趙秀芝,徐群和,林 燁
(浙江工貿(mào)職業(yè)技術(shù)職業(yè)學(xué)院,浙江 溫州 325000)
煤礦井下開采在獲取煤炭資源的同時(shí)會(huì)釋放大量甲烷等有害氣體,礦井通風(fēng)機(jī)是揮發(fā)、稀釋井下有害氣體的重要設(shè)備,風(fēng)機(jī)的有效運(yùn)行是維持井下工作人員的重要保障。然而,風(fēng)機(jī)設(shè)備在長(zhǎng)時(shí)間、滿負(fù)荷工作的情況下,其電機(jī)、機(jī)殼、轉(zhuǎn)子、葉輪都有可能受到不同程度的腐蝕,通過人工手段來排查風(fēng)機(jī)故障雖然具有較高的準(zhǔn)確性,但難以保證實(shí)時(shí)性[1-3]。因此,越來越多的煤礦生產(chǎn)單位開始將計(jì)算機(jī)、傳感器以及各種信息技術(shù)應(yīng)用于礦井通風(fēng)機(jī)設(shè)備的故障工作。為了進(jìn)一步提升故障排查系統(tǒng)對(duì)于礦井通風(fēng)機(jī)故障的敏感性,楊鮮等[4]通過多傳感器系統(tǒng)來實(shí)時(shí)診斷礦井通風(fēng)機(jī)故障,通過支持向量機(jī)來歸納故障類型,有效解決了風(fēng)機(jī)功率信號(hào)無法充分診斷機(jī)械傳動(dòng)鏈中機(jī)械故障的問題。安留記等[5]在分析礦井通風(fēng)機(jī)齒輪裂紋故障時(shí),在輸入軸和輸出軸編碼器的編程中引入了集成經(jīng)驗(yàn)?zāi)B(tài)分解理論,在傳動(dòng)誤差中提取噪聲數(shù)據(jù)中的故障特征,進(jìn)而對(duì)齒輪裂紋故障實(shí)施精確識(shí)別。此次研究基于加速度傳感器、數(shù)據(jù)采集卡、聲音與振動(dòng)輸入模塊等硬件設(shè)備建立了一套礦井主要通風(fēng)機(jī)設(shè)備的故障排查系統(tǒng),系統(tǒng)布設(shè)快捷,可以為礦井通風(fēng)機(jī)的穩(wěn)定運(yùn)行提供新的可行性策略。
該故障可分為軸承不對(duì)中和軸系不對(duì)中2種,其中軸承不對(duì)中指軸承內(nèi)軸徑發(fā)生偏斜,具體表現(xiàn)為轉(zhuǎn)子間的平行不對(duì)中;軸系不對(duì)中指軸承內(nèi)轉(zhuǎn)子之間不在同一直線上,具體表現(xiàn)為平行不對(duì)中。當(dāng)煤礦主要通風(fēng)機(jī)軸承內(nèi)同時(shí)存在以上兩項(xiàng)問題時(shí)則表現(xiàn)為綜合不對(duì)中現(xiàn)象[6-9]。轉(zhuǎn)子不對(duì)中故障的具體表現(xiàn)形式如圖1所示。
圖1 轉(zhuǎn)子不對(duì)中的表現(xiàn)形式Fig.1 Manifestation of rotor misalignment
轉(zhuǎn)子不對(duì)中故障特征歸納結(jié)果如下:振動(dòng)隨油溫變化明顯;振動(dòng)不隨流量變化;振動(dòng)方向?yàn)閺较蚝洼S向;常伴頻率為1倍頻和高倍頻;特征頻率為2倍頻。
該故障可分為轉(zhuǎn)子部件缺損與轉(zhuǎn)子質(zhì)量偏心2種,轉(zhuǎn)子不平衡容易使轉(zhuǎn)子因內(nèi)應(yīng)力而發(fā)生彎曲,加劇軸承磨損并引起轉(zhuǎn)子疲勞,縮短軸承使用壽命。轉(zhuǎn)子部件缺損是指風(fēng)機(jī)在長(zhǎng)期使用情況下因沖蝕、磨損所產(chǎn)生的疲勞與結(jié)垢現(xiàn)象,若未經(jīng)及時(shí)處理可能會(huì)導(dǎo)致局部構(gòu)件脫落或損壞問題[10-12]。轉(zhuǎn)子不平衡的力學(xué)模型如圖2所示。
圖2 轉(zhuǎn)子不平衡力學(xué)模型Fig.2 Rotor imbalance mechanics model
設(shè)軸承撓度為a,偏心距為e,偏心質(zhì)量集中在點(diǎn)G,偏心的質(zhì)量為m,設(shè)轉(zhuǎn)子質(zhì)量為M,則離心力矢量為F=Meω2。那么在轉(zhuǎn)子存在偏心質(zhì)量的情況下,軸心O′的運(yùn)動(dòng)微分方程可表示為:
