王林 易基群 江高峰
【摘要】目的 探討外泌體長鏈非編碼RNA H19(lncRNA H19)調(diào)控人肺腺癌細(xì)胞遷移和侵襲作用及機(jī)制。方法 收集確診肺腺癌并經(jīng)影像學(xué)診斷已發(fā)生遠(yuǎn)處轉(zhuǎn)移患者(轉(zhuǎn)移組)或無遠(yuǎn)處轉(zhuǎn)移患者(非轉(zhuǎn)移組)以及正常人群(正常對照組)各30例外周血標(biāo)本,分離單核細(xì)胞獲得血漿上清液分離外泌體,同時(shí)取培養(yǎng)人肺腺癌細(xì)胞系A(chǔ)549細(xì)胞時(shí)收集的培養(yǎng)上清液分離外泌體,實(shí)時(shí)熒光定量PCR(qRT-PCR)法檢測并比較組間外泌體lncRNA H19 mRNA表達(dá)差異。并采用慢病毒介導(dǎo)的lncRNA H19特異性小干擾RNA(shRNA)構(gòu)建穩(wěn)定敲低lncRNA H19的人肺腺癌A549細(xì)胞模型,熒光素酶驗(yàn)證lncRNA H19通過吸附結(jié)合微RNA-7(miR-7),劃痕實(shí)驗(yàn)、Transwell實(shí)驗(yàn)檢測穩(wěn)定敲低lncRNA H19對A549細(xì)胞遷移、侵襲能力的影響,蛋白免疫印跡法檢測穩(wěn)定敲低lncRNA H19對miR-7及其下游的信號(hào)通路蛋白Kruppel樣因子4(KLF4)和血管內(nèi)皮生長因子(VEGF)蛋白表達(dá)水平的影響。結(jié)果 外泌體被成功分離。與非轉(zhuǎn)移組肺腺癌患者相比,轉(zhuǎn)移組肺腺癌患者外周血外泌體lncRNA H19 mRNA表達(dá)增加(P < 0.01)。A549細(xì)胞中,與對照細(xì)胞相比,穩(wěn)定敲低lncRNA H19細(xì)胞的外泌體lncRNA H19 mRNA表達(dá)減少(P 0.01)。 細(xì)胞劃痕實(shí)驗(yàn)和Transwell實(shí)驗(yàn)顯示,敲低lncRNA H19的A549細(xì)胞遷移和侵襲的能力下降。野生型 lncRNA H19 與 miRNA-7共轉(zhuǎn)染后A549細(xì)胞熒光度值下降(P < 0.01),突變型lncRNA H19與miRNA共轉(zhuǎn)染后A549細(xì)胞熒光度值未見明顯變化(P > 0.05)。A549細(xì)胞中,穩(wěn)定敲低lncRNA H19后KLF4和VEGF蛋白表達(dá)水平均有所下調(diào)(P均< 0.05)。結(jié)論 外泌體lncRNA H19可能在肺腺癌細(xì)胞遷移和侵襲過程中發(fā)揮作用,且這種作用可能與競爭性結(jié)合miR-7及KLF4/VEGF信號(hào)通路有關(guān)。
【關(guān)鍵詞】長鏈非編碼核糖核酸H19;微核糖核酸-7;侵襲;遷移
Regulatory effect of exosomes lncRNA H19 on migration and invasion of human lung adenocarcinoma cells through miR-7/KLF4/VEGF signaling pathway Wang Lin, Yi Jiqun, Jiang Gaofeng. Department of Oncology, Guangzhou Red Cross Hospital, Medical College of Jinan University, Guangzhou 510220, China
Corresponding author, Wang Lin, E-mail: Wanglin476@ext.jnu.edu.cn
【Abstract】Objective To investigate the effect and mechanism of exosomes long non-coding RNA H19 (lncRNA H19) on the migration and invasion of human lung adenocarcinoma cells. Methods Peripheral blood samples were collected from 30 lung adenocarcinoma patients with distant metastasis (metastasis group), 30 patients without distant metastasis (non-metastasis group) and 30 healthy controls (normal control group). The exosomes were isolated