国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

TLR3活化對(duì)人脂肪間充質(zhì)干細(xì)胞成骨分化的影響

2021-10-09 08:57金兵男江鑫銘李霄霞趙春華
關(guān)鍵詞:脂肪組織

金兵男 江鑫銘 李霄霞 趙春華

[摘要]?目的?探討Poly(I:C)活化人脂肪間充質(zhì)干細(xì)胞(hAMSCs)Toll樣受體3(TLR3)后對(duì)hAMSCs成骨分化的影響。方法?膠原酶消化法分離提取hAMSCs,對(duì)其細(xì)胞形態(tài)、免疫學(xué)表型和成骨分化能力進(jìn)行鑒定。將原代分離培養(yǎng)的hAMSCs隨機(jī)分為對(duì)照組和TLR3組,對(duì)照組不做處理,TLR3組用含有20 mg/L Poly(I:C)的正常培養(yǎng)基處理6 h活化TLR3。CCK8法檢測(cè)兩組hAMSCs增殖能力變化,Real-time PCR方法檢測(cè)hAMSCs成骨標(biāo)志基因runt相關(guān)轉(zhuǎn)錄因子2(RUNX2)和骨鈣素(OCN)mRNA表達(dá),Western Blot方法檢測(cè)RUNX2和OCN蛋白及NF-κB通路相關(guān)蛋白p-P65、P65表達(dá)。對(duì)照組和TLR3組均用間充質(zhì)干細(xì)胞成骨誘導(dǎo)培養(yǎng)基誘導(dǎo)分化,12 d后用茜素紅染色法檢測(cè)兩組hAMSCs成骨誘導(dǎo)后鈣質(zhì)沉積情況。結(jié)果?對(duì)照組和TLR3組hAMSCs的增殖能力差異無(wú)顯著性(P>0.05)。TLR3組hAMSCs成骨標(biāo)志基因RUNX2及OCN的mRNA和蛋白表達(dá)均高于對(duì)照組(t=2.98~36.36,P<0.05),NF-κB通路相關(guān)蛋白P65及p-P65表達(dá)也高于對(duì)照組(t=3.52、13.85,P<0.05)。茜素紅染色結(jié)果顯示,成骨誘導(dǎo)12 d后TLR3組鈣質(zhì)沉積程度高于對(duì)照組。結(jié)論?TLR3活化能夠通過(guò)激活NF-κB通路促進(jìn)hAMSCs成骨分化。

[關(guān)鍵詞]?間質(zhì)干細(xì)胞;脂肪組織;Toll樣受體3;成骨分化

[中圖分類號(hào)]?R329.21

[文獻(xiàn)標(biāo)志碼]?A

[文章編號(hào)]?2096-5532(2021)04-0475-06

間充質(zhì)干細(xì)胞(MSCs)是目前國(guó)內(nèi)外研究最多的一類成體干細(xì)胞[1-4],其來(lái)源廣泛,在脂肪、骨髓、臍帶、胎盤等多種成體組織中均廣泛存在[5]。其中,人脂肪來(lái)源MSCs(hAMSCs)已成為再生醫(yī)學(xué)領(lǐng)域中的理想種子細(xì)胞[6-10]。然而,在應(yīng)用MSCs移植治療骨質(zhì)疏松等疾病的過(guò)程中常有炎癥或細(xì)菌感染等情況發(fā)生,嚴(yán)重影響了MSCs移植的存活率和治療效果。因此,尋找MSCs預(yù)處理方式,提高M(jìn)SCs移植存活率,增強(qiáng)體內(nèi)治療效果,對(duì)MSCs的臨床應(yīng)用具有重要意義[11-13]。Toll樣受體(TLRs)作為一類在固有免疫和適應(yīng)性免疫中具有重要作用的模式識(shí)別受體,能夠識(shí)別大量病原相關(guān)分子,介導(dǎo)機(jī)體免疫反應(yīng),維持機(jī)體的平衡狀態(tài),MSCs中也有部分表達(dá)TLRs[14]。已有研究顯示,表達(dá)TLR3的MSCs在TLR3被Poly(I:C)活化后表現(xiàn)出抗炎作用,TLRs活化能夠?qū)SCs的成骨分化產(chǎn)生影響[15]。使用Poly(I:C)活化MSCs的TLR3可以作為一種重要的MSCs預(yù)處理方法。本研究探討TLR3活化對(duì)hAMSCs增殖及成骨分化的影響,為hAMSCs在骨質(zhì)疏松等疾病治療中應(yīng)用提供理論依據(jù)。