(1)
在轉(zhuǎn)子存在振動(dòng)異常的情況下,相位差ψ與振幅|A|可通過如下公式表示:
(2)
(3)
式(2)與式(3)中,在轉(zhuǎn)動(dòng)角速度與固有頻率的比值ω/ωn發(fā)生變化的過程中,相位差ψ與振幅|A|也會(huì)隨之發(fā)生改變[13-15]。
轉(zhuǎn)子不平衡故障特征歸納結(jié)果如下:振動(dòng)不隨油溫、流量變化;振動(dòng)方向?yàn)閺较?;常伴頻率為2倍頻和3倍頻;特征頻率為1倍頻。
分析可知,轉(zhuǎn)子不平衡故障下,諧波能量主要體現(xiàn)在基頻部分,且振動(dòng)的時(shí)域波形近似為正弦波。在ω<ωn的情況下,ω的增加會(huì)引起振幅的增加;在ω>ωn的情況下,振幅趨近一較小的定值;在ω與ωn大小接近的情況下,振幅有最大尖峰,且會(huì)產(chǎn)生共振,在旋轉(zhuǎn)速度較低的情況下,振幅也會(huì)顯著增加,當(dāng)轉(zhuǎn)子部件受損時(shí),振幅也會(huì)明顯增大。
煤礦主要通風(fēng)機(jī)故障診斷系統(tǒng)主要由傳感器、數(shù)據(jù)采集卡、聲音與振動(dòng)輸入模塊所組成,系統(tǒng)整體運(yùn)行流程如圖3所示。
診斷系統(tǒng)中的傳感器元件包括溫度傳感器與振動(dòng)傳感器,傳感器將所采集到的模擬量信號(hào)上傳至數(shù)據(jù)采集卡,由數(shù)據(jù)采集卡將模擬量信號(hào)轉(zhuǎn)換為數(shù)據(jù)信號(hào)并由計(jì)算機(jī)進(jìn)行數(shù)據(jù)分析,最終得到圖像化的數(shù)據(jù)分析結(jié)果。與此同時(shí),將分析結(jié)果上傳至子數(shù)據(jù)庫(kù),并對(duì)數(shù)據(jù)信息進(jìn)行記錄并劃分故障等級(jí),必要情況下發(fā)出故障報(bào)警[16-18]。
圖3 煤礦主要通風(fēng)機(jī)故障診斷系統(tǒng)工作流程Fig.3 Work process of fault diagnosis system for main fans in coal mine
礦井采用Y112M-4型礦用主要通風(fēng)機(jī),模擬實(shí)驗(yàn)整體狀況如圖4所示。
圖4 通風(fēng)機(jī)模擬實(shí)驗(yàn)臺(tái)現(xiàn)場(chǎng)連接Fig.4 Field connection of fan simulation test bench
通風(fēng)機(jī)驅(qū)動(dòng)電機(jī)參數(shù):電機(jī)型號(hào)Y112M-4;額定電流8.8 A;額定電壓380 V;功率4 kW;額定頻率50 Hz;額定轉(zhuǎn)速1 440 r/min。
實(shí)驗(yàn)通風(fēng)機(jī)實(shí)物圖及數(shù)據(jù)采集卡連接如圖5所示。
圖5 實(shí)驗(yàn)通風(fēng)機(jī)實(shí)物圖及數(shù)據(jù)采集卡連接Fig.5 Physical map of the experimental fan and the connection of the data acquisition card
在實(shí)驗(yàn)操作過程中,首先需要于風(fēng)機(jī)后方的攔網(wǎng)引出傳感器的數(shù)據(jù)線,與至數(shù)據(jù)采集卡的振動(dòng)信號(hào)采集模塊相連接,計(jì)算機(jī)通過網(wǎng)絡(luò)與數(shù)據(jù)采集卡連接,進(jìn)而實(shí)現(xiàn)對(duì)通風(fēng)機(jī)的監(jiān)測(cè)。
研究采用YD-186型壓電式振動(dòng)傳感器。分別在變速箱和軸承位置安裝2臺(tái)壓電式振動(dòng)傳感器,由于電機(jī)軸伸端處的軸承上的振動(dòng)信號(hào)可以反映設(shè)備振動(dòng)狀況,在電機(jī)軸伸端的軸承座上同樣設(shè)1臺(tái)壓電式振動(dòng)傳感器[19]。