from plasma supernatant obtained from separating monocytes, and the exosomes were separated from culture supernatant collected from human lung adenocarcinoma cell line A549. The expression levels of exosomes lncRNA H19 mRNA were detected and compared among three groups by real-time fluorescence quantitative PCR (qRT-PCR). A549 cell models with stable H19 knockdown were constructed by lentivirus-mediated H19 shRNA. The binding between lncRNA H19 and microRNA-7 (miR-7) was verified by luciferase assay. The effect of stable lncRNA H19 knockdown upon the migration and invasion of A549 cells was evaluated by wound healing test and Transwell chamber test. The effect of stable lncRNA H19 knockdown upon the expression levels of KLF4 and VEGF proteins was assessed by Western blot. Results The exosomes were successfully isolated. Compared with the non-metastasis group, the expression level of lncRNA H19 mRNA in the peripheral blood exosomes in the metastasis group was significantly up-regulated (P < 0.01). Compared with the control cells, the expression level of lncRNA H19 mRNA in the exosomes of A549 cells with stable lncRNA H19 knockdown was significantly down-regulated (P < 0.01). Wound healing test and Transwell chamber test demonstrated that the migration and invasion of A549 cells were significantly decreased after lncRNA H19 knockdown. The fluorescent intensity of A549 cells was significantly decreased after wild-type lncRNA H19 was co-transfected with miR-7 (P < 0.01), whereas the fluorescent intensity of A549 cells did not significantly change after the co-transfection of mutant lncRNA H19 and miR-7 (P >
0.05). The expression levels of KLF4 and VEGF in the A549 cells were significantly down-regulated after stable lncRNA H19 knockdown (both P < 0.05). Conclusion Exosomes lncRNA H19 may play a role in the migration and invasion of lung adenocarcinoma cells, which is probably correlated with the competitive binding with miR-7 and the miR-7/KLF4/VEGF signaling pathway.
【Key words】Long non-coding RNA H19; MicroRNA-7; Invasion; Metastasis
