薛保珊 張峰峰 閆曉劍 陳軍
摘 要:椎弓根釘置釘虛擬手術(shù)仿真訓(xùn)練系統(tǒng)均有著計(jì)算復(fù)雜度高、視覺和觸覺刷新率低、操作性差的問題進(jìn)而導(dǎo)致手術(shù)訓(xùn)練效果差。針對(duì)該問題搭建了一套基于Graphic Processing Unit(GPU)加速的椎弓根釘置入虛擬手術(shù)仿真系統(tǒng)。首先通過使用混合數(shù)據(jù)模型實(shí)現(xiàn)對(duì)脊柱的三維重建;其次利用碰撞檢測(cè)、力反饋計(jì)算和體素消除等技術(shù)完成手術(shù)虛擬仿真系統(tǒng)的搭建;最后將GPU的并行處理框架應(yīng)用于系統(tǒng)仿真模擬中,提高系統(tǒng)的實(shí)時(shí)性。對(duì)比實(shí)驗(yàn)結(jié)果表明:在未經(jīng)GPU加速虛擬仿真系統(tǒng)中,視覺刷新率為10Hz左右,觸覺刷新率為50Hz左右,采用GPU加速技術(shù),視覺刷新率基本穩(wěn)定在80Hz左右,提升了70%,觸覺刷新率達(dá)到600Hz左右,性能得到極大的提升,即使用GPU加速的虛擬手術(shù)系統(tǒng)能夠大大縮短觸覺線程與視覺線程的計(jì)算時(shí)間,提高刷新率,進(jìn)而提高系統(tǒng)的可操作性。
關(guān)鍵詞:虛擬現(xiàn)實(shí);三維重建;鉆骨手術(shù);GPU加速;MC算法
DOI:10.15938/j.jhust.2021.04.017
中圖分類號(hào):TP391.9
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1007-2683(2021)04-0125-07
Abstract:The virtual surgery simulation training system of pedicle screw placement has the problems of high computational difficulty, low visual and tactile refresh rate and poor operability, which leads to poor effect of surgical training. In order to solve this problem, a virtual surgery simulation system of pedicle screw placement based on Graphic Processing Unit(GPU) acceleration is built in this paper. Firstly, the hybrid data model is used to reconstruct the spine. Secondly, collision detection, force feedback calculation and voxel elimination are used to build the virtual simulation system. Finally, the parallel processing framework of GPU is applied to the system simulation to improve the real-time performance of the system. The results of comparative experiments show that:In the conventional virtual simulation system, the visual refresh rate is about 10Hz, and the tactile refresh rate is about 50Hz. In this paper, GPU acceleration technology is used, the visual refresh rate is basically stable at 80Hz, which is increased by 70%, and the tactile refresh rate is about 600Hz, which greatly improves the performance, In other words, GPU accelerated virtual surgery system can greatly shorten the computing time of tactile and visual threads, improve the refresh rate, and then improve the operability of the system.