1?材料與方法

1.1?細(xì)胞和試劑

實(shí)驗(yàn)所用hAMSCs為吸脂術(shù)病人廢棄的脂肪組織原代分離擴(kuò)增獲得; DMEM高糖、DME/F12培養(yǎng)基購(gòu)于美國(guó)Hyclone公司;胎牛血清購(gòu)于Excell公司;青霉素和鏈霉素購(gòu)于新賽美公司;膠原酶P購(gòu)于美國(guó)Roche公司;堿性磷酸酶試劑盒、CCK8試劑盒、反轉(zhuǎn)錄試劑盒、SYBR Green Master Mix購(gòu)于上海翊圣公司;Poly(I:C)、油紅O、茜素紅購(gòu)于美國(guó)Sigma公司;SDS-PAGE凝膠試劑盒、磷酸酶抑制劑購(gòu)于上海雅酶公司;D-hanks液、PBS、組織裂解液購(gòu)于北京索萊寶公司;小鼠抗人FITC-CD14、FITC-CD34、FITC-CD45、PE-CD73、FITC-CD90、PE-CD105、FITC-HLA-DR購(gòu)于美國(guó)BD公司。

1.2?hAMSCs的分離培養(yǎng)

取成人吸脂術(shù)采集的脂肪組織,D-hanks液清洗去除血細(xì)胞和麻醉藥物。加入適量2 g/L膠原酶P,37 ℃恒溫?fù)u床消化30 min,100目篩網(wǎng)濾去未消化組織。加入足量D-hanks液,1 500 r/min離心10 min,棄上清,重復(fù)2次。重懸細(xì)胞沉淀,接種于hAMSCs培養(yǎng)基中,于含CO2培養(yǎng)箱內(nèi)37 ℃恒溫培養(yǎng),每3 d換液1次。當(dāng)細(xì)胞生長(zhǎng)達(dá)到80%融合時(shí),進(jìn)行傳代培養(yǎng)。

1.3?流式細(xì)胞術(shù)檢測(cè)免疫學(xué)表型

胰蛋白酶消化收集細(xì)胞,PBS清洗、重懸,加入相應(yīng)直標(biāo)抗體4 ℃孵育30 min,PBS清洗2次,重懸,流式細(xì)胞儀上檢測(cè)MSCs免疫學(xué)表型。

1.4?實(shí)驗(yàn)分組及細(xì)胞增殖檢測(cè)

取第6代hAMSCs以每孔1×104的密度接種于96孔板中,隨機(jī)分為兩組,對(duì)照組不作處理,TLR3組加入20 mg/L Poly(I:C)工作液處理6 h活化TLR3。分別在活化后的0、24和48 h時(shí)每孔加入 CCK8工作液10 μL,37 ℃孵育90 min,酶標(biāo)儀檢測(cè)450 nm波長(zhǎng)處的吸光度(A)值,以其表示hAMSCs增殖能力。

1.5?hAMSCs體外成骨誘導(dǎo)分化及鑒定

取第6代hAMSCs以5×103/cm2的密度接種于24孔板中,待其生長(zhǎng)至80%融合時(shí)加入成骨誘導(dǎo)培養(yǎng)基(含體積分?jǐn)?shù)0.10?FBS、 2×10-4mol/L抗壞血酸和10 mmol/L β-甘油磷酸鈉的DMEM高糖培養(yǎng)基)誘導(dǎo)成骨分化,3 d更換1次新鮮成骨誘導(dǎo)培養(yǎng)基。①堿性磷酸酶染色:成骨誘導(dǎo)3 d后,PBS沖洗2次,40 g/L多聚甲醛固定10 min,加入堿性磷酸酶染色工作液,37 ℃孵育20 min,PBS沖洗3次,光鏡下觀察對(duì)照組和TLR3組hAMSCs堿性磷酸酶活性變化情況。②茜素紅染色:成骨誘導(dǎo)12 d后,PBS沖洗2次,用40 g/L多聚甲醛室溫固定10 min,1 g/L茜素紅染色工作液室溫染色30 min;PBS沖洗3次后,在光鏡下觀察對(duì)照組和TLR3組hAMSCs鈣質(zhì)沉積情況。