非小細(xì)胞肺癌(NSCLC)約占所有肺癌的80%,肺腺癌屬于NSCLC。癌細(xì)胞遷移被認(rèn)為腫瘤晚期的主要特征[1]。因此,對肺腺癌細(xì)胞侵襲機(jī)制的更好理解將有助于開發(fā)更多的治療策略。外泌體的作用被認(rèn)為是傳遞細(xì)胞間信號(hào)交流,腫瘤細(xì)胞分泌外泌體中攜帶大量致癌成分可以刺激腫瘤細(xì)胞遷移的發(fā)生發(fā)展[2]。研究表明,腫瘤外泌體可以通過改變腫瘤微環(huán)境、上皮細(xì)胞-間充質(zhì)轉(zhuǎn)化(EMT)和腫瘤微血管生成等多方面促進(jìn)腫瘤進(jìn)程[3-4]。近年來針對外泌體中長鏈非編碼RNA(lncRNA)的作用越來越受到重視。LncRNA H19在不同癌種類型和細(xì)胞背景中發(fā)揮的作用也不盡相同[5-6]。到目前為止,lncRNA H19在肺癌細(xì)胞遷移和侵襲中的作用仍然不盡為人所知。一般認(rèn)為,lncRNA在細(xì)胞中發(fā)揮“分子海綿”的作用,可大量吸附并抑制微RNA(miR)對靶基因的作用。前期研究顯示,lncRNA H19可以通過吸附miR-7,并參與調(diào)控腫瘤微環(huán)境和血管異常化等,影響腫瘤轉(zhuǎn)移前微環(huán)境形成[7-8]。腫瘤的轉(zhuǎn)移和生長主要依賴新生血管的形成。然而,目前關(guān)于lncRNA H19參與肺癌侵襲遷移的機(jī)制鮮有報(bào)道。本研究探討外泌體lncRNA H19與miR-7的關(guān)系以及其在肺腺癌遷移侵襲中的作用及機(jī)制,現(xiàn)報(bào)告如下。
材料與方法
一、實(shí)驗(yàn)試劑
主要有RPMI-1640培養(yǎng)基(美國Gibco),胎牛血清(美國Gibco),外泌體提取試劑盒(德國Qiagen),Lipo3000轉(zhuǎn)染試劑盒(美國Life),TRIzol總RNA抽提試劑(美國Life),逆轉(zhuǎn)錄試劑盒(日本TaKaRa),實(shí)時(shí)熒光定量PCR(qRT-PCR)試劑盒(日本TaKaRa),雙熒光素酶報(bào)告基因試劑盒(美國Promega),GM130抗體(美國Affnity),CD63抗體(美國Affinity),Kruppel樣因子4(KLF4)抗體(美國Affinity),血管內(nèi)皮生長因子(VEGF)抗體(美國Affinity),甘油醛-3-磷酸脫氫酶(GAPDH)抗體(美國CST),HRP-山羊抗兔二抗(博奧龍)。本研究所使用的引物由上海捷瑞生物工程有限公司合成。
二、細(xì)胞培養(yǎng)
人肺腺癌細(xì)胞系A(chǔ)549細(xì)胞(南部戰(zhàn)區(qū)總醫(yī)院腫瘤科張為民教授惠贈(zèng))用含10%胎牛血清的RPMI-1640培養(yǎng)基,于37 ℃、5%CO2、飽和濕度培養(yǎng)箱內(nèi)培養(yǎng),每48 h更換培養(yǎng)液1次。培養(yǎng)瓶中的細(xì)胞生長到80% ~ 95% 融合時(shí)進(jìn)行細(xì)胞傳代或收集細(xì)胞鋪板培養(yǎng)。
三、外泌體分離及鑒定
收集廣州市紅十字會(huì)醫(yī)院確診肺腺癌并經(jīng)影像學(xué)診斷已發(fā)生遠(yuǎn)處轉(zhuǎn)移患者(轉(zhuǎn)移組)或無遠(yuǎn)處轉(zhuǎn)移患者(非轉(zhuǎn)移組)以及正常人群(正常對照組)各30例外周血標(biāo)本。本研究經(jīng)廣州市紅十字會(huì)醫(yī)院醫(yī)學(xué)研究倫理委員會(huì)批準(zhǔn)(批件號(hào)2019-146-01),入組患者均已簽署知情同意書。取患者外周血標(biāo)本分離單核細(xì)胞獲得血漿上清液,同時(shí)取培養(yǎng)A549細(xì)胞時(shí)收集的培養(yǎng)上清液,具體步驟按照試劑盒說明書執(zhí)行。將提取外泌體按要求稀釋至100 μg/100 μL。利用透射電鏡對外泌體進(jìn)行形態(tài)學(xué)鑒定,利用蛋白免疫印跡法分析外泌體的CD63和GM-130表達(dá)情況。
四、qRT-PCR
根據(jù)TRIzol試劑盒說明書從外泌體中提取總RNA。進(jìn)行qRT-PCR測定以評估lncRNA H19 mRNA的表達(dá),引物設(shè)計(jì)如下:lncRNA H19正向5-ATCGGTGCCTCAGCGTTCGG-3、反向5-C
TGTCCTCGCCGTCACACCG-3,GAPDH正向5-C
AAGAGCACAAGAGGAAGAGAG-3、反向5-CTA