Keywords:virtual reality; three-dimensional reconstruction; bone drilling; GPU acceleration; MC algorithm
0 引 言
人口老齡化趨勢(shì)加深、物質(zhì)水平不斷提升,人民的醫(yī)療需求也越來越多,醫(yī)療技術(shù)水平也逐步提高。虛擬手術(shù)仿真[1]是臨床醫(yī)學(xué)領(lǐng)域的一個(gè)重要研究方向,涉及計(jì)算機(jī)圖像學(xué)、圖像處理、生物醫(yī)學(xué)工程、人體解剖學(xué)等多種技術(shù)。傳統(tǒng)的診療手段僅僅依靠人體內(nèi)部各個(gè)器官的二維數(shù)字圖像信息診斷病情,準(zhǔn)確診斷和分析對(duì)沒有豐富經(jīng)驗(yàn)的醫(yī)學(xué)從業(yè)者有著很大挑戰(zhàn)[2]。因此,高性能的三維重建系統(tǒng)的研究有助于輔助診斷,對(duì)數(shù)字醫(yī)學(xué)領(lǐng)域具有重要意義[3]。
1959年椎弓根螺釘技術(shù)被Boucher[4]首先用到脊柱融合手術(shù)中,自此該方法在脊柱外科手術(shù)中發(fā)揮著舉足輕重的作用。虛擬手術(shù)在脊柱外科的應(yīng)用始于20世紀(jì)90年代初[5],1992年著名的神經(jīng)外科專家Kevin Foley將Stealthstalation導(dǎo)航系統(tǒng)應(yīng)用于脊柱外科領(lǐng)域,自此虛擬手術(shù)系統(tǒng)在脊柱外科中廣泛應(yīng)用于各節(jié)段的椎弓根螺釘固定的手術(shù)中,1995年Nolte等[6]應(yīng)用計(jì)算機(jī)輔助微創(chuàng)導(dǎo)航手術(shù)系統(tǒng)實(shí)施了世界第一例腰椎椎弓釘內(nèi)固定手術(shù)。Klein 等[7]開發(fā)的虛擬手術(shù)系統(tǒng)通過病患CT數(shù)據(jù)三維重建的模型進(jìn)行椎弓根置釘虛擬手術(shù)訓(xùn)練。何建榮等[8]通過 BioMxsf 虛擬手術(shù)系統(tǒng),實(shí)現(xiàn)了椎弓根螺釘置釘手術(shù)的模擬訓(xùn)練。但這些研究忽略了力反饋問題,進(jìn)而操作者無法獲取有效的力學(xué)反饋信息,因此沒有虛擬手術(shù)場(chǎng)景所必須具備的沉浸感和真實(shí)性; Hamza-Lu等[9]、Coles等[10], 潘顯緯[2]開發(fā)了基于力反饋的虛擬手術(shù)系統(tǒng)?;诹Ψ答伒奶摂M手術(shù)系統(tǒng)不但模擬了真實(shí)的椎弓根釘植入過程,而且通過碰撞檢測(cè)以及力反饋計(jì)算等方法有效的實(shí)現(xiàn)了鉆骨操作的力學(xué)反饋,具有較好的視覺和觸覺感受,但是也因此產(chǎn)生了海量的計(jì)算成本,系統(tǒng)實(shí)時(shí)性受到極大影響,手術(shù)的沉浸感和真實(shí)性從而被降低。
傳統(tǒng)虛擬手術(shù)系統(tǒng)的運(yùn)行都是基于CPU進(jìn)行運(yùn)算分析的,但是CPU的運(yùn)算邏輯更適用于單個(gè)獨(dú)立任務(wù)的處理,對(duì)于計(jì)算工作量巨大,運(yùn)行邏輯復(fù)雜的虛擬手術(shù)系統(tǒng)是不合適的。本文為提高觸覺、視覺呈現(xiàn)效果,圖像畫質(zhì),引入GPU加速的辦法搭建了一套基于力反饋的椎弓根釘置入虛擬手術(shù)仿真系統(tǒng),在保證手術(shù)的沉浸感和真實(shí)性的前提下,有效提高系統(tǒng)的實(shí)時(shí)性,具有深遠(yuǎn)的意義和優(yōu)越的市場(chǎng)前景。
1 虛擬手術(shù)仿真框架
