing effort from VMS data using Bayesian Hidden Markov Models[J]. Ecological Modelling, 2010, 221(15): 1757-1769.
[9] 楊勝龍,張勝茂,周為峰,等. 采用AIS計算中西太平洋延繩釣漁船捕撈努力量[J]. 農業(yè)工程學報,2020,36(3):198-203.
Yang Shenglong, Zhang Shengmao, Zhou Weifeng, et al. Calculating the fishing effort of longline fishing vessel in the western and central pacific ocean using AIS[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(3): 198-203. (in Chinese with English abstract)
[10] Russo T, Parisi A, Prorgi M, et al. When behaviour reveals activity: Assigning fishing effort to métiers based on VMS data using artificial neural networks[J]. Fisheries Research, 2011, 111(6): 53-64.
[11] Natale F, Gibin M, Alessandrini A, et al. Mapping fishing effort through AIS data[J]. Plos One. 2015, 10(6): e0130746.
[12] Janette L, South A B, Simon J. Developing reliable, repeatable, and accessible methods to provide high-resolution estimates of fishing-effort distributions from vessel monitoring system (VMS) data[J]. Ices Journal of Marine Science. 2010, 67(6): 1260-1271.
[13] Kroodsma D A, Mayorga J, Hochberg T, et al. Tracking the global footprint of fisheries[J]. Science. 2018, 359(6378): 904-908.
[14] Kristina B, Miller N A, Boris W, et al. Global hot spots of transshipment of fish catch at sea[J]. Science Advances. 2018, 4(7): eaat7159. doi: 10.1126/sciadv.aat7159.
[15] Seto K, Miller N, Young M, et al. Toward transparent governance of transboundary fisheries: The case of Pacific tuna transshipment[J]. Marine Policy. 2020: 104200
[16] 崔秀芳,黃新勝,王世明,等. 漁船監(jiān)控系統(tǒng)(VMS)設計[J]. 漁業(yè)現(xiàn)代化,2010,37(1):67-69.
Cui Xiufang, Huang Xingsheng, Wang Shiming, et al. Research on vessel monitoring system (VMS)[J]. Fishery Modernization, 2010, 37(1): 67-69. (in Chinese with English abstract)
[17] 郝金明,劉偉平,楊力,等. 北斗衛(wèi)星導航系統(tǒng)精密定軌技術研究現(xiàn)狀[J]. 測繪科學技術學報,2015,32(3):221-225.
Hao Jinming, Liu Weiping, Yang Li, et al. Status of precise orbit determination of Beidou navigation satellite system[J]. Journal of Geomatics Science and Technology, 2015, 32(3): 221-225. (in Chinese with English abstract)
[18] 郭剛剛,樊偉,張勝茂,等. 船位監(jiān)控系統(tǒng)數(shù)據(jù)挖掘與應用研究進展[J]. 海洋漁業(yè),2016,38(2):217-224.
Guo Ganggang, Fan Wei, Zhang Shengmao, et al. Advances in mining and application of vessel monitoring system data[J]. Marine Fisheries,2016, 38(2): 217-224. (in Chinese with English abstract)
[19] 薛嘉倫. 基于北斗船位數(shù)據(jù)的浙江省近海漁船航次分析與漁船編隊調度方案研究[D]. 上海:上海海洋大學,2018.
Xue Jialun. Analysis of Voyage Analysis and Fleet Scheduling Scheme of Zhejiang Province Fishing Boats Based on the Beidou Ship's Position Data[D]. Shanghai: Shanghai Ocean University, 2018. (in Chinese with English abstract)
[20] Chang S K, Liu K Y, Song Y H. Distant water fisheries development and vessel monitoring system implementation in taiwan-history and driving forces[J]. Marine Policy, 2010, 34(3): 541-548.
[21] Huang Haiguang, Hong Feng, Liu Jing, et al. FVID: Fishing vessel type identification based on VMS trajectories[J]. Journal of Ocean University of China, 2019, 18(2): 403-412.
[22] Wang Y, Wang Y B, Zheng J. Analyses of trawling track and fishing activity based on the data of vessel monitoring system (VMS):A case study of the single otter trawl vessels in the Zhoushan fishing ground[J]. Journal of Ocean University of China, 2015, 14(1): 89-96.
[23] 張榮瀚,張勝茂,陳雪忠,等. 基于北斗船位數(shù)據(jù)的流刺網網次和方向提取方法研究[J]. 海洋漁業(yè),2019,41(2):169-178.
Zhang Ronghan, Zhang Shengmao, Chen Xuezhong, et al. Research on extract floating gill net hauls and direction on Beidou data[J]. Marine Fisheries, 2019, 41(2): 169-178. (in Chinese with English abstract)
[24] 張勝茂,崔雪森,伍玉梅,等. 基于北斗衛(wèi)星船位數(shù)據(jù)分析象山拖網捕撈時空特征[J]. 農業(yè)工程學報,2015,31(7):151-156.