YD-186型壓電式振動(dòng)傳感器主要參數(shù):靈敏度100 mV/g;頻率響應(yīng)0.5~6 000 Hz;測(cè)量范圍(峰值)±50g;工作電流為+2~+10 mA;供電電源為±18~±28 VDC。
采用cDAQ-9189數(shù)據(jù)采集卡采集來自傳感器的實(shí)驗(yàn)數(shù)據(jù),文件元件本質(zhì)上是一款以TSN以太網(wǎng)為通信基礎(chǔ)的CompactDAQ機(jī)箱,可控制外部主機(jī)與C系列的I/O模塊之間的定時(shí)或同步數(shù)據(jù)傳輸,共設(shè)置有8個(gè)槽位,具有同步時(shí)序、體積小巧等方面的優(yōu)勢(shì),適用于針對(duì)礦井通風(fēng)機(jī)設(shè)備的故障排查工作[20-21]。
在完成風(fēng)機(jī)模擬實(shí)驗(yàn)臺(tái)的組裝工作后,打開計(jì)算機(jī)、傳感器與數(shù)據(jù)采集卡等各種系統(tǒng)設(shè)備,啟動(dòng)風(fēng)機(jī)。經(jīng)過一段時(shí)間的運(yùn)行后,系統(tǒng)認(rèn)定風(fēng)機(jī)工作正常,分析結(jié)果如圖6所示。
圖6 通風(fēng)機(jī)正常運(yùn)行狀態(tài)下的故障排查系統(tǒng)檢測(cè)結(jié)果Fig.6 Test results of the troubleshooting system under the normal operation of the fan
根據(jù)圖6可知,在通風(fēng)機(jī)啟動(dòng)的瞬間,由于受到強(qiáng)烈的電流脈沖作用,通風(fēng)機(jī)振幅激增,但隨后轉(zhuǎn)為平緩,說明通風(fēng)機(jī)處于正常運(yùn)行狀態(tài)。
為了分析礦井通風(fēng)機(jī)設(shè)備故障排查系統(tǒng)的有效性,人為對(duì)通風(fēng)機(jī)制造碰摩故障,破壞結(jié)果如圖7所示。在葉尖的葉片邊緣位置用鐵絲制造碰摩故障,在存在局部碰摩故障的情況下,靜止件與轉(zhuǎn)子發(fā)生接觸時(shí)會(huì)瞬間增加轉(zhuǎn)子剛度,在受到反彈應(yīng)力的情況下轉(zhuǎn)子剛度又會(huì)瞬間下降。這種轉(zhuǎn)子剛度的變化會(huì)直接體現(xiàn)在軸承振幅上,轉(zhuǎn)子剛度的每一次劇烈變化都會(huì)引起振幅的激變,而這種變化又會(huì)隨著轉(zhuǎn)子的轉(zhuǎn)動(dòng)呈現(xiàn)出周期性特點(diǎn)。在模擬制造通風(fēng)機(jī)碰摩故障的情況下,故障排查系統(tǒng)所給出的檢測(cè)結(jié)果如圖8所示。
圖7 模擬制造碰摩故障Fig.7 Simulate manufacturing rubbing faults
圖8 通風(fēng)機(jī)碰摩故障狀態(tài)下的故障排查系統(tǒng)檢測(cè)結(jié)果Fig.8 Test results of the troubleshooting system under the condition of wind turbine rubbing fault
研究針對(duì)位于山西省東北部的焦家寒煤礦通風(fēng)機(jī)進(jìn)行現(xiàn)場(chǎng)檢測(cè),該礦井所使用的通風(fēng)機(jī)外部形貌如圖9所示。
圖9 焦家寒煤礦通風(fēng)機(jī)設(shè)備外部形貌Fig.9 External appearance of fan equipment in Jiaojiahan Coal Mine
焦家寒煤礦選用FBCD型煤礦用抽出式通風(fēng)機(jī),通過礦井通風(fēng)機(jī)設(shè)備故障排查系統(tǒng)進(jìn)行檢測(cè),所得檢測(cè)結(jié)果如圖10所示。根據(jù)圖10所示的故障排查結(jié)果可知,該通風(fēng)機(jī)在啟動(dòng)瞬間出現(xiàn)1次振幅驟升之后,其振幅并未保持平衡,多次上升至0.001 5g的警戒值以上,說明該通風(fēng)機(jī)存在故障。