椎弓根釘置釘手術(shù)仿真框架如圖1所示,系統(tǒng)的主要運(yùn)行邏輯被分為觸覺和視覺兩部分,通過觸覺和視覺的線程劃分有效避免了觸覺刷新率和視覺刷新率沖突的問題。其中視覺線程是為操作者提供真實(shí)有效實(shí)時(shí)的視覺畫面,而觸覺線程主要是實(shí)現(xiàn)操作者與虛擬仿真的力觸覺交互,從而實(shí)現(xiàn)觸覺和視覺的協(xié)調(diào)配合,提升沉浸感和真實(shí)性。
該框架包括預(yù)處理階段和實(shí)時(shí)仿真階段。在預(yù)處理階段,將患者的原始CT圖像輸入到預(yù)處理管道中,以構(gòu)建體素模型。預(yù)處理管道將脊柱和其他組織利用圖形分割技術(shù)分開,從而降低了成像噪聲并平滑了分割結(jié)果。體素模型的外表面輪廓將使用Marching Cubes(MC)算法構(gòu)建,將于第3節(jié)介紹。此階段要完成的另一項(xiàng)工作是創(chuàng)建椎弓根釘模型。其尺寸可以根據(jù)用戶輸入定義。切頭部分將被離散成小的切削元件,用于實(shí)時(shí)仿真過程中的力計(jì)算。實(shí)時(shí)仿真開始后,用戶可以通過操縱虛擬椎弓根釘?shù)挠|覺設(shè)備(Phantom Touch)的觸筆。在觸覺渲染循環(huán)(1000 Hz)中,CPU進(jìn)程通過使用OpenHaptics API讀取觸覺筆的當(dāng)前位置和方向,更新手術(shù)工具的轉(zhuǎn)換矩陣。然后,將轉(zhuǎn)換矩陣參數(shù)傳遞到GPU,將創(chuàng)建一個(gè)輕量級(jí)GPU線程塊,每個(gè)線程分配給一個(gè)特定的切割元素。每個(gè)GPU線程將并行計(jì)算切割元件的當(dāng)前位置,并檢查其與脊柱模型部分的碰撞檢測(cè)。如果檢測(cè)到碰撞結(jié)果為“1”,將使用相應(yīng)的力反饋模型進(jìn)行力計(jì)算,并且相交的體素的密度將在同一線程中相應(yīng)地更新。計(jì)算出的力值將傳遞到CPU,并使用OpenHaptics API輸出到觸覺設(shè)備。在圖形渲染循環(huán)中,指示體素存在的體素標(biāo)記根據(jù)其密度的變化而更新。使用并行版本的MC算法在GPU上重建ROI(感興趣區(qū)域)內(nèi)的等值面,向用戶提供實(shí)時(shí)的視覺反饋。
2 基于MC(Marching Cube)算法的三維模型可視化研究
進(jìn)行虛擬手術(shù)仿真的前提是對(duì)病患的CT數(shù)據(jù)進(jìn)行處理并通過重建算法完成脊柱三維模型的重建。目前,醫(yī)學(xué)圖像三維重建算法主要分為體繪制和面繪制兩類[11],其中體繪制是將空間中的體數(shù)據(jù)直接進(jìn)行采集完成三維模型的合成,此類算法能夠精確的實(shí)現(xiàn)物體的內(nèi)部以及外結(jié)構(gòu)的重建。由于需要對(duì)數(shù)量極為龐大的數(shù)據(jù)進(jìn)行實(shí)時(shí)的重采樣處理,雖然能夠具有高真實(shí)性但同時(shí)也存在實(shí)時(shí)性差的缺點(diǎn),并且對(duì)計(jì)算機(jī)的要求也是極為苛刻,因此并不適合應(yīng)用在對(duì)實(shí)時(shí)性要求較高的虛擬手術(shù)系統(tǒng)中。與效率低下的體繪制算法相比,面繪制只是針對(duì)物體的表面輪廓進(jìn)行三維重建,具有數(shù)據(jù)量小、處理難度低、效率高的特點(diǎn),能夠很好地滿足實(shí)時(shí)性的要求,并且后續(xù)的調(diào)整和操作都比較簡(jiǎn)單。被廣泛的應(yīng)用到對(duì)實(shí)時(shí)性要求極高的三維重建等系統(tǒng)中。
1987年Lorensen等提出了經(jīng)典面繪制算法——MC算法[12]。該算法通過將每一個(gè)體素的等灰度值面提取出來再以拓?fù)浞椒ㄖ貥?gòu)成三角面片,進(jìn)而重建得到三維模型。目前MC算法已經(jīng)成為醫(yī)