1.6?hAMSCs體外成脂誘導(dǎo)分化及鑒定

取第6代hAMSCs,以5×103/cm2的密度接種于24孔板中,待其生長(zhǎng)至90%融合時(shí)加入成脂誘導(dǎo)培養(yǎng)基(DMEM高糖培養(yǎng)基中含有體積分?jǐn)?shù)0.10 FBS、1×10-6mol/L地塞米松、50 mg/L抗壞血酸和100 mg/L IBMX)誘導(dǎo)成脂分化,每3 d更換1次新鮮成脂誘導(dǎo)培養(yǎng)基。成脂誘導(dǎo)12 d后,PBS沖洗2次,40 g/L多聚甲醛室溫固定10 min,油紅O染色工作液室溫染色30 min;PBS沖洗3次,光鏡下觀察hAMSCs脂滴形成情況。

1.7?Real-time PCR檢測(cè)成骨標(biāo)志基因runt相關(guān)轉(zhuǎn)錄因子2(RUNX2)和骨鈣素(OCN)mRNA表達(dá)

取第6代hAMSCs以5×103/cm2的密度接種于6孔板中,隨機(jī)分為TLR3組和對(duì)照組,對(duì)照組不做處理,TLR3組用含有20 mg/L Poly(I:C)的正常培養(yǎng)基處理6 h,按照總RNA提取試劑說(shuō)明書提取兩組樣本的細(xì)胞總RNA,應(yīng)用反轉(zhuǎn)錄試劑盒進(jìn)行反轉(zhuǎn)錄,反應(yīng)條件:25 ℃、5 min,42 ℃、30 min,85 ℃、5 min。按照熒光定量試劑盒配制反應(yīng)體系,反應(yīng)條件:預(yù)變性95 ℃、30 s,變性95 ℃、10 s,退火/延伸60 ℃、30 s,共40個(gè)循環(huán)。以GAPDH為內(nèi)參基因,2-ΔΔCt法計(jì)算hAMSCs成骨標(biāo)志基因RUNX2和OCN mRNA表達(dá)情況。所用基因引物序列見(jiàn)表1。每個(gè)樣本設(shè)置3個(gè)復(fù)孔,實(shí)驗(yàn)重復(fù)3次。

1.8?Western Blot方法檢測(cè)相關(guān)蛋白表達(dá)

細(xì)胞按1.7方法分組及處理后,加入RIPA裂解液提取細(xì)胞總蛋白,蛋白樣品應(yīng)用SDS-PAGE進(jìn)行電泳分離,然后轉(zhuǎn)蛋白至硝酸纖維素膜上;50 g/L BSA室溫封閉90 min,添加一抗(β-actin、GAPDH、RUNX2、OCN、P65、p-P65,1∶1 000稀釋)4 ℃孵育過(guò)夜,添加羊抗兔二抗(1∶5 000稀釋)室溫孵育60 min,?使用超敏ECL發(fā)光液顯影,Image J軟件分析條帶灰度值,以GAPDH或β-actin作為對(duì)照,計(jì)算目的蛋白R(shí)UNX2、OCN、P65和p-P65相對(duì)表達(dá)量。實(shí)驗(yàn)重復(fù)3次。

1.9?統(tǒng)計(jì)學(xué)分析

應(yīng)用Graph Pad Prism 5軟件進(jìn)行統(tǒng)計(jì)學(xué)分析。計(jì)量資料數(shù)據(jù)以x2±s表示,兩組間比較采用t檢驗(yàn)。以P<0.05為有統(tǒng)計(jì)學(xué)意義。

