孫少康 黃勇 李志明 龍鳳
摘要 乳腺癌是威脅全球女性健康最常見(jiàn)的惡性腫瘤。當(dāng)前乳腺癌的臨床治療方法并不能完全阻止乳腺癌的復(fù)發(fā)與轉(zhuǎn)移,甚至常引起患者心血管損傷、免疫力低下、藥物敏感性降低、絕經(jīng)后諸癥風(fēng)險(xiǎn)增加等諸多不良反應(yīng)。篩選安全高效的天然抗乳腺癌活性成分,闡明其抗癌分子機(jī)制,研發(fā)新型抗乳腺癌藥物是臨床治療乳腺癌和改善乳腺癌患者預(yù)后的有效策略。生物活性多糖是天然抗腫瘤藥物主要來(lái)源之一,因其不良反應(yīng)少,易于被機(jī)體吸收和利用,與化療藥物有協(xié)同效應(yīng)等藥理活性特點(diǎn)而成為抗腫瘤藥物研究熱點(diǎn)?,F(xiàn)已發(fā)現(xiàn)多種具有抗乳腺癌作用的生物活性多糖,但因這些多糖的結(jié)構(gòu)復(fù)雜,多糖的抗癌作用機(jī)制尚不完全清楚?,F(xiàn)整理了近幾年有關(guān)生物活性多糖抗乳腺癌的研究文獻(xiàn),從多糖的生物學(xué)特性、多糖的抗腫瘤活性構(gòu)效關(guān)系以及多糖的直接、間接抗乳腺癌作用機(jī)制方面進(jìn)行論述總結(jié),以期為乳腺癌的臨床靶向治療和抗癌新藥研發(fā)提供新的科學(xué)參考。
關(guān)鍵詞 生物活性多糖;乳腺癌;構(gòu)效關(guān)系;作用機(jī)制;細(xì)胞增殖;凋亡;免疫調(diào)節(jié);藥物載體
Abstract Breast cancer is the most common malignant tumor that threatens women′s health worldwide.The current clinical treatment methods of breast cancer cannot completely prevent the recurrence and metastasis of breast cancer,and even often cause many adverse reactions in patients,such as cardiovascular injury,low immunity,reduced drug sensitivity,and increased risk of postmenopausal diseases.Screening safe and efficient natural anti-breast cancer active ingredients,clarifying their anti-cancer molecular mechanisms,and developing new anti-breast cancer drugs are effective strategies for clinical treatment of breast cancer and improving the prognosis of breast cancer patients.Bioactive polysaccharide is one of the main sources of natural antitumor drugs.It has become a research hotspot for its pharmacological activity characteristics,such as low toxic and side effects,easy to be absorbed and utilized by the body,and synergistic effect with chemotherapy drugs.A variety of bioactive polysaccharides with anti-breast cancer effects have been found,but due to the complex structure of these polysaccharides,the anti-cancer mechanism of polysaccharides is not completely clear.This paper compiled bioactive polysaccharide anti breast cancer research literatures in recent years,and summarized from the biological characteristics of polysaccharide,the structure-activity relationship of antitumor activity of polysaccharides,and direct and indirect effect of breast cancer resistance mechanism of polysaccharide,so as to provide new scientific reference for clinical targeted therapy of breast cancer and anti-cancer drug research and development.