學(xué)圖像三維重建的主流算法。其中,提取等值面需要首先確定一個(gè)等值面C,接著對(duì)數(shù)據(jù)中的每一個(gè)體素進(jìn)行遍歷操作。在獲取到所有體素的參數(shù)之后,將值為C的體素連接構(gòu)成等值面。等值面包含體素內(nèi)所有像素值相等的頂點(diǎn),其表達(dá)式為式(1):
其中,(i,j,k)為該曲面上某點(diǎn)的空間坐標(biāo),f(i,j,k)為表示函數(shù)。
基于windows平臺(tái),以C++為主要的開發(fā)語(yǔ)言,通過OpenGL圖形庫(kù)進(jìn)行虛擬手術(shù)仿真系統(tǒng)的開發(fā),實(shí)驗(yàn)的人體脊柱CT數(shù)據(jù)來自蘇州大學(xué)附屬第一醫(yī)院。本系統(tǒng)基于MC算法完成了對(duì)人體的脊柱三維重建,能夠通過調(diào)整等值面的參數(shù)實(shí)現(xiàn)對(duì)重建區(qū)域的選擇和修正,進(jìn)而有效提高模型的精準(zhǔn)度和真實(shí)度。如圖2(a~e)和圖3(a~e)所示,通過調(diào)節(jié)等值面的大小進(jìn)行重建得到的基于不同等值面大小的脊柱三維模型,其中圖2是脊柱模型的正視圖,圖3則是脊柱模型的后視圖。實(shí)驗(yàn)結(jié)果證明,等值面ISO=0.10時(shí),能夠有效的重建出人體的皮膚組織,并且具有較強(qiáng)的真實(shí)性;而等值面ISO=0.45時(shí),能夠完成對(duì)人體的脊柱部分進(jìn)行三維重建。操作者能夠通過修改等值面的大小獲取感興趣區(qū)域的三維重建模型。系統(tǒng)支持模型旋轉(zhuǎn)、平移、縮放以及任意切片的模型裁剪,結(jié)果表明所開發(fā)的醫(yī)學(xué)圖像三維重建系統(tǒng)能夠高逼真的還原真實(shí)的人體組織,對(duì)后續(xù)的虛擬手術(shù)仿真與交互具有重要意義。
3 鉆骨過程原理
椎弓根釘鉆孔的過程會(huì)清除部分骨贅,本系統(tǒng)采用單元去除法完成虛擬脊柱組織的切割與去除等操作的模擬[13]。為了實(shí)現(xiàn)骨組織切除和骨贅清除后的切口效果,通過將手術(shù)器械和脊柱接觸交互區(qū)域的體素消除完成。如圖4所示:手術(shù)仿真器械和脊柱手術(shù)區(qū)域發(fā)生碰撞的體素被清除,并且之后的視覺反饋和觸覺反饋都不再包含該部分信息。
鉆骨手術(shù)過程中,體素消除的具體步驟如下:
步驟1:結(jié)合手術(shù)仿真器械即骨鉆模型的形狀特點(diǎn),將其離散成一個(gè)多點(diǎn)終端。當(dāng)通過力反饋設(shè)備操作系統(tǒng)中的手術(shù)仿真器械與脊柱模型發(fā)生碰撞時(shí),需要時(shí)刻計(jì)算骨鉆終端和脊柱體素的空間位置關(guān)系,并實(shí)時(shí)記錄發(fā)生接觸區(qū)域的脊柱模型體素的位置。
步驟2:與此同時(shí)還需要實(shí)時(shí)記錄骨鉆模型的位置,通過力反饋算法,實(shí)時(shí)計(jì)算發(fā)生碰撞、切割等操作時(shí)的相互作用力,并將作用力通過力反饋設(shè)備實(shí)時(shí)的傳遞給操作者。
步驟3:使用單元去除法對(duì)發(fā)生碰撞交互區(qū)域的體素信息進(jìn)行刪除,從而模擬出骨組織在鉆削過程中的形變過程。
4 基于GPU加速的體素去除仿真
