柳楊青 李 旭 蔡建國(guó) 馮 健
(1東南大學(xué)混凝土及預(yù)應(yīng)力混凝土結(jié)構(gòu)教育部重點(diǎn)實(shí)驗(yàn)室, 南京 211189)(2重慶交通大學(xué)省部共建山區(qū)橋梁及隧道工程國(guó)家重點(diǎn)實(shí)驗(yàn)室, 重慶 400074)(3重慶交通大學(xué)土木工程學(xué)院, 重慶 400074)(4東南大學(xué)土木工程學(xué)院, 南京 211189)
折紙是一門古老的藝術(shù),其將平面材料沿預(yù)設(shè)折痕折疊形成空間結(jié)構(gòu).由于折痕形式的多樣性,通過折紙形成的空間結(jié)構(gòu)多種多樣.經(jīng)過特別設(shè)計(jì)的折紙結(jié)構(gòu)可以獲得不同于常規(guī)材料的性能,從而在各領(lǐng)域得到了工程應(yīng)用,如柔性機(jī)器人[1-2]、自折疊結(jié)構(gòu)[3-4]等.由于力學(xué)性能表現(xiàn)良好、制造工藝簡(jiǎn)單且價(jià)格適宜,薄壁管狀構(gòu)件被廣泛地用作吸能構(gòu)件.圓管和方管是最常用的吸能薄壁管,其在軸向壓潰作用下的力學(xué)行為得到了廣泛的研究.研究人員通過數(shù)值模擬和試驗(yàn)研究,揭示了圓管和方管的變形模式和吸能特征,并提出了相應(yīng)的分析理論和計(jì)算方法[5-7].研究還發(fā)現(xiàn),圓管和方管在軸向壓力作用下的變形模式對(duì)其初始幾何缺陷十分敏感,使其吸能能力不易控制,而根據(jù)折紙構(gòu)形的特點(diǎn)將其作為人為的初始幾何缺陷施加于構(gòu)件上可以激發(fā)特定的變形模式,由此控制荷載作用下的結(jié)構(gòu)響應(yīng).這啟發(fā)了研究人員將折紙構(gòu)形引入到薄壁管上,形成了折紙型吸能構(gòu)件的概念.
Guest等[8-10]將一種三角形化螺旋狀圓柱折紙構(gòu)形施加于圓管上,試驗(yàn)研究表明該構(gòu)件在軸向荷載作用下可以實(shí)現(xiàn)完全折疊.Song等[11]首次提出了一種由等腰梯形構(gòu)成的折紙管,數(shù)值模擬和試驗(yàn)研究表明該折紙構(gòu)形成功誘導(dǎo)了構(gòu)件在壓潰荷載作用下的變形模式,從而改善了構(gòu)件的耐撞性(crashworthiness).此后,研究人員設(shè)計(jì)了包括Miura構(gòu)形[12-13]、crash box構(gòu)形[14-15]、kite-shape構(gòu)形[16-17]、waterbomb構(gòu)形[18-19]等多種折紙構(gòu)形,并將其應(yīng)用于薄壁管上,這些構(gòu)形均對(duì)荷載作用下的結(jié)構(gòu)響應(yīng)起到了良好的控制作用,并有效提高了構(gòu)件的吸能能力.但當(dāng)前研究的對(duì)象局限于長(zhǎng)細(xì)比較小的折紙管,且研究集中于構(gòu)件在沖擊荷載作用下的力學(xué)性能,構(gòu)件不會(huì)發(fā)生整體屈曲,而對(duì)于稍長(zhǎng)的折紙管,構(gòu)件存在發(fā)生整體屈曲從而失穩(wěn)的趨勢(shì),并伴隨構(gòu)件跨中應(yīng)力集中、突然的應(yīng)力重分布和材料斷裂等問題[20].因此,探索抑制稍長(zhǎng)折紙管整體屈曲的方法具有重要意義.
本文將變角度Miura折紙構(gòu)形引入到薄壁管上,并構(gòu)建了一種折痕方案,以抑制該構(gòu)件在軸心壓力作用下的整體彎曲屈曲.首先介紹了一種由變角度Miura折紙構(gòu)形合圍而成的管狀單元.將該單元堆疊形成基于變角度Miura構(gòu)形的折紙管,并通過有限元分析比較了分別采用4種折痕方案的折紙管在軸心壓力作用下的力學(xué)性能.將斜向谷線折痕設(shè)置為完美鉸折痕,同時(shí)將其余折痕設(shè)置為連續(xù)折痕,能明顯增強(qiáng)折紙管的抗屈曲能力,從而有助于提高其吸能能力.