圖10 焦家寒煤礦通風(fēng)機(jī)故障排查結(jié)果Fig.10 Troubleshoot results of fans in Jiaojiahan Coal Mine
為了證明檢測(cè)結(jié)果的準(zhǔn)確性,現(xiàn)場(chǎng)工作人員將風(fēng)機(jī)內(nèi)芯設(shè)備轉(zhuǎn)移至附近機(jī)房進(jìn)行檢查,發(fā)現(xiàn)該設(shè)備存在一定程度的偏心故障。具體情況如圖11所示。
圖11 通風(fēng)機(jī)故障位置近照Fig.11 Recent photos of the fault location of the ventilator equipment
本文詳細(xì)介紹了礦井通風(fēng)機(jī)故障排查系統(tǒng)的設(shè)計(jì)思路,針對(duì)礦井通風(fēng)機(jī)普遍存在的一般故障設(shè)計(jì)了故障排查系統(tǒng)的硬件組建方案,提出了風(fēng)機(jī)設(shè)備故障排查的基本流程。經(jīng)實(shí)驗(yàn)研究發(fā)現(xiàn),研究所設(shè)計(jì)的礦井通風(fēng)機(jī)故障排查系統(tǒng)能夠及時(shí)、準(zhǔn)確地識(shí)別風(fēng)機(jī)運(yùn)行狀態(tài),直觀展示風(fēng)機(jī)故障排查結(jié)果,為井下施工安全提供更加有效的保障。
參考文獻(xiàn)(References):
[1] 王志浩,史文軒,丁磊,等.雙饋風(fēng)機(jī)故障穿越期間轉(zhuǎn)速波動(dòng)特性分析及其抑制方法[J/OL].電網(wǎng)技術(shù):1-9[2021-03-02].https://doi.org/10.13335/j.1000-3673.pst.2020.2070.
Wang Zhihao,Shi Wenxuan,Ding Lei,et al.Analysis of speed fluctuation characteristics of DFIG during fault ride through and its suppression method[J/OL].Power System Technology:1-9[2021-03-02] https://doi.org/10.13335/j.1000-3673.pst.2020.2070.
[2] 普云偉,方瑞萍,肖智斌,等.卷煙制絲線異味處理系統(tǒng)增配風(fēng)機(jī)電機(jī)燒毀原因研究[J].中國(guó)設(shè)備工程,2021(3):96-97.
Pu Yunwei,F(xiàn)ang Ruiping,Xiao Zhibin,et al.Study on the cause of motor burnout of additional fan in odor treatment system of cigarette making line[J].China Plant Engineering,2021(3):96-97.
[3] 夏候凱順,李波.基于深度置信網(wǎng)絡(luò)的雙饋風(fēng)機(jī)變換器開路故障診斷[J].電力工程技術(shù),2021,40(1):188-194.
Xiahou Kaishun,Li Bo.Open circuit fault diagnosis of doubly fed fan converter based on deep confidence network[J].Electric Power Engineering Technology,2021,40(1):188-194.
[4] 楊鮮,趙計(jì)生,強(qiáng)保華,等.基于改進(jìn)的BSMOTE和時(shí)序特征的風(fēng)機(jī)故障采樣算法BSMOTE-Sequence[J/OL].計(jì)算機(jī)應(yīng)用:1-8[2021-03-02].http://kns.cnki.net/kcms/detail/51.1307.TP.20210122.1515.006.html.