2?結(jié)?果

2.1?hAMSCs形態(tài)、免疫學(xué)表型及成脂成骨分化能力鑒定

在光鏡下觀察,原代分離培養(yǎng)后的hAMSCs呈長(zhǎng)梭形,旋渦狀分布,貼壁生長(zhǎng)(圖1A);堿性磷酸酶染色后細(xì)胞可見(jiàn)藍(lán)色沉淀,表明hAMSCs開始向成骨細(xì)胞分化(圖1B);茜素紅染色細(xì)胞可見(jiàn)染成紅色的鈣質(zhì)沉淀,表明hAMSCs成骨誘導(dǎo)12 d后分化為成骨細(xì)胞,分泌了大量鈣質(zhì)沉積(圖1C);油紅O染色后細(xì)胞中可見(jiàn)紅色脂滴,表明hAMSCs成脂誘導(dǎo)12 d后分化為脂肪細(xì)胞(圖1D)。流式細(xì)胞術(shù)檢測(cè)hAMSCs的免疫學(xué)表型結(jié)果顯示,CD14陽(yáng)性率為0.9%,CD34陽(yáng)性率0.4%,CD45陽(yáng)性率0.5%,HLA-DR陽(yáng)性率0.8%,均<5%;CD73陽(yáng)性率為98.7%,CD90陽(yáng)性率98.5%,CD105陽(yáng)性率95.4%,F(xiàn)LK-1陽(yáng)性率96.0%,均>95%。符合國(guó)際細(xì)胞學(xué)會(huì)對(duì)于MSCs的定義(圖1E)。證明從人脂肪組織中原代分離的細(xì)胞為hAMSCs。

2.2?各組hAMSCs增殖能力比較

CCK8法檢測(cè)結(jié)果顯示,對(duì)照組與TLR3組比較,hAMSCs活化后0、24和48 h時(shí)增殖能力差異無(wú)顯著性(P>0.05)。見(jiàn)表2。

2.3?各組RUNX2和OCN mRNA及蛋白表達(dá)的比較

Real-time PCR檢測(cè)顯示,TLR3組RUNX2和OCN的mRNA表達(dá)水平均較對(duì)照組顯著增加(t=14.39、36.36,P<0.01)。Western Blot檢測(cè)顯示,TLR3組RUNX2和OCN蛋白表達(dá)均高于對(duì)照組(t=3.46、2.98,P<0.05)。見(jiàn)圖2A、B和表3。茜素紅染色結(jié)果顯示,TLR3組紅色鈣質(zhì)沉積明顯多于對(duì)照組(圖2C)。表明TLR3經(jīng)Poly(I:C)活化后能夠促進(jìn)hAMSCs成骨分化,加快鈣質(zhì)沉積。

2.4?各組hAMSCs中NF-κB通路相關(guān)蛋白P65及p-P65表達(dá)比較

Western Blot結(jié)果顯示,NF-κB通路相關(guān)蛋白p-P65和P65表達(dá)較對(duì)照組明顯增加,差異有統(tǒng)計(jì)學(xué)意義(t=3.52、13.85,P<0.05)。見(jiàn)圖3、表4。

3?討?論

MSCs作為一類具有自我更新、多譜系分化、低免疫原性和免疫調(diào)節(jié)能力等多項(xiàng)優(yōu)點(diǎn)的成體多能干細(xì)胞,目前在干細(xì)胞領(lǐng)域得到廣泛的研究[15]。由于MSCs具有以上多項(xiàng)優(yōu)點(diǎn),目前MSCs移植已成為骨質(zhì)疏松等疾病最佳治療方法。但是在MSCs移植中經(jīng)常有炎癥或感染情況發(fā)生,降低了MSCs移植的成功率與治療效果,而通過(guò)活化MSCs的TLR3介導(dǎo)hAMSCs免疫反應(yīng)能夠抑制炎癥感染,提高M(jìn)SCs移植的成功率和骨質(zhì)疏松等疾病的治療效果。但是活化的TLR3是否會(huì)影響hAMSCs成骨分化,目前沒(méi)有定論。本實(shí)驗(yàn)結(jié)果表明,hAMSCs活化TLR3后,成骨標(biāo)志基因RUNX2和OCN的mRNA和蛋白表達(dá)均明顯增加,同時(shí)成骨誘導(dǎo)分化后鈣質(zhì)沉積程度更高,表明hAMSCs經(jīng)Poly(I:C)處理活化TLR3后可能促進(jìn)hAMSCs成骨分化。