Zhang Shengmao, Cui Xuesen, Wu Yumei, et al. Analyzing space-time characteristics of Xiangshan trawling based on Beidou vessel monitoring system data[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(7): 151-156. (in Chinese with English abstract)
[25] 耿家利. 漁船軌跡大數(shù)據(jù)存儲優(yōu)化與行為識別技術研究[D]. 杭州:杭州電子科技大學,2018.
Geng Jiali. Research on Storage Optimization and Fishing Behavior Identification Technology of Vessel Trajectory[D]. Hangzhou:Hangzhou Dianzi University, 2018. (in Chinese with English abstract)
[26] 范秀梅,張勝茂,楊勝龍,等. 浙江省近海海洋捕撈漁船異地??啃畔⑻崛∨c分析[J]. 農業(yè)工程學報,2020,36(11):203-209.
Fan Xiumei, Zhang Shengmao, Yang Shenglong, et al. Extraction and analysis of off-site docking information of offshore fishing vessels in Zhejiang Province of China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(11): 203-209. (in Chinese with English abstract)
[27] 林吉兆,賈登科,武警. CGCS2000及WGS84坐標系若干問題探討及應對策略[J]. 水運工程,2014(2):27-30.
Lin Jizhao, Jia Dengke, Wu jing. Discussion and strategies about CGCS 2000 and WGS84 coordinate system[J]. Port & Waterway Engineering, 2014(2): 27-30. (in Chinese with English abstract)
[28] 劉曉. 面向高德地圖的自然語言接口語義解析系統(tǒng)設計與實現(xiàn)[D]. 南京:南京師范大學,2015.
Liu Xiao. The Design and Implementation of Natural Language Interface for Highmoralmap Via Semantic Parsing[D]. Nanjing: Nanjing Normal University, 2015. (in Chinese with English abstract)
Extraction of transshipment information of offshore fish carrier vessels in Zhejiang Province of China
Fan Xiumei, Zhang Shengmao※, Cui Xuesen, Yang Shenglong
(Key Laboratory of Fisheries Remote Sensing and Information Technology, East China Sea Fisheries Research Institute, Academy of Fisheries Science, Shanghai 200090, China)
Fish carrier vessels are engaged in the transportation of catch for high efficiency and effort of vessels, as fishing intensity redoubles in recent years. This study aims to extract the characteristic data in the transshipment of fish carrier vessels at sea in Zhengjiang Province of China, and then indirectly determine the fishing intensity of vessels. Beidou Vessel Monitoring System (VMS) position signals were also used to set the threshold of speed, distance, and time during extraction. If the distance between fish carrier and fishing vessel at sea was less than 50 m, and the duration was longer than 3 VMS position records, the system assumed that a transshipment event possibly happened, where the duration of the encounter, the names of vessels, and the spatial location were also recorded in real time. As such, the possible transshipment events were identified using the Beidou VMS position data in 2018, and then statistical analysis was also made for verification. It was found that there were 28 916 transshipment events between 808 fish carriers and 3 548 fishing vessels. Specifically, 21.0% of transshipment events happened, when the fish carrier vessels were stopped, whereas, 53.7% of transshipment events happened when the fish carrier vessels were sailing at a low speed between 1-1.4 m/s. The transshipment events with a duration of less than 12.5 min accounted for 81.3% of the total. Furthermore, the distribution of hot spots was finally obtained for the transshipment of fish carrier vessels. Additionally, the longest cumulative duration of transshipment was 187 hours at the space grid of 122.5-123°E and 31.5-32°N, followed by 150 h at the space grid of 122-122.5°E and 28-28.5°N. Consequently, it is widely expected to analyze the spatial distribution and the cumulative duration of transshipment events at sea, thereby clarifying the temporal and spatial changes in fishing vessel efforts.
fish vessel; fisheries; Beidou navigation satellite system; ship monitoring system; transshipment
范秀梅,張勝茂,崔雪森,等. 浙江省近海漁運船轉載信息提取[J]. 農業(yè)工程學報,2021,37(13):128-134.
10.11975/j.issn.1002-6819.2021.13.015 http://www.tcsae.org
Fan Xiumei, Zhang Shengmao, Cui Xuesen, et al. Extraction of transshipment information of offshore fish carrier vessels in Zhejiang Province of China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(13): 128-134. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.13.015 http://www.tcsae.org
2021-01-20
2021-06-30
國家重點研發(fā)計劃(2019YFD0901405);國家自然科學基金項目(31772899);浙江省海洋漁業(yè)資源可持續(xù)利用技術研究重點實驗室開放課題(2020KF001);WWF/OPF蔚藍星球基金項目(P04593)
范秀梅,助理研究員,研究方向為漁業(yè)數(shù)據(jù)挖掘。Email:fxm1fxm@163.com
張勝茂,博士,副研究員,研究方向為漁業(yè)數(shù)據(jù)挖掘、遙感與地理信息。Email:ryshengmao@126.com
10.11975/j.issn.1002-6819.2021.13.015
S975
A
1002-6819(2021)-13-0128-07