Yang Xian,Zhao Jisheng,Qiang Baohua,et al.Fan fault sampling algorithm based on improved BSMOTE and time series characteristics BSMOTE sequence[J/OL].Journal of Computer Applications:1-8[2021-03-02] http://kns.cnki.net/kcms/detail/51.1307.TP.20210122.1515.006.html.
[5] 安留記,李超,李軍鴻.ANN型液壓動(dòng)葉在線可調(diào)軸流式風(fēng)機(jī)在煤礦的應(yīng)用[J].中州煤炭,2008(5):72-74.
An Liuji,Li Chao,Li Junhong.Application of ANN hydraulic moving blade online adjustable axial fan in coal mine[J].Zhongzhou Coal,2008(5):72-74.
[6] 盧錦玲,張祥國(guó),張偉,等.基于改進(jìn)輔助分類生成對(duì)抗網(wǎng)絡(luò)的風(fēng)機(jī)主軸承故障診斷[J/OL].電力系統(tǒng)自動(dòng)化:1-10[2021-03-02].http://kns.cnki.net/kcms/detail/32.1180.TP.20210104.1200.016.html.
Lu Jinling,Zhang Xiangguo,Zhang Wei,et al.Fault diagnosis of main bearing of wind turbine based on improved auxiliary classification generation antagonism network[J/OL].Automation of Electric Power Systems:1-10[2021-03-02] http://kns.cnki.net/kcms/detail/32.1180.TP.20210104.1200.016.html.
[7] 傅曉軍,吳豪,劉暢.某型風(fēng)機(jī)變流器IGBT模塊故障的應(yīng)急處理方法探討[J].現(xiàn)代工業(yè)經(jīng)濟(jì)和信息化,2020,10(12):152-154.
Fu Xiaojun,Wu Hao,Liu Chang.Discussion on emergency treatment method for IGBT module fault of a wind turbine converter[J].Modern Industrial Economy and Informationization,2020,10(12):152-154.
[8] 鄭坤鵬,丁云飛.基于WOA-LSSVM算法的風(fēng)機(jī)齒輪箱故障診斷[J].上海電機(jī)學(xué)院學(xué)報(bào),2020,23(6):317-322.
Zheng Kunpeng,Ding Yunfei.Fault diagnosis of fan gearbox based on WOA-LSSVM algorithm[J].Journal of Shanghai Dianji University,2020,23(6):317-322.
[9] 王挺韶,季天瑤,姜雨滋,等.基于降噪自動(dòng)編碼器與一維卷積網(wǎng)絡(luò)的風(fēng)機(jī)故障診斷方法[J/OL].電測(cè)與儀表:1-9[2021-03-02].http://kns.cnki.net/kcms/detail/23.1202.TH.20201222.1503.009.html.
Wang Tingshao,Ji Tianyao,Jiang Yuzi,et al.Fan fault diagnosis method based on noise reduction automatic encoder and one-dimensional convolution network[J/OL].Electrical Measurement & Instrumentation:1-9[2021-03-02] http://kns.cnki.net/kcms/detail/23.1202.TH.20201222.1503.009.html.
[10] 馬天霆,孫振波,鄧敏強(qiáng),等.基于RSBLMD算法的風(fēng)機(jī)滾動(dòng)軸承早期故障診斷[J].動(dòng)力工程學(xué)報(bào),2020,40(12):982-987.
Ma Tianting,Sun Zhenbo,Deng Minqiang,et al.Early fault diagnosis of fan rolling bearing based on RSBLMD algorithm[J].Journal of Chinese Society of Power Engineering,2020,40(12):982-987.
[11] 姜佳輝,包永強(qiáng),邵琪.基于VMD-FHT的風(fēng)機(jī)齒輪箱故障特征提取方法[J].機(jī)床與液壓,2020,48(23):202-207.
Jiang Jiahui,Bao Yongqiang,Shao Qi.Fault feature extraction method of fan gearbox based on VMD-FHT[J].Machine Tool & Hydraulics,2020,48(23):202-207.
[12] 秦建勇.動(dòng)葉可調(diào)軸流式風(fēng)機(jī)調(diào)節(jié)故障原因分析及措施[J].工程建設(shè)與設(shè)計(jì),2020(22):50-52.