Keywords Bioactive polysaccharides; Breast cancer; Structure activity relationship; Mechanism of action; Cell proliferation; Apoptosis; Immune regulation; Drug carrier
中圖分類號(hào):R273;R285文獻(xiàn)標(biāo)識(shí)碼:Adoi:10.3969/j.issn.1673-7202.2021.18.026
乳腺癌作為全球范圍內(nèi)女性最常見(jiàn)的惡性腫瘤,嚴(yán)重威脅著女性的生命與健康[1]。目前臨床治療乳腺癌的方法較多,已逐漸形成由手術(shù)治療、物理療法以及藥物綜合治療組成的完整體系[2]。然而在實(shí)際臨床應(yīng)用中,這些治療方法的療效并不理想,甚至常引起多種不良反應(yīng),例如,激素治療易增加患者發(fā)生靜脈血栓的風(fēng)險(xiǎn);Her-2靶向藥物常引起患者心血管損傷;化療易導(dǎo)致患者免疫力低下、骨髓抑制、藥物敏感性降低等一系列不良反應(yīng)[3-4]。雖然手術(shù)療法與藥物輔助治療的結(jié)合在很大程度上提升了乳腺癌患者的5年生存率,但仍然不能阻止乳腺癌的復(fù)發(fā)與轉(zhuǎn)移,尤其對(duì)于惡性程度更高、缺乏特異靶向藥物且對(duì)大多數(shù)抗腫瘤藥物有很強(qiáng)耐藥性、預(yù)后較差的三陰性乳腺癌,目前臨床并沒(méi)有良好的治療措施[5]。因此,篩選安全高效的天然抗乳腺癌活性成分,闡明其抗癌分子機(jī)制,研發(fā)新型抗乳腺癌藥物是臨床治療乳腺癌和改善乳腺癌患者預(yù)后的有效策略。
從天然產(chǎn)物中篩選出具有抗癌活性成分及其衍生物已成為研發(fā)抗腫瘤新藥的熱點(diǎn)[6]。多糖作為天然產(chǎn)物的主要活性成分之一,因其來(lái)源豐富、具較強(qiáng)的抗癌活性且對(duì)機(jī)體不良反應(yīng)小而備受國(guó)內(nèi)外腫瘤研究者的關(guān)注[7]。研究證實(shí),許多生物活性多糖如茯苓多糖、羊棲菜多糖等能夠激活免疫系統(tǒng),調(diào)節(jié)腫瘤相關(guān)信號(hào)通路抑制多種腫瘤細(xì)胞的生長(zhǎng)[8-9]。而有些多糖如人參多糖、黃芪多糖、靈芝多糖等已成功應(yīng)用到肺癌、喉癌的臨床試驗(yàn)中,在調(diào)節(jié)機(jī)體免疫,克服化療障礙,防止復(fù)發(fā)及轉(zhuǎn)移等方面展現(xiàn)了良好的效果[10-12]。目前,已有多項(xiàng)研究表明,生物活性多糖能夠有效抑制乳腺癌細(xì)胞增殖、遷移、侵襲,誘導(dǎo)乳腺癌細(xì)胞凋亡,激活機(jī)體免疫系統(tǒng),作為藥物載體發(fā)揮增效減毒作用[13-16]。但這些多糖物質(zhì)抗乳腺癌作用分子機(jī)制尚不清楚,很大程度上限制了其作為靶向藥物的研發(fā)及其在乳腺癌臨床治療中的應(yīng)用?,F(xiàn)對(duì)近年來(lái)有關(guān)生物活性多糖抗乳腺癌作用及其分子作用機(jī)制的研究進(jìn)行綜述,以期為乳腺癌的臨床靶向治療和抗癌新藥研發(fā)提供新的科學(xué)參考。
1 生物活性多糖