虛擬手術(shù)操作系統(tǒng)的第一要素是虛擬手術(shù)的實(shí)時(shí)性。視覺刷新率要達(dá)到30Hz以上才能夠流暢的顯示手術(shù)仿真畫面,具有較好的視覺效果;而對(duì)于觸覺刷新率要達(dá)到1000Hz以上才能夠給操作者帶來較為連續(xù)有效的觸覺反饋[14],這就要求虛擬手術(shù)系統(tǒng)能夠在極短時(shí)間內(nèi)完成龐大的數(shù)據(jù)處理。本系統(tǒng)為了在視覺上具有較好的顯示效果,采用了基于體素的三維模型,且體素?cái)?shù)量較多,這就導(dǎo)致了較大的內(nèi)存開銷,增大了計(jì)算機(jī)的計(jì)算量。此外,碰撞檢測(cè)[15,16]、基于等值面的三維重建、力反饋計(jì)算等都是基于人體脊柱模型的每一個(gè)體素的數(shù)據(jù)信息進(jìn)行計(jì)算操作。因此,虛擬手術(shù)仿真系統(tǒng)的實(shí)時(shí)性難以得到很好的解決,并且CPU并不適處理于大數(shù)據(jù)量的并行計(jì)算任務(wù),極易導(dǎo)致系統(tǒng)崩潰,本系統(tǒng)采用GPU加速技術(shù)去完成大數(shù)據(jù)量的并行計(jì)算任務(wù)。
4.1 GPU加速原理
與CPU相比,GPU擁有眾多簡(jiǎn)單但節(jié)能的計(jì)算核心、數(shù)千個(gè)同時(shí)處于活動(dòng)狀態(tài)的細(xì)粒度線程以及大的片外內(nèi)存帶寬,因此其在處理巨大的數(shù)量的數(shù)據(jù)時(shí)具有獨(dú)一無二的優(yōu)勢(shì)[17]。從架構(gòu)上講,CPU 僅由幾個(gè)內(nèi)核和緩存內(nèi)存組成,一次只能處理幾個(gè)線程。而GPU由數(shù)百個(gè)內(nèi)核組成,可以同時(shí)處理數(shù)千個(gè)線程。具有100多個(gè)內(nèi)核的 GPU處理數(shù)千個(gè)線程的能力可以將虛擬仿真系統(tǒng)的運(yùn)行速度提高 100倍于單獨(dú)的 CPU。更重要的是,GPU 實(shí)現(xiàn)了這種加速,同時(shí)比 CPU 更節(jié)能、更經(jīng)濟(jì)。
GPU是圖形處理的基礎(chǔ)單元,主要應(yīng)用于圖形圖像的渲染繪制等相關(guān)復(fù)雜度高且大量的運(yùn)算任務(wù)[18]。如圖所示,CPU由專為連續(xù)序列處理設(shè)計(jì)的內(nèi)核組成,GPU的設(shè)計(jì)采用并行架構(gòu),由更高效、更小的內(nèi)核組成,可輕松同時(shí)處理多個(gè)任務(wù)。在CPU中執(zhí)行順序計(jì)算,但在GPU中并行計(jì)算高度復(fù)雜的計(jì)算,二者相互協(xié)調(diào)工作,能夠有效提高系統(tǒng)的計(jì)算和運(yùn)行速率。
CUDA[19]是一種通用的并行計(jì)算架構(gòu),用于使用GPU在CPU上執(zhí)行的簡(jiǎn)單程序。它基于自身的CUDA指令集和GPU內(nèi)部的并行計(jì)算引擎[20],通過將CPU作為主控制機(jī)(host),GPU作為協(xié)處理器(co-processor)兩者相互協(xié)作,從而高效處理復(fù)雜且冗長(zhǎng)的計(jì)算任務(wù)。
如圖5所示,基于CUDA開發(fā)的程序,GPU和CPU 不僅需要完成各自的任務(wù),還需要相互協(xié)作,共同完成計(jì)算任務(wù)。CPU的主要任務(wù)是串行計(jì)算以及處理自上及下的事件,GPU則是處理復(fù)雜的具有巨大數(shù)據(jù)量的并行計(jì)算。兩者相互協(xié)作,能夠極為有效的提升系統(tǒng)的計(jì)算速率,大大提高虛擬仿真系統(tǒng)的實(shí)時(shí)性[21]。
4.2 實(shí)驗(yàn)環(huán)境
本文實(shí)驗(yàn)環(huán)境為Windows10 PC,處理器為Intel(R)Core(TM) i7-9700k 3.6GHz,內(nèi)存為16GB,圖形處理器為NVIDIA GeForce RTX 2080,CUDA 核心數(shù)為2994個(gè),核心頻率為1515Mega Hertz(MHz),顯存為8Gigabyte(GB)。