CATGGCAACTGTGAGGAG-3。通過公式計(jì)算Ct值,具體為Ct = CtlncRNA H19-CtGAPDH,將lncRNA H19 mRNA表達(dá)水平標(biāo)準(zhǔn)化,每組設(shè)3個(gè)復(fù)孔,實(shí)驗(yàn)獨(dú)立重復(fù)3次。
五、LncRNA H19 shRNA慢病毒的構(gòu)建
將含有綠色熒光蛋白(GFP)報(bào)告基因的慢病毒載體LV-008(永諾生物)用于表達(dá)靶向lncRNA H19(5-CCAACATCAAAGACACCAT-3)和干擾對照(5-TGGTTTACATGTCGACTAA-3)序列的短發(fā)夾RNA(shRNA)。用包裝載體將LV-008-shH19質(zhì)粒轉(zhuǎn)染到人胚腎細(xì)胞HEK 293T細(xì)胞(南部戰(zhàn)區(qū)總醫(yī)院腫瘤科張為民教授惠贈(zèng))中。轉(zhuǎn)染72 h收集含有感染慢病毒的上清液,100 000×g超速離心2 h濃縮慢病毒,并重懸于磷酸鹽緩沖液中。將A549細(xì)胞接種在24孔板中,并在5 ~ 10 μg/mL聚凝胺存在下用慢病毒感染,后用2 μg/mL嘌呤霉素篩選lncRNA H19敲低細(xì)胞10 ~ 15 d。
六、雙熒光素酶報(bào)告基因檢測
利用在線數(shù)據(jù)庫RNAhybrid (https://bibiserv.cebitec.uni-bielefeld.de/rnahybrid/)預(yù)測分析結(jié)合位點(diǎn)結(jié)果(圖5A),設(shè)計(jì)PCR引物,正向5-CAGGGACATGGCAGGGGACACAGGACAG-3,反向5-CGCCAGGTCCGGTGGACGTGACAAGCAGG-3。PCR產(chǎn)物經(jīng)純化回收后,連接到雙熒光素酶報(bào)告基因pmirGLO質(zhì)粒中,在野生型載體基礎(chǔ)上,將結(jié)合位點(diǎn)GGCGGCGAG突變?yōu)镃CGCCGCTC,并構(gòu)建突變型載體。野生型和突變型分別命名為:pmirGLO-H19-WT和pmirGLO-H19-MUT,將各構(gòu)建載體與miR-7共轉(zhuǎn)染293T細(xì)胞。采用美國 Promega公司的雙熒光素酶報(bào)告基因檢測系統(tǒng),依據(jù)實(shí)驗(yàn)說明進(jìn)行操作,計(jì)算螢火蟲熒光素酶值與海腎熒光值的比值反應(yīng)熒光素酶活性。每組設(shè)3個(gè)復(fù)孔,實(shí)驗(yàn)獨(dú)立重復(fù)3次。
七、劃痕實(shí)驗(yàn)及Transwell實(shí)驗(yàn)
分離提取野生型或穩(wěn)定干擾lncRNA H19的A549細(xì)胞外泌體,用其處理A549細(xì)胞12 h后,消化細(xì)胞,取對數(shù)生長期細(xì)胞,接種于6孔板,每孔約5×105個(gè),待細(xì)胞達(dá)90%以上融合時(shí),使用200 μL微量槍頭均勻筆直劃出劃痕進(jìn)行劃痕實(shí)驗(yàn)。更換無血清培養(yǎng)液2 mL,置于37 ℃、5%CO2培養(yǎng)箱培養(yǎng),于12、24 h倒置顯微鏡下拍照。將50 μL濃度為10%的Matrigel鋪于Transwell小室底部,將外泌體處理后的A549細(xì)胞加入Transwell小室中,下室加入600 ?L含10%胎牛血清的完全培養(yǎng)基,置于培養(yǎng)箱中培養(yǎng)24 h。棄Transwell小室培養(yǎng)基,磷酸鹽緩沖液洗3次,使用冰甲醇固定15 min,0.1%結(jié)晶紫溶液染色20 min,取出Transwell小室,用棉簽擦去上室內(nèi)的細(xì)胞和基質(zhì)膠,顯微鏡下觀察Transwell小室底部下室側(cè)附著的細(xì)胞。每組設(shè)3個(gè)復(fù)孔,實(shí)驗(yàn)獨(dú)立重復(fù)3次。
八、蛋白免疫印跡法分析
用磷酸鹽緩沖液洗滌后,將細(xì)胞重新懸浮并加入裂解液(50 mmol/L Tris緩沖液,100 mmol/LNaCl,1%NP-40裂解液和0.5%脫氧膽酸鹽,1 mmol/L苯甲基磺酰基)4 ℃中裂解20 min。然后通過10%十二烷基硫酸鈉-聚丙烯酰胺凝膠電泳,并轉(zhuǎn)到聚二氟乙烯膜(德國Millipore)上。將膜在含有5%(質(zhì)量/體積)脫脂奶粉的Tris-HCl緩沖鹽溶液(TBST,含0.05%吐溫20)封閉1 h,并與第一抗體(1∶1000)一起孵育2 h,然后洗滌3 h。用TBST洗滌3次,每次10 min,然后與二抗(1∶5000)孵育1 h。后用TBST洗滌3次,每次10 min,通過增強(qiáng)化學(xué)發(fā)光法(ECL, 瑞典Amersham Pharmacia Biotech)顯色后化學(xué)發(fā)光成像系統(tǒng)成像,Band Scan圖像分析軟件進(jìn)行積分光密度值分析。每組設(shè)3個(gè)復(fù)孔,實(shí)驗(yàn)獨(dú)立重復(fù)3次。