MSCs在成骨分化過(guò)程中受到多種信號(hào)通路的調(diào)控,包括Wnt信號(hào)通路、Notch信號(hào)通路、BMP/TGF-β信號(hào)通路、MAPK信號(hào)通路、hedghog信號(hào)通路、FGF信號(hào)通路、PTH信號(hào)通路和IGF-1信號(hào)通路等[16-19],不同信號(hào)通路通過(guò)調(diào)控β-catenin、同源核蛋白MSX2和含有PDZ識(shí)別模體的轉(zhuǎn)錄輔助激活因子TAZ等因子的表達(dá),上調(diào)成骨分化標(biāo)志基因RUNX2和其下游基因OSX(osterix)的表達(dá),提高堿性磷酸酶活性,調(diào)控成骨細(xì)胞特異性細(xì)胞外基質(zhì)蛋白OCN表達(dá)和鈣離子沉積,促進(jìn)MSCs向成骨細(xì)胞分化[20-21]。大量的研究結(jié)果證明,許多因素都能夠通過(guò)不同信號(hào)通路影響MSCs的成骨分化[22-28],其中TLRs活化對(duì)MSCs的成骨分化也有影響。例如使用LPS持續(xù)刺激骨髓來(lái)源MSCs活化TLR4后能夠通過(guò)Wnt通路促進(jìn)其增殖和成骨分化[29]。TLR2活化后也能夠顯著增強(qiáng)骨髓來(lái)源MSCs的成骨分化[30]。TLR9活化后能夠促進(jìn)臍帶來(lái)源MSCs成骨分化而不影響其表型[31]。本實(shí)驗(yàn)結(jié)果顯示,Poly(I:C)活化hAMSCs的TLR3后,NF-κB通路相關(guān)蛋白P65和p-P65表達(dá)明顯增加,表明hAMSCs的TLR3活化后可能通過(guò)激活NF-κB通路來(lái)上調(diào)成骨標(biāo)志基因RUNX2和OCN的表達(dá),促進(jìn)hAMSCs成骨分化。但是具體作用機(jī)制仍不明確,需要進(jìn)一步探討。

綜上所述,Poly(I:C)活化hAMSCs的TLR3后,能夠通過(guò)激活NF-κB通路上調(diào)hAMSCs成骨標(biāo)志基因RUNX2和OCN mRNA和蛋白表達(dá),加快鈣質(zhì)沉積,促進(jìn)hAMSCs成骨分化。因此,活化hAMSCs的TLR3不僅能夠抑制炎癥,提高M(jìn)SCs的移植存活率,還能夠促進(jìn)MSCs的成骨分化,加快鈣質(zhì)沉積,有利于增強(qiáng)骨質(zhì)疏松病人的骨修復(fù)能力,為一種可行的MSC預(yù)處理方式。但是活化TLR3后促進(jìn)MSCs成骨分化涉及的基因及信號(hào)通路需要進(jìn)一步研究[32-33]。本文研究結(jié)果可為hAMSCs在骨質(zhì)疏松等老年退行性疾病中的應(yīng)用提供了一定的研究基礎(chǔ)。

[參考文獻(xiàn)]

[1]FRIEDENSTEIN A J,?PETRAKOVA K V,?KUROLESOVA A I,?et al. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues[J].?Transplantation,1968,6(2):230-247.

[2]GERSON S L. Mesenchymal stem cells: no longer second class marrow citizens[J].?Nature Medicine,?1999,5(3):262-264.

[3]SERGEANT E,?BUYSSE M,?DEVOS T,?et al. Multipotent mesenchymal stromal cells in kidney transplant recipients: the next big thing[J]? Blood Reviews,?2020:100718.

[4]GARCA-SNCHEZ D,?FERNNDEZ D,?RODRGUEZ-REY J C,?et al. Enhancing survival,?engraftment,?and osteogenic potential of mesenchymal stem cells[J].?World Journal of Stem Cells,?2019,11(10):748-763.

[5]PELEKANOS R A,?SARDESAI V S,?FUTREGA K,?et al. Isolation and expansion of mesenchymal stem/stromal cells derived from human placenta tissue[J].?Journal of Visualized Experiments: JoVE,?2016(112):54204.