4.3 實(shí)驗(yàn)及結(jié)果分析
程序的響應(yīng)速度能夠很好的體現(xiàn)出系統(tǒng)的實(shí)時(shí)性能的優(yōu)劣,為了驗(yàn)證GPU加速技術(shù)對(duì)虛擬手術(shù)系統(tǒng)的計(jì)算性能和實(shí)時(shí)性的影響,本文通過分別在CPU架構(gòu)以及CPU+GPU架構(gòu)下進(jìn)行鉆骨手術(shù)仿真實(shí)驗(yàn):即在脊柱模型上對(duì)一個(gè)固定的鉆孔位置采用固定的鉆孔方向進(jìn)行鉆孔模擬,并實(shí)時(shí)統(tǒng)計(jì)每個(gè)觸覺循環(huán)所需要的力反饋計(jì)算時(shí)間。此外,記錄GPU加速前后視覺刷新率以及觸覺刷新率變化情況,并采用樣本鉆取的平均周期時(shí)間進(jìn)行對(duì)比測(cè)試。
如圖6所示,通過對(duì)不同體積大小和不同切削單元數(shù)量的平均時(shí)間周期進(jìn)行對(duì)比:力反饋的計(jì)算時(shí)間會(huì)隨著體素?cái)?shù)量的增加而增加,對(duì)于CPU架構(gòu)下的串行實(shí)現(xiàn),時(shí)間成本增加幅度巨大,極易受到計(jì)算量的影響,且超過400個(gè)切割元素時(shí)將遠(yuǎn)不能達(dá)到所需的時(shí)間要求,表明在CPU架構(gòu)下進(jìn)行這種復(fù)雜的龐大的計(jì)算任務(wù)不具有可行性。大量實(shí)驗(yàn)表明,當(dāng)使用超過300個(gè)128*128*128體素的單元,力反饋?zhàn)兊貌辉俜€(wěn)定。而CPU+GPU架構(gòu)下,CPU進(jìn)行復(fù)雜串行計(jì)算,GPU負(fù)責(zé)復(fù)雜且龐大的并行計(jì)算任務(wù),鉆骨模擬仿真中力反饋計(jì)算可以獲得顯著的加速效果,即使在最大實(shí)驗(yàn)數(shù)據(jù)情況,力反饋計(jì)算時(shí)間仍然處在很小的范圍內(nèi),并且完全滿足實(shí)時(shí)的視覺和觸覺渲染要求。
通過對(duì)GPU加速前后的視覺刷新率進(jìn)行監(jiān)測(cè),如圖7所示;虛擬骨鉆與脊柱區(qū)域未發(fā)生碰撞交互時(shí)(A-B段)視覺刷新率在80Hz左右,在骨鉆與脊柱發(fā)生碰撞并進(jìn)行切除時(shí)(B-C段),未使用GPU加速視覺刷新率則瞬間降低至5~10Hz之間,使用后則依舊保持在60~100Hz之間,平均達(dá)到80Hz左右,遠(yuǎn)遠(yuǎn)超過視覺刷新率大于30Hz的要求。
如圖8所示,當(dāng)骨鉆與脊柱模型未進(jìn)行交互操作時(shí)(A-B段),系統(tǒng)的觸覺刷新率能夠達(dá)到900Hz左右;當(dāng)二者發(fā)生碰撞并進(jìn)行切削操作時(shí),未經(jīng)GPU加速的觸覺刷新率則驟降至10Hz左右,此時(shí)力反饋會(huì)出現(xiàn)明顯的卡頓,完全無法形成有效的觸覺感受;經(jīng)GPU加速后的觸覺刷新率基本穩(wěn)定在600Hz以上,能夠基本滿足虛擬手術(shù)實(shí)時(shí)性的要求。
因此,通過GPU加速技術(shù),CPU和GPU之間相互協(xié)作,使得虛擬手術(shù)仿真系統(tǒng)的觸覺和視覺的刷新率,以及虛擬手術(shù)操作中的力反饋計(jì)算的響應(yīng)速度,都有了極為明顯的提升,進(jìn)而提高了虛擬手術(shù)仿真系統(tǒng)的真實(shí)性和沉浸感。
5 結(jié) 論