九、統(tǒng)計(jì)學(xué)處理
使用SPSS 18.0進(jìn)行分析,正態(tài)分布計(jì)量資料以表示,組間比較采用t檢驗(yàn)。P < 0.05為差異有統(tǒng)計(jì)學(xué)意義。
結(jié)果
一、外泌體提取鑒定
透射電子顯微鏡下外泌體為直徑40 ~ 100 nm的圓形囊泡樣結(jié)構(gòu),見圖1A。蛋白免疫印跡法檢測外泌體跨膜標(biāo)記分子GM130(高爾基體表面相關(guān)的分子,不會(huì)隨囊泡轉(zhuǎn)運(yùn)至外泌體)與外泌體表面標(biāo)記分子CD63的表達(dá)顯示:與細(xì)胞裂解液相比,外泌體高表達(dá)CD63,低表達(dá)GM-130,見圖1B。以上結(jié)果顯示,外泌體被成功分離。
二、轉(zhuǎn)移組、非轉(zhuǎn)移組肺腺癌患者和正常對照組患者外周血外泌體lncRNA H19 mRNA表達(dá)情況
因lncRNA H19表達(dá)差異在腫瘤發(fā)生發(fā)展已明確,且本文重點(diǎn)研究其在腫瘤轉(zhuǎn)移過程中作用,故后續(xù)分析僅在轉(zhuǎn)移組與未發(fā)生轉(zhuǎn)移組之間進(jìn)行比較,結(jié)果顯示與非轉(zhuǎn)移組肺腺癌患者相比,轉(zhuǎn)移組肺腺癌患者外周血外泌體中l(wèi)ncRNA H19 mRNA表達(dá)增加(t = 2.776,P < 0.01),提示lncRNA H19高表達(dá)可能與肺腺癌轉(zhuǎn)移密切相關(guān),見圖2。
三、穩(wěn)定敲低lncRNA H19的A549細(xì)胞構(gòu)建
A549細(xì)胞中,與對照細(xì)胞相比,穩(wěn)定敲低lncRNA H19細(xì)胞的外泌體中l(wèi)ncRNA H19 mRNA表達(dá)量減少約65%(t = 4.912,P < 0.01),見圖3。
四、穩(wěn)定敲低lncRNA H19對A549細(xì)胞遷移和侵襲能力的影響
細(xì)胞劃痕實(shí)驗(yàn)和Transwell實(shí)驗(yàn)顯示敲低lncRNA H19的A549細(xì)胞遷移和侵襲的能力下降,見圖4。
五、雙熒光素酶報(bào)告基因驗(yàn)證lncRNA H19和miR-7相互結(jié)合
在線數(shù)據(jù)庫RNAhybrid預(yù)測結(jié)合位點(diǎn)結(jié)果見圖5A。雙熒光素酶報(bào)告基因檢測結(jié)果顯示,野生型 lncRNA H19 與 miR-7共轉(zhuǎn)染后A549細(xì)胞熒光素酶相對活性下降(t = 5.347,P < 0.001),然而突變型lncRNA H19與miR共轉(zhuǎn)染后A549細(xì)胞后熒光素酶相對活性未見明顯變化(t = 0.676,P = 0.536),表明 lncRNA H19 與 miR-7之間存在特異性結(jié)合,見圖5B。
六、敲除外泌體H19導(dǎo)致下游信號(hào)蛋白的變化
A549細(xì)胞中,穩(wěn)定敲低lncRNA H19后KLF4 (t = 4.614,P < 0.01)和VEGF(t = 3.976, P < 0.05)蛋白表達(dá)水平均有所下調(diào),見圖6。
討論
轉(zhuǎn)移是肺癌治療領(lǐng)域的重要挑戰(zhàn),更好地了解腫瘤轉(zhuǎn)移的分子機(jī)制可能會(huì)發(fā)現(xiàn)更有效的治療策略。外泌體作為細(xì)胞交流的信號(hào)傳遞者,含有大量的lncRNA,在細(xì)胞中起到miR分子的“海綿吸附”作用,從而解除miR對靶基因的抑制作用[7-9]。
本研究顯示,臨床中發(fā)生轉(zhuǎn)移的肺腺癌患者血清中外泌體lncRNA H19 mRNA表達(dá)比未發(fā)生轉(zhuǎn)移的肺腺癌患者明顯升高,這表明外泌體源性lncRNA H19與肺癌發(fā)生轉(zhuǎn)移有密切關(guān)系。進(jìn)一步的研究表明,外泌體中包含lncRNA H19,通過競爭性內(nèi)源RNA方式吸附miR-7的表達(dá),從而解除miR-7對KLF4的翻譯抑制,并激活KLF4/VEGF信號(hào)通路進(jìn)而參與調(diào)控細(xì)胞遷移和侵襲。