[6]ZUK P A,?ZHU M,?MIZUNO H,?et al. Multilineage cells from human adipose tissue:implications for cell-based therapies[J].?Tissue Engineering,?2001,7(2):211-228.

[7]FENG N H,?HAN Q,?LI J,?et al. Generation of highly purified neural stem cells from human adipose-derived mesenchymal stem cells by Sox1 activation[J].?Stem Cells and Development,?2014,23(5):515-529.

[8]LI J,?ZHU L,?QU X B,?et al. Stepwise differentiation of human adipose-derived mesenchymal stem cells toward definitive endoderm and pancreatic progenitor cells by mimicking pan-

creatic development in vivo[J].?Stem Cells and Development,?2013,22(10):1576-1587.

[9]WANG X,?AO J,?LU H P,?et al. Osteoimmune modulation and guided osteogenesis promoted by barrier membranes incorporated with S-Nitrosoglutathione (GSNO) and mesenchymal stem cell-derived exosomes[J].?International Journal of Nanomedicine,?2020,15:3483-3496.

[10]LEE D J,?KWON J,?CURRENT L,?et al. Osteogenic potential of mesenchymal stem cells from rat mandible to regenerate critical sized calvarial defect[J].?Journal of Tissue Enginee-ring,?2019,10:2041731419830427.

[11]HUANG Y,?TAN F B,?ZHUO Y,?et al. Hypoxia-preconditioned olfactory mucosa mesenchymal stem cells abolish cerebral ischemia/reperfusion-induced pyroptosis and apoptotic death of microglial cells by activating HIF-1α[J].?Aging,?2020,12(11):10931-10950.

[12]MORA-BOZA A,?GARCA-FERNNDEZ L,?BARBOSA F A,?et al. Glycerylphytate crosslinker as a potential osteoinductor of chitosan-based systems for guided bone regeneration[J].?Carbohydrate Polymers,?2020,241:116269.

[13]DING X L,?HUANG Y,?LI X M,?et al. Three-dimensional silk fibroin scaffolds incorporated with graphene for bone regeneration[J].?Journal of Biomedical Materials Research Part A,?2020:1-9.

[14]RAICEVIC G,?ROUAS R,?NAJAR M,?et al. Inflammation modifies the pattern and the function of Toll-like receptors expressed by human mesenchymal stromal cells[J].?Human Immunology,?2010,71(3):235-244.

[15]WU L X,?XIANG S Q,?HU X H,?et al. Prostate-specific anti-gen modulates the osteogenic differentiation of MSCs via the[CM(26*2]cadherin 11-Akt axis[J].?Clinical and Translational Medicine,2020,10(1):363-373.

[16]WANG J C,?LIU S Z,?LI J Y,?et al. Roles for miRNAs in osteogenic differentiation of bone marrow mesenchymal stem cells[J].?Stem Cell Research & Therapy,?2019,10(1):197.

[17]YANG M S,?LIU H X,?WANG Y H,?et al. Hypoxia reduces the osteogenic differentiation of peripheral blood mesenchymal stem cells by upregulating Notch-1 expression[J].?Connective Tissue Research,?2019,60(6):583-596.

[18]JIANG T Y,?XIA C,?CHEN X T,?et al. Melatonin promotes the BMP9-induced osteogenic differentiation of mesenchymal stem cells by activating the AMPK/β-catenin signalling pathway[J].?Stem Cell Research & Therapy,?2019,10(1):408.

[19]ZHAO X E,?YANG Z S,?ZHANG H,?et al. Resveratrol promotes osteogenic differentiation of canine bone marrow mesenchymal stem cells through wnt/beta-catenin signaling pathway[J].?Cellular Reprogramming,?2018,20(6):371-381.

[20]ZHANG L T,?LIU R M,?LUO Y,?et al. Hyaluronic acid promotes osteogenic differentiation of human amniotic mesenchymal stem cells via the TGF-β/Smad signalling pathway[J].?Life Sciences,?2019,232:116669.