本文提出了一個(gè)基于GPU加速的椎弓根釘置入手術(shù)虛擬仿真系統(tǒng),來模擬椎弓根釘置入脊柱的過程。為此,首先開發(fā)了基于醫(yī)學(xué)影像(CT)的三維重建模塊,構(gòu)建具有視覺吸引力的解剖學(xué)準(zhǔn)確的脊柱模型,其次,針對(duì)鉆骨過程中的體素去除的高計(jì)算量問題,使用GPU加速技術(shù)進(jìn)行優(yōu)化。本文框架的核心以及主要優(yōu)勢(shì)是通過采用基于CUDA的GPU加速技術(shù)對(duì)視覺線程與觸覺線程進(jìn)行硬件加速,根據(jù)單元去除原理實(shí)現(xiàn)對(duì)鉆骨過程中骨贅的刪除。有效解決了傳統(tǒng)虛擬手術(shù)系統(tǒng)中無法同時(shí)對(duì)各個(gè)體素的節(jié)點(diǎn)信息進(jìn)行碰撞檢測(cè)、三維重建、力觸覺計(jì)算等操作的問題,實(shí)現(xiàn)了基于體素的切削模擬,保證了椎弓根釘置入手術(shù)虛擬仿真視覺以及觸覺上的實(shí)時(shí)性、連貫性,為用戶提供更為真實(shí)的鉆骨效果。實(shí)驗(yàn)結(jié)果表明,使用GPU加速方法的每個(gè)觸覺循環(huán)所需要的力計(jì)算時(shí)間均遠(yuǎn)遠(yuǎn)小于基于CPU的傳統(tǒng)方法,并且在大體積多切割單元的情況下優(yōu)勢(shì)愈發(fā)明顯,視覺刷新率由7Hz提升到80Hz左右,觸覺刷新率也由10Hz提升到600Hz左右。能夠在保證手術(shù)的沉浸感和真實(shí)性的前提下,極大提高系統(tǒng)的實(shí)時(shí)性。并在此框架的基礎(chǔ)上搭建一個(gè)仿真平臺(tái),以訓(xùn)練新手醫(yī)生在進(jìn)行椎弓根釘置入手術(shù)的觸覺感受,防止對(duì)脊柱造成不可逆轉(zhuǎn)的損傷。
參 考 文 獻(xiàn):
[1] GALLAGHER A G, RITTER E M, CHAMPION H. et al. Virtual Reality Simulation for the Operating Room-Proficiency-based Training as a Paradigm Shift in Surgical Skills Training[J]. Annals of Surgery,2005,241(2):364.
[2] 潘顯緯. 基于力反饋與沉浸式虛擬現(xiàn)實(shí)技術(shù)的脊柱外科手術(shù)訓(xùn)練系統(tǒng)研究[D].上海:第二軍醫(yī)大學(xué), 2017.
[3] BADASH I, BURTT K, SOLORZANO C A. et al. Innovations in Surgery Simulation:a Review of Past, Current and Future Techniques[J]. Annals of Translational Medicine,2016,4(23):453.
[4] BOUCHER H H. A Method of Spinal Fusion[J].Bone Joint Surg Br, 1959:248.
[5] SCHLENZKA D, LAINE T, LUND T. Computer-assisted Spine Surgery[J]:Principles, Technique, Results and Perspectives. Orthopade, 2000,29:658.
[6] NOLTE L P, ZAMORANO L, VISARIUS H, et al.Clinical Evaluation of a Sys-tem for Precision Enhancement in Spine Surgery[J].Clin Biomech, 1995(10):293.
[7] KLEIN S, WHYNE C M, RUSH R, et al. CT-based Patientspecific Simulation Software for Pedicle Screw Insertion[J]. J Spinal Disord Tech, 2009, 22(7):502.