外泌體被認(rèn)為是造成原發(fā)性腫瘤微環(huán)境改變的重要通訊介質(zhì)[10-13]。外泌體是粒徑為30 ~ 150 nm的小囊泡。這些小囊泡通過胞吐方式被釋放到細(xì)胞外環(huán)境中并造成受體細(xì)胞相關(guān)表型改變[14-15]。因此,外泌體作為細(xì)胞間通訊的有效介質(zhì),在腫瘤發(fā)生中具有關(guān)鍵作用。多項(xiàng)研究顯示腫瘤細(xì)胞分泌外泌體增多,且易于從血液中分離。細(xì)胞外泌體是近年來發(fā)現(xiàn)的一類細(xì)胞間信號(hào)傳遞的關(guān)鍵媒介,這種由細(xì)胞主動(dòng)分泌的微小囊泡,可將細(xì)胞內(nèi)大量信息物質(zhì)打包,由一個(gè)細(xì)胞傳遞至另一個(gè)細(xì)胞,從而對靶細(xì)胞的性質(zhì)進(jìn)行跨細(xì)胞調(diào)控[16]。腫瘤細(xì)胞來源的外泌體通過轉(zhuǎn)運(yùn)具有生物功能的相關(guān)分子如蛋白質(zhì)、miR和lncRNA等來調(diào)節(jié)靶細(xì)胞[17-20]。本研究中,穩(wěn)定敲低表達(dá)外泌體lncRNA H19的A549細(xì)胞后,其遷移和侵襲能力下降。
LncRNA和miR的作用方式很多,其中之一就是lncRNA可以作為一種競爭性內(nèi)源性RNA與miR相互作用,即所謂海綿吸附作用,參與靶基因的表達(dá)調(diào)控[20-21]。本研究顯示,外泌體lncRNA H19通過競爭性結(jié)合miR-7,而miR-7能夠通過靶向KLF4基因,KLF4是VEGF的轉(zhuǎn)錄激活因子[22-23]。穩(wěn)定敲低外泌體lncRNA H19能夠顯著影響KLF4和VEGF的mRNA和蛋白表達(dá)水平,并抑制腫瘤細(xì)胞遷移和侵襲。
綜上所述,肺癌細(xì)胞分泌的外泌體中含有l(wèi)ncRNA H19,它通過競爭性吸附miR-7,從而解除miR-7對KLF4的翻譯抑制,并激活KLF4/VEGF信號(hào)通路進(jìn)而參與調(diào)控細(xì)胞遷移和侵襲,敲低外泌體lncRNA H19可抑制肺腺癌細(xì)胞的遷移和侵襲。lncRNA H19可能在肺腺癌發(fā)展中起重要作用,可考慮作為轉(zhuǎn)移性肺腺癌診斷和治療研究的潛在靶點(diǎn)。值得注意的是,本研究僅涉及單一腫瘤細(xì)胞,其他不同肺癌細(xì)胞尤其是不同侵襲能力的肺癌細(xì)胞中有待進(jìn)一步加以證實(shí),且外泌體lncRNA H19參與肺癌侵襲轉(zhuǎn)移是否存在其他作用機(jī)制仍需后續(xù)實(shí)驗(yàn)加以驗(yàn)證。
參 考 文 獻(xiàn)
[1] Herbst R S, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature, 2018, 553(7689):446-454.
[2] 成林杰, 郭海, 姚巧玲. 外泌體在非小細(xì)胞肺癌中的研究進(jìn)展. 新醫(yī)學(xué),2021,52(1):5-9.
[3] Estrella Ibarra P, García-Solís P, Solís-Sáinz J C, Cruz-Hernández A. Expression of miRNA in obesity and insulin resistance: a review. Endokrynol Pol, 2021,72(1):73-80.
[4] Chen X, Liang H, Zhang J, Zen K, Zhang C Y. Horizontal transfer of microRNAs: molecular mechanisms and clinical applications. Protein Cell, 2012, 3(1):28-37.
[5] Shi X, Sun M, Liu H, Yao Y, Song Y. Long non-coding RNAs: a new frontier in the study of human diseases. Cancer Lett, 2013, 339(2):159-166.
[6] Jiang X, Yan Y, Hu M, Chen X, Wang Y, Dai Y, Wu D, Wang Y, Zhuang Z, Xia H. Increased level of H19 long noncoding RNA promotes invasion, angiogenesis, and stemness of glioblastoma cells. J Neurosurg, 2016, 2016(1):129-136.