[21]XIA P,?GU R,?ZHANG W,?et al. MicroRNA-200c promotes osteogenic differentiation of human bone mesenchymal stem cells through activating the AKT/β-Catenin signaling pathway via downregulating Myd88[J].?Journal of Cellular Physiology,?2019,234(12):22675-22686.

[22]LEE J,?CHA H,?PARK T H,?et al.?Enhanced osteogenic differentiation of human mesenchymal stem cells by direct delivery of Cbfβ protein[J].?Biotechnology and Bioengineering,?2020:1-14.

[23]MORTADA I,?MORTADA R. Epigenetic changes in mesenchymal stem cells differentiation[J].?European Journal of

Medical Genetics,?2018,61(2):114-118.

[24]ZHANG Q H,?CHANG B,?ZHENG G Z,?et al. Quercetin stimulates osteogenic differentiation of bone marrow stromal cells through miRNA-206/connexin 43 pathway[J].?American Journal of Translational Research,?2020,12(5):2062-2070.

[25]LIAO J Y,?XIAO H Z,?DAI G M,?et al. Recombinant adenovirus (AdEasy system) mediated exogenous expression of long non-coding RNA H19 (lncRNA H19) biphasic regulating osteogenic differentiation of mesenchymal stem cells (MSCs)[J].?American Journal of Translational Research,?2020,12(5):1700-1713.

[26]DA W,?TAO L,?WEN K C,?et al. Protective role of melatonin against postmenopausal bone loss via enhancement of citrate secretion from osteoblasts[J].?Frontiers in Pharmacology,?2020,11:667.

[27]KIM D H,?KIM D H,?HECK B E,?et al. A natural supplement formula reduces anti-oxidative stress and enhances osteo-chondrogenic differentiation potential in mesenchymal stem cells[J].?Journal of Clinical Biochemistry and Nutrition,?2020,66(3):206-212.

[28]LI D W,?HE J,?HE F L,?et al. Silk fibroin/chitosan thin film promotes osteogenic and adipogenic differentiation of rat bone marrow-derived mesenchymal stem cells[J].?Journal of Biomaterials Applications,?2018,32(9):1164-1173.

[29]HE X Q,?WANG H,?JIN T,?et al. TLR4 activation promotes bone marrow MSC proliferation and osteogenic differentiation via Wnt3a and Wnt5a signaling[J].?PLoS One,?2016,11(3):e0149876.

[30]ZHOU Q,?GU X Y,?DONG J C,?et al. The use of TLR2 mo-

dified BMSCs for enhanced bone regeneration in the inflammatory micro-environment[J].?Artificial Cells,?Nanomedicine,?and Biotechnology,?2019,47(1):3329-3337.

[31]YANG Y F,?WANG Y W,?LI L,?et al. Tolllike receptor 9 agonist stimulation enables osteogenic differentiation without altering the immune status of umbilical cord mesenchymal stem cells[J].?Molecular Medicine Reports,?2015,12(6):8077-8084.

[32]WU L,?SONG J,?XUE J C,?et al. MircoRNA-143-3p regulating ARL6 is involved in the cadmium-induced inhibition of osteogenic differentiation in human bone marrow mesenchymal stem cells[J].?Toxicology Letters,?2020,331:159-166.

[33]董晨露,劉笑涵,吳琳. 骨髓間充質(zhì)干細(xì)胞成骨分化的研究與進(jìn)展[J].?中國(guó)骨傷,?2019,32(3):288-292.

(本文編輯?黃建鄉(xiāng))

猜你喜歡
脂肪組織
不同凍存時(shí)間對(duì)脂肪組織生物學(xué)活性的影響
影響脂肪組織工程中細(xì)胞外基質(zhì)支架的相關(guān)因素研究進(jìn)展
肥胖兒童脂肪組織內(nèi)質(zhì)網(wǎng)應(yīng)激促動(dòng)脈粥樣硬化研究進(jìn)展
脂肪有時(shí)可助免疫
組織工程脂肪微環(huán)境中影響血管化的因素
脂肪沉積分子機(jī)理的研究進(jìn)展
南疆多浪羊不同部位脂肪組織中揮發(fā)性風(fēng)味成分分析
胖孩子脂肪組織6歲時(shí)已現(xiàn)病理變化