[8] 何建榮,李超,楊會(huì)武,等.虛擬手術(shù)系統(tǒng)支持下置入寰椎側(cè)塊螺釘?shù)膶?shí)驗(yàn)研究[J].中國(guó)脊柱脊髓雜志, 2012, 22(2):156.
HE Jianrong, LI Chao, YANG Huiwu, et al. Atlas Lateral Mass Screw Insertion Under Virtual Surgical System[J]. Chinese Journal of Spine and Spinal Cord, 2012,22(2):156.
[9] HAMZA-LUP F G, BOGDAN M, POPOVICI D M, et al. A Survey of Visuo-haptic Simulation in Surgical Training[J].The Third International Conference on Mobile, Hybrid, and On-line Learning Wilmington:IARIA, 2019.
[10]COLES T R, MEGLAN D, JOHN N W. The Role of Haptics in Medicaltraining Simulators:a Survey of the State of the Art[J]. Haptics, IEEE Transactions on, 2011, 4(1):51.
[11]TIAN Z, JIA X, YUAN K, et al. GPU-based Low Dose CT Reconstruction via Edge-preserving Total Variation Regularization[J]. Physics in Medicine & Biology, 2011, 56(18):5949.
[12]LORENSEN W E, CLINE H E.Marching Cubes:A High Resoluton 3D Surface Construction Algorithm[C]// SIGGRAPH87 Proceedings,1987:163.
[13]DIASAMIDZE Y, MAKHARADZE S, ROKVA N, et al. Enhancements of the Voxmap-Point Shell Algorithm[J]. Soobshchenii Akademii Nauk Gruzinskoǐ Ssr, 2008, 2(2):17.
[14]廖登宏. 基于力反饋的個(gè)性化外科虛擬現(xiàn)實(shí)手術(shù)仿真培訓(xùn)系統(tǒng)關(guān)鍵技術(shù)研究[D]. 上海:上海交通大學(xué), 2017.
[15]王志強(qiáng), 洪嘉振, 楊輝. 碰撞檢測(cè)問題研究綜述[J]. 軟件學(xué)報(bào), 1999, 10(5):545.
WANG Zhiqiang, HONG Jiazhen, YANG Hui. A Survey of Collision Detection[J]. Journal of Software, 1999, 10(5):545.
[16]WANG Q, CHEN H, WU W, et al. Impulse-Based Rendering Methods for Haptic Simulation of Bone-Burring[J]. IEEE Transactions on Haptics, 2012, 5(4):344.
[17]ZHANG X, HU B, TANG L, et al. Fast Collision Detection for Rice Leaf Population Based on Improved Bounded Box Tree and GPU[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018,34(1):171.
[18]陳倩,潘中良.一種基于GPU加速的三維分形實(shí)時(shí)渲染方法[J].激光雜志,2016,37(11):136.
CHEN Qian, PAN Zhongliang. A Real Time Drawing Method for Three-dimensional Fractal Image Based on GPU Acceleration[J]. Laser Journal, 2016,37(11):136.
[19]BERNASCHI M, BISSON M, MASTROSTEFANO E, et al. Multilevel Parallelism for the Exploration of Large-scale Graphs[J]. IEEE Transactions on Multi-Scale Computing Systems, 2018:1.
[20]羅中粟,潘一源,唐良甫,等.基于GPU加速的粒子流體動(dòng)力學(xué)流血模擬算法[J].計(jì)算機(jī)應(yīng)用與軟件,2018,35(2):242.
LUO Zhongsu, PAN Yiyuan, TANG Liangfu, et al.Research of Blood Simulationof Particle Hydrodynamics Based on GPU Acceleration[J]. Computer Applications and Software, 2018,35(2):242.
[21]閆華,汪貽生,王銳淇,等.基于GPU的大規(guī)模多階段任務(wù)系統(tǒng)可靠性并行計(jì)算方法[J].系統(tǒng)工程與電子技術(shù),2019,41(1):215.
YAN Hua, WANG Yisheng, WANG Ruiqi, et al. Reliability Parallel Computing Method for Large Phased-mission System Based on GPU[J]. Systems Engineering and Electronics, 2019,41(1):215.
(編輯:溫澤宇)