多糖作為天然化合物主要類型之一,由10個(gè)以上的單糖分子通過(guò)α-或β-糖苷鍵組合而成,分子量可達(dá)數(shù)萬(wàn)甚至百萬(wàn),廣泛存在于高等植物、動(dòng)物細(xì)胞膜以及微生物細(xì)胞壁中,是生命活動(dòng)中必不可少的大分子物質(zhì)之一[17]。根據(jù)單糖單元構(gòu)成的異同,多糖可分為均一性多糖和雜多糖;根據(jù)單糖單元鏈接方式的不同,多糖亦可分為直鏈多糖和叉鏈多糖[18]。由于多糖類物質(zhì)普遍具有生物相容性、無(wú)毒性以及化學(xué)修飾的潛力,備受食品醫(yī)藥領(lǐng)域研究的關(guān)注[19]。現(xiàn)代藥理學(xué)研究發(fā)現(xiàn),大多數(shù)多糖類物質(zhì)能夠參與機(jī)體細(xì)胞生長(zhǎng)、代謝、分化、信號(hào)傳遞、免疫應(yīng)答等各種生理活動(dòng),具有廣泛的抗腫瘤、抗微生物、抗氧化、降血脂和調(diào)節(jié)免疫等生物學(xué)活性,因而被稱為活性多糖[20]。例如,從冬蟲(chóng)夏草中分離的多糖已被證實(shí)具有免疫調(diào)節(jié)、抗腫瘤、降血糖和抗纖維化的活性[21];從海藻分離的多糖具有抗氧化、抗腫瘤、降血脂、免疫調(diào)節(jié)等特性[22]。目前,研究者正在嘗試?yán)枚嗵堑目鼓[瘤、抗原性、免疫調(diào)節(jié)等生物活性來(lái)制備疫苗和新藥用于疾病的防治。
2 多糖的抗腫瘤活性構(gòu)效關(guān)系
多糖的結(jié)構(gòu)相較于核酸和蛋白質(zhì)更為復(fù)雜,具有更高的生物信息承載能力。因此,闡明多糖結(jié)構(gòu)與功能的關(guān)系對(duì)促進(jìn)多糖的臨床應(yīng)用至關(guān)重要。
多糖的結(jié)構(gòu)分為一級(jí)結(jié)構(gòu)和高級(jí)結(jié)構(gòu)。一般來(lái)說(shuō),多糖的一級(jí)結(jié)構(gòu)由單糖組成、構(gòu)型、糖苷鍵、單糖序列以及附加的非碳水化合物基團(tuán)的性質(zhì)、數(shù)量和位置來(lái)定義,每個(gè)部分對(duì)多糖的抗腫瘤活性都有不同程度的影響[23]。例如,Wan等[24]對(duì)提取的桑黃多糖表征發(fā)現(xiàn)單糖組分中以葡萄糖占比最多,而這種多糖對(duì)乳腺癌細(xì)胞顯示出較強(qiáng)抑制作用。Zhu等[25]從龍眼中提取的多糖進(jìn)行氣相色譜確定出糖苷鍵為(1→6)-D-葡聚糖,磁共振成像譜表明葡萄糖殘基中異頭碳的構(gòu)型為α型,對(duì)肝癌細(xì)胞具有明顯抑制作用。此外,菌類多糖如香菇多糖等具有β-(1→3)鍵連接的D-葡聚糖普遍表現(xiàn)出較強(qiáng)的抗腫瘤活性,而骨架結(jié)構(gòu)主要由β-(1→6)鍵或其他鍵連接的多糖物質(zhì)抗腫瘤活性則不明顯[26]。多糖的高級(jí)結(jié)構(gòu)主要包括:骨架鏈間以氫鍵結(jié)合所形成的聚合體,一級(jí)結(jié)構(gòu)測(cè)重復(fù)序列與糖殘基中的各種基團(tuán)的非共價(jià)相互作用形成有規(guī)則而粗大的構(gòu)象,以及多糖鏈間非共價(jià)鍵結(jié)合形成的聚集體[27-29]。由于技術(shù)條件的限制,多糖的高級(jí)結(jié)構(gòu)與抗腫瘤活性的關(guān)系尚未明確,但已發(fā)現(xiàn)多糖在溶液中以各種鏈構(gòu)象存在,并且在提高生物活性中具有重要作用。例如:當(dāng)香菇多糖的三維螺旋鏈構(gòu)象被破壞成一級(jí)結(jié)構(gòu)不變的單鏈時(shí),單鏈的香菇多糖幾乎沒(méi)有顯示出生物活性[30-31]。然而,鏈構(gòu)象如何影響抗腫瘤活性仍不清楚。目前,一般認(rèn)為多糖的鏈構(gòu)象與受體的結(jié)合有關(guān)。Mueller等[32]已經(jīng)驗(yàn)證β-葡聚糖的三維螺旋和單螺旋構(gòu)象都可以結(jié)合細(xì)胞表面的葡聚糖受體,但具有三維螺旋構(gòu)象的多糖更容易被受體識(shí)別??偟膩?lái)說(shuō),不同的多糖抗腫瘤活性參差不齊,良好的水溶性和中等相對(duì)分子量是保證其抗腫瘤活性的必要條件,硫酸化、乙酰化等修飾有助于提升多糖的抗腫瘤活性,且具有三維螺旋結(jié)構(gòu)并帶有一定分支的β-(1→3)-D-葡聚糖的多糖抗腫瘤活性最為顯著[33]。