變角度Miura折紙構(gòu)形,即二次折疊Miura折紙構(gòu)形,是經(jīng)典Miura折紙構(gòu)形的衍生形式.兩者之間的區(qū)別在于,經(jīng)典Miura折紙構(gòu)形中角度φ1=φ2,而變角度Miura折紙構(gòu)形中角度φ1≠φ2,如圖1所示,其中實(shí)線表示峰線折痕,虛線表示谷線折痕,l1和l2為構(gòu)形的2條邊長(zhǎng),2H為構(gòu)形高度.當(dāng)滿足如下閉合條件[21-22]時(shí),4個(gè)變角度Miura折紙構(gòu)形可以合圍組合而成基于變角度Miura構(gòu)形的管狀折紙單元:
(1)
式中,α為折疊角.形成的管狀折紙單元見圖2.
(a) 經(jīng)典構(gòu)形
圖2 基于變角度Miura構(gòu)形的管狀折紙單元
剛性折紙是折紙構(gòu)形的一個(gè)重要概念,即假定折紙面板的剛度無窮大,折紙構(gòu)形可以隨著面板繞完美鉸折痕的轉(zhuǎn)動(dòng)而折疊和展開[23].完美鉸折痕無法傳遞彎距,但可以傳遞剪力和軸力,本文將其稱為A類折痕.然而在某些情況下,折紙構(gòu)件可以通過模具沖壓[15]、氣壓折疊[24]、3D打印[25]等冷成型技術(shù)進(jìn)行制造.由此制成的折紙構(gòu)件的折痕處材料是面板的延伸,材料截面并未削弱.此時(shí),除剪力和軸力外,折痕還可以傳遞彎距,這類折痕為連續(xù)折痕,本文將其稱為B類折痕.通過將不同位置的單元折痕設(shè)置為A類折痕或B類折痕,可以得到如表1所示的4種折痕方案,其中的水平折痕、斜向峰線折痕和斜向谷線折痕如圖2所示.
表1 單元折痕方案
采用Zhou等[26]的擬靜力試驗(yàn)數(shù)據(jù)對(duì)運(yùn)用有限元軟件ANSYS 18.0進(jìn)行數(shù)值模擬的有效性進(jìn)行驗(yàn)證.Zhou等[26]對(duì)如圖3所示的基于crash box構(gòu)形的折紙管進(jìn)行了擬靜力軸向壓潰試驗(yàn),圖中,b=60 mm,c=30 mm,h=58.7 mm.加載方向豎直向下,示意圖如圖4所示.模型采用板厚為1 mm的Q235鋼材,鋼材經(jīng)過800 ℃退火處理以減少制作過程中沖壓和焊接造成的殘余應(yīng)力.
圖3 Crash box折紙管
圖4 試驗(yàn)加載示意圖
采用有限元軟件ANSYS/Implicit 18.0對(duì)試件的壓潰試驗(yàn)進(jìn)行數(shù)值模擬,材料本構(gòu)采用文獻(xiàn)[26]中的實(shí)測(cè)數(shù)據(jù),有限元模型及其建模方法如圖5所示.采用標(biāo)準(zhǔn)4節(jié)點(diǎn)殼元SHELL181來模擬折紙面板、剛性加載端頭和剛性承壓端.采用CONTA175單元和TARGE170單元分別對(duì)剛性加載端頭表面和折紙管上端截面進(jìn)行劃分形成接觸對(duì),目標(biāo)面的Pilot node設(shè)置在剛性加載端頭的幾何中心位置,通過該P(yáng)ilot node施加荷載和邊界約束.剛性承壓端和折紙管下端截面采用相同的設(shè)置方法.剛性加載端只能沿管軸向平動(dòng)(即XU=ZU=XROT=YROT=ZROT=0),剛性承壓端則完全固定(即XU=YU=ZU=XROT=YROT=ZROT=0).
圖5 有限元模型和建模方法
圖6給出了軸向壓力-加載位移(F0-Δ0)曲線的比較結(jié)果,可以看出試驗(yàn)值和模擬值的趨勢(shì)大體一致;但兩者的初始剛度有較為明顯的差異.其原因在于試件的端部截面并不平整,試驗(yàn)初期加載端頭和試件端部截面之間是逐步達(dá)到充分接觸狀態(tài)的;而數(shù)值模擬時(shí),加載端頭剛開始就和試件端部截面充分接觸,一經(jīng)加載即獲得較大剛度.圖7比較了試驗(yàn)和數(shù)值模擬得到的變形和應(yīng)變分布,最大應(yīng)力均發(fā)生在試件的尖點(diǎn)處(見圖中紅色虛線框),由于有4條峰線折痕在該點(diǎn)處相交,該點(diǎn)處出現(xiàn)了明顯的應(yīng)力集中,其余部位的變形和應(yīng)變都吻合得較好.從以上比較可知,采用ANSYS/Implicit對(duì)折紙管進(jìn)行模擬能夠提供有效且可信的計(jì)算結(jié)果.