[7] Ell B, Mercatali L, Ibrahim T, Campbell N, Schwarzenbach H, Pantel K, Amadori D, Kang Y. Tumor-induced osteoclast miRNA changes as regulators and biomarkers of osteolytic bone metastasis. Cancer Cell, 2013, 24(4):542-556.
[8] Wortzel I, Dror S, Kenific C M, Lyden D. Exosome-mediated metastasis: communication from a distance. Dev Cell, 2019, 49(3):347-360.
[9] Zhou W, Fong M Y, Min Y, Somlo G, Liu L, Palomares M R, Yu Y, Chow A, OConnor S T, Chin A R, Yen Y, Wang Y, Marcusson E G, Chu P, Wu J, Wu X, Li A X, Li Z, Gao H, Ren X, Boldin M P, Lin P C, Wang S E. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell, 2014, 25(4):501-515.
[10] Chin A R, Wang S E. Cancer tills the premetastatic field: mechanistic basis and clinical implications. Clin Cancer Res, 2016, 22(15):3725-3733.
[11] Sleeman J P. The metastatic niche and stromal progression. Cancer Metastasis Rev, 2012, 31(3-4):429-440.
[12] Liu Y, Cao X. Characteristics and significance of the pre-metastatic Niche. Cancer Cell, 2016, 30(5):668-681.
[13] Chafe S C, Lou Y, Sceneay J, Vallejo M, Hamilton M J, McDonald P C, Bennewith K L, M?ller A, Dedhar S. Carbonic
anhydrase Ⅸ promotes myeloid-derived suppressor cell
mobilization and establishment of a metastatic niche by stimulating G-CSF production. Cancer Res, 2015, 75(6):996-1008.
[14] Pathania A S, Challagundla K B. Exosomal long non-coding RNAs: emerging players in the tumor microenvironment. Mol Ther Nucleic Acids, 2020, 23:1371-1383.
[15] Zhang W, Zhang C, Li W, Deng J, Herrmann A, Priceman S J, Liang W, Shen S, Pal S K, Hoon D S B, Yu H. CD8+ T-cell immunosurveillance constrains lymphoid premetastatic myeloid cell accumulation. Eur J Immunol, 2015, 45(1):71-81.
[16] Melo S A, Luecke L B, Kahlert C, Fernandez A F, Gammon S T, Kaye J, LeBleu V S, Mittendorf E A, Weitz J, Rahbari N, Reissfelder C, Pilarsky C, Fraga M F, Piwnica-Worms D, Kalluri R. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature, 2015, 523(7559):177-182.
[17] Gabory A, Ripoche M A, Yoshimizu T, Dandolo L. The H19 gene: regulation and function of a non-coding RNA. Cytogenet Genome Res, 2006, 113(1-4):188-193.
[18] Shi X, Sun M, Liu H, Yao Y, Song Y. Long non-coding RNAs: a new frontier in the study of human diseases. Cancer Lett, 2013, 339(2):159-166.
[19] Jiang X, Yan Y, Hu M, Chen X, Wang Y, Dai Y, Wu D, Wang Y, Zhuang Z, Xia H. Increased level of H19 long noncoding RNA promotes invasion, angiogenesis, and stemness of glioblastoma cells. J Neurosurg, 2016, 2016(1):129-136.
[20] Keniry A, Oxley D, Monnier P, Kyba M, Dandolo L, Smits G, Reik W. The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat Cell Biol, 2012, 14(7):659-665.
[21] Jia P, Cai H, Liu X, Chen J, Ma J, Wang P, Liu Y, Zheng J, Xue Y. Long non-coding RNA H19 regulates glioma angiogenesis and the biological behavior of glioma-associated endothelial cells by inhibiting microRNA-29a. Cancer Lett, 2016, 381(2):359-369.
[22] Huang H, Wei L, Qin T, Yang N, Li Z, Xu Z. Circular RNA ciRS-7 triggers the migration and invasion of esophageal squamous cell carcinoma via miR-7/KLF4 and NF-κB signals. Cancer Biol Ther, 2019, 20(1):73-80.
[23] Li Y Z, Wen L, Wei X, Wang Q R, Xu L W, Zhang H M, Liu W C. Inhibition of miR-7 promotes angiogenesis in human umbilical vein endothelial cells by upregulating VEGF via KLF4. Oncol Rep, 2016, 36(3):1569-1575.
(收稿日期:2021-04-20)
(本文編輯:林燕薇)