3 生物活性多糖抗乳腺癌作用
近年來(lái)關(guān)于生物活性多糖抗乳腺癌的研究日益增多,已報(bào)道的具有抗乳腺癌作用的活性多糖可根據(jù)其來(lái)源的不同分為植物多糖、菌類多糖以及海洋生物多糖三類,其中,植物多糖占比最多,主要來(lái)源于枸杞子、當(dāng)歸、三棱、烏頭、紅花、夏枯草、黃芪、龍葵、貓爪草等草本植物中[13-14,34-40]。菌類多糖占比位居其次,主要分布于桑黃、冬蟲(chóng)夏草、灰樹(shù)花、槐耳、靈芝等藥用菌中[24,41-44]。此外,一些海洋生物多糖,如褐藻多糖、裙帶菜多糖、海星多糖也被證實(shí)具備抗乳腺癌作用[45-47]。見(jiàn)表1??偨Y(jié)近年研究發(fā)現(xiàn),多糖不僅能夠抑制乳腺癌細(xì)胞增殖、侵襲、遷移,誘導(dǎo)乳腺癌細(xì)胞凋亡;調(diào)節(jié)機(jī)體免疫,也可作為化療藥物的優(yōu)良載體發(fā)揮減毒增效作用。
3.1 直接抗乳腺癌作用
3.1.1 抑制乳腺癌細(xì)胞增殖 無(wú)限生長(zhǎng)增殖是癌細(xì)胞生長(zhǎng)主要的特征之一,這種特征主要依賴于癌細(xì)胞對(duì)能量的過(guò)度攝取以及細(xì)胞周期的調(diào)節(jié)失控。在這種情況下,癌細(xì)胞不斷分裂增殖向周圍擴(kuò)散,甚至侵入組織間隙、淋巴管和血管內(nèi),嚴(yán)重時(shí)導(dǎo)致無(wú)法控制的感染,器官功能障礙甚至死亡[2]。因此,抑制癌細(xì)胞的生長(zhǎng)是首要的抗癌措施。多糖能夠有效抑制乳腺癌細(xì)胞增殖。例如:Hashemifesharaki等[49]利用微波輔助提取的棉花糖根部多糖處理肺癌(A549)、肝癌(HepG2)和乳腺癌(MCF-7)細(xì)胞,發(fā)現(xiàn)這種多糖對(duì)乳腺癌MCF-7細(xì)胞的增殖抑制作用更強(qiáng)。葡萄糖轉(zhuǎn)運(yùn)蛋白(Glucose Transporter,GLUTs)是一類參與腫瘤細(xì)胞能量代謝的關(guān)鍵載體蛋白。在體外實(shí)驗(yàn)中,銀杏多糖能夠降低乳腺癌4T1細(xì)胞中GLUT1基因表達(dá)水平,干預(yù)乳腺癌細(xì)胞能量代謝,有效抑制乳腺癌細(xì)胞增殖[48]。以往研究表明枸杞多糖能夠抑制癌細(xì)胞生長(zhǎng)但其主要有效成分尚未確定,Gong等[13]發(fā)現(xiàn)枸杞多糖阿拉伯半乳糖組分抗癌乳腺癌活性最為顯著,能夠有效阻滯乳腺癌MCF-7細(xì)胞G0/G1期,并增加活性氧的產(chǎn)生,降低線粒體膜電位,調(diào)節(jié)凋亡相關(guān)蛋白的水平。在裙帶菜多糖處理的乳腺癌MCF-7細(xì)胞中,Wu等[46]觀察到這種海洋生物多糖不僅可以阻滯細(xì)胞S期,誘導(dǎo)細(xì)胞凋亡,且降低了細(xì)胞的遷移能力。此外,火棘硒多糖在體外能夠降低MDA-MB-231細(xì)胞CDC25C、CyclinB1、CDC2的蛋白水平,阻滯細(xì)胞G2期,誘導(dǎo)乳腺癌細(xì)胞凋亡;在體內(nèi)有效延緩移植瘤的生長(zhǎng)且不減輕小鼠的體質(zhì)量[50]??傊?,上述的研究結(jié)果說(shuō)明了多糖能夠有效抑制乳腺癌細(xì)胞的增殖,其中棉花糖根部多糖、銀杏多糖的抗乳腺癌作用機(jī)制有待更深入的研究,而枸杞多糖、裙帶菜多糖以及火棘硒多糖具有開(kāi)發(fā)應(yīng)用到乳腺癌防治中的潛力。
3.1.2 誘導(dǎo)乳腺癌細(xì)胞凋亡 凋亡是細(xì)胞在一定的生理或病理?xiàng)l件下,由細(xì)胞自主調(diào)控而發(fā)生的程序性死亡。它不僅是一種普遍存在的細(