圖6 軸向壓力-加載位移(F0-Δ0)曲線
基于變角度Miura構(gòu)形的折紙管是由3個(gè)如圖2所示的管狀折紙單元沿豎向堆疊而成.依照表1中的4種折痕方案形成4根折紙管,折紙管C-ORI-1、C-ORI-2、C-ORI-3和C-ORI-4分別采用折痕方案Ⅰ、Ⅱ、Ⅲ和Ⅳ.在閉合條件式(1)的約束下,為保證各折紙管只是折痕方案不同而其幾何拓?fù)湎嗤?,各折紙管采用完全相同的幾何參?shù)設(shè)置,即H=200 mm,l=l1+l2=200 mm,φ1=85°,α=135°.
(a) 變形和最大主應(yīng)變分布試驗(yàn)結(jié)果[26]
運(yùn)用ANSYS/Implicit 18.0對(duì)基于變角度Miura構(gòu)形的折紙管進(jìn)行非線性分析,以考察各折紙管在軸心壓力作用下的抗屈曲能力.折紙管的幾何模型和有限元模型如圖8所示.采用標(biāo)準(zhǔn)4節(jié)點(diǎn)殼元SHELL181來模擬8 mm厚的折紙面板和20 mm厚的管端封板.采用點(diǎn)元MASS21通過剛性梁元MPC184連接封板節(jié)點(diǎn)的方法來實(shí)現(xiàn)管端部繞MASS21單元的整體剛性轉(zhuǎn)動(dòng),以模擬管兩端與邊界的鉸接連接.外荷載和支座反力均通過MASS21單元施加和傳遞,加載端MASS21單元只能沿管軸向平動(dòng)和繞X、Y軸轉(zhuǎn)動(dòng)(即XU=YU=ZROT=0),支座端MASS21單元只能繞X、Y軸轉(zhuǎn)動(dòng)(即XU=YU=ZU=ZROT=0).通過耦合節(jié)點(diǎn)平動(dòng)自由度的方法來簡(jiǎn)化模擬A類折痕.模型材料采用鋼材Q235B,其本構(gòu)關(guān)系采用考慮強(qiáng)化段的基于鋼材連續(xù)屈服理論的四折線模型[27],如圖9所示,相關(guān)力學(xué)參數(shù)見表2,其中fy、fu分別為材料屈服強(qiáng)度和極限強(qiáng)度,E和Est分別為材料彈性模量和強(qiáng)化模量,εy、εst、εu和εel分別為材料屈服應(yīng)變、強(qiáng)化應(yīng)變、極限強(qiáng)度對(duì)應(yīng)應(yīng)變和極限應(yīng)變.為保證軸心壓力作用下折紙管達(dá)到其極限承載能力,有限元模擬時(shí)采用位移加載,加載位移取60 mm(約為構(gòu)件計(jì)算長(zhǎng)度的5.4%).
(a) 幾何模型
圖9 材料本構(gòu)關(guān)系
表2 材料本構(gòu)關(guān)系的參數(shù)設(shè)置
圖10 折紙管的荷載F-加載位移Δ曲線
(2)
(3)
式中,l0為折紙管的計(jì)算長(zhǎng)度,l0=1 119 mm;t為折紙面板厚度,t=8 mm.各曲線的荷載峰值點(diǎn)用十字形進(jìn)行標(biāo)記,各荷載峰值點(diǎn)對(duì)應(yīng)的達(dá)到荷載峰值時(shí)的加載位移Δpeak和其對(duì)應(yīng)的平均軸向應(yīng)變?chǔ)舙eak分別列入表3中.各折紙管在荷載達(dá)到峰值時(shí)和加載結(jié)束(Δ=60 mm)時(shí)的Von Mises應(yīng)力狀態(tài)分別如圖11和圖12所示.由圖可見,各折紙管的應(yīng)力和變形狀態(tài)在數(shù)值、分布和形態(tài)上很相似,最大應(yīng)力均出現(xiàn)在構(gòu)件中部的頂點(diǎn)和B類折痕附近.達(dá)到荷載峰值時(shí)折紙管的側(cè)向彎曲程度并不明顯.相比較而言,加載結(jié)束(Δ=60 mm)時(shí)折紙管的整體屈曲程度則要顯著得多.由上述分析可以發(fā)現(xiàn),受壓過程中各折紙管的變形模式遵循相同的變化規(guī)律:在達(dá)到荷載峰值點(diǎn)之前,各折紙管的變形由軸向壓縮控制,僅產(chǎn)生略微的整體彎曲屈曲;達(dá)到荷載峰值點(diǎn)后,各折紙管整體屈曲顯著增大,變形模式由軸向壓縮控制轉(zhuǎn)變?yōu)檎w彎曲屈曲控制,并伴隨承載能力的明顯下降,構(gòu)件發(fā)生失穩(wěn).從表3中也可以發(fā)現(xiàn),折紙管C-ORI-4達(dá)到荷載峰值時(shí)的加載位移Δpeak和其對(duì)應(yīng)的平均軸向應(yīng)變?chǔ)舙eak明顯大于其他折紙管,大約是其余折紙管的1.3~1.4倍,這表明該構(gòu)件具有更加優(yōu)越的軸向變形能力.