Qin Jianyong.Cause analysis and measures for regulating failure of adjustable blade axial flow fan[J].Construction & Design for Engineering,2020(22):50-52.
[13] 蘆曉明,陳文勇.基于在線BP神經(jīng)網(wǎng)絡(luò)的制冷系統(tǒng)風(fēng)機(jī)故障識(shí)別[J].制冷與空調(diào),2020,20(11):22-27.
Lu Xiaoming,Chen Wenyong.Fan fault identification of refrigeration system based on online BP neural network[J].Refrigeration and Air-Conditioning,2020,20(11):22-27.
[14] 張?jiān)拢]瑞.基于SCADA數(shù)據(jù)的風(fēng)機(jī)故障診斷算法預(yù)測(cè)研究[J].中國(guó)新技術(shù)新產(chǎn)品,2020(22):1-3.
Zhang Yue,Dou Rui.Wind turbine fault diagnosis algorithm prediction based on SCADA data[J].China New Technologies and New Products,2020(22):1-3.
[15] 秦繼朔,賈科,孔繁哲,等.基于尋優(yōu)算法的永磁風(fēng)機(jī)并網(wǎng)逆變器故障穿越控制參數(shù)分步辨識(shí)[J/OL].中國(guó)電機(jī)工程學(xué)報(bào):1-13[2021-03-02].http://kns.cnki.net/kcms/detail/11.2107.TM.20201112.1424.003.html.
Qin Jishuo,Jia Ke,Kong Fanzhe,et al.Step by step identification of fault ride through control parameters of grid connected permanent magnet fan inverter based on optimization algorithm[J/OL].Proceedings of the CSEE:1-13[2021-03-02] http://kns.cnki.net/kcms/detail/11.2107.TM.20201112.1424.003.html.
[16] 郭金鍵,劉文廣,王冬冬,等.融合VMD和MCKD的煉鋼廠除塵風(fēng)機(jī)滾動(dòng)軸承故障診斷[J].內(nèi)蒙古科技與經(jīng)濟(jì),2020(18):100-101.
Guo Jinjian,Liu Wenguang,Wang Dongdong,et al.Rolling bearing fault diagnosis of dedusting fan in steelmaking plant integrating VMD and MCKD[J].Inner Mongolia Science Technology & Economy,2020(18):100-101.
[17] 傅成豪,潘庭龍.基于改進(jìn)閾值的風(fēng)機(jī)齒輪箱故障信號(hào)小波去噪方法研究[J].可再生能源,2020,38(9):1197-1202.
Fu Chenghao,Pan Tinglong.Research on wavelet denoising method for fault signal of fan gearbox based on improved threshold[J].Renewable Energy Resources,2020,38(9):1197-1202.
[18] 王璨,佘玉龍.電網(wǎng)電壓驟降故障時(shí)雙饋風(fēng)機(jī)虛擬阻抗改進(jìn)控制技術(shù)[J].電機(jī)與控制應(yīng)用,2020,47(9):91-96.
Wang Can,She Yulong.Improved control technology for virtual impedance of doubly fed fan in case of grid voltage sag fault[J].Electric Machines & Control Application,2020,47(9):91-96.
[19] 姬紅.城軌車輛空調(diào)通風(fēng)系統(tǒng)輻流風(fēng)機(jī)故障分析及處理[J].內(nèi)江科技,2020,41(8):26-27.
Ji Hong.Failure analysis and treatment of amplitude fan in air conditioning and ventilation system of urban rail vehicles[J].Nei Jiang Science Technology,2020,41(8):26-27.
[20] 孫永濤,李子賢,秦波.VMD和MCKD在風(fēng)機(jī)軸承故障辨識(shí)中的應(yīng)用研究[J].包鋼科技,2020,46(4):70-73.
Sun Yongtao,Li Zixian,Qin Bo.Application of VMD and MCKD in fan bearing fault identification[J].Science & Technology of Baotou Steel,2020,46(4):70-73.
[21] 桂峻浩,黃友鶴,巨明偉.井下局部通風(fēng)機(jī)集中控制與管理系統(tǒng)優(yōu)化[J].煤炭科技,2019,40(1):21-23.
Gui Junhao,Huang Youhe,Ju Mingwei.Optimization of centralized control and management system for underground part ventilation[J].Coal Science & Technology Magazine,2019,40(1):21-23.