(a) C-ORI-1
(a) C-ORI-1
通過模擬結(jié)果可以發(fā)現(xiàn),與典型的兩端簡(jiǎn)支軸心受壓構(gòu)件一致,折紙管的整體彎曲屈曲呈半波狀.因此,折紙管端部繞支座的轉(zhuǎn)角與其側(cè)向撓度幅值呈正相關(guān)(見圖13),此處用該轉(zhuǎn)角來表征折紙管發(fā)生整體彎曲的程度.圖14給出了加載過程中各折紙管端部轉(zhuǎn)角θ隨加載位移Δ的變化曲線,其中加載端轉(zhuǎn)角為θtop,支座端轉(zhuǎn)角為θbot,轉(zhuǎn)角方向以順時(shí)針為正,故θ=0以上部分表示θtop的變化趨勢(shì),θ=0以下部分表示θbot的變化趨勢(shì).折紙管C-ORI-4達(dá)到荷載峰值的時(shí)刻在圖中用虛線表示,其余構(gòu)件達(dá)到荷載峰值的時(shí)刻范圍在圖中用粉紅色區(qū)域表示.從圖中可看到,相同加載位移Δ下,轉(zhuǎn)角θtop和θbot的大小基本相同,說明折紙管上下部分的整體彎曲較為均勻.在變形由整體屈曲變形控制(即達(dá)到荷載峰值)前轉(zhuǎn)角θ均較小且?guī)缀蹼S加載位移Δ線性增長(zhǎng),而在變形由整體屈曲變形控制后轉(zhuǎn)角θ的增長(zhǎng)明顯加快,表現(xiàn)出明顯的非線性.對(duì)比各折紙管,折紙管C-ORI-4在整個(gè)加載過程中轉(zhuǎn)角最小.對(duì)應(yīng)于相同的加載位移Δ,折紙管C-ORI-4的轉(zhuǎn)角分別為折紙管C-ORI-1、C-ORI-2和C-ORI-3轉(zhuǎn)角的40.1%、42.7%和47.7%,使折紙管的側(cè)向彎曲至少降低了52.3%,同時(shí)最大轉(zhuǎn)角僅為6.5°,該現(xiàn)象表明折紙管C-ORI-4發(fā)生整體彎曲屈曲的程度最小.
圖13 轉(zhuǎn)角θ的示意圖
圖14 折紙管端部轉(zhuǎn)角θ隨加載位移Δ的變化曲線
通過以上計(jì)算結(jié)果和分析發(fā)現(xiàn),在本文研究的折紙管中,與其余構(gòu)件相比,折紙管C-ORI-4的側(cè)向彎曲減小了52.3%,同時(shí)發(fā)生整體屈曲的時(shí)刻延遲了38.5%,折紙管C-ORI-4具有最優(yōu)越的抗屈曲能力.由于各折紙管具有相同的幾何拓?fù)?,折紙管C-ORI-4所代表的折痕方案Ⅳ(將斜向谷線折痕設(shè)置為完美鉸折痕、其余折痕設(shè)置為連續(xù)折痕)是增強(qiáng)基于變角度Miura構(gòu)形折紙管抗屈曲能力的最有效折痕方案.
1) 通用有限元軟件ANSYS/Implicit 18.0可以有效地模擬折紙管的變形和應(yīng)力應(yīng)變分布.
2) 通過將Miura折紙的折痕區(qū)分為A類折痕和B類折痕,可以形成多種折痕方案.采用不同的折痕方案可以調(diào)節(jié)和控制基于變角度Miura構(gòu)形折紙管在軸壓下的變形模式和應(yīng)力應(yīng)變分布.
3) 當(dāng)將斜向谷線折痕設(shè)置為完美鉸折痕、其余折痕設(shè)置為連續(xù)折痕時(shí),折紙管的整體屈曲程度減小了52.3%,整體屈曲時(shí)刻延遲了38.5%,該折痕方案是一種抑制折紙管整體屈曲的有效方法.在后續(xù)研究中,該折痕方案將會(huì)被進(jìn)一步運(yùn)用于細(xì)長(zhǎng)折紙管上,以考察其對(duì)細(xì)長(zhǎng)折紙管抗屈曲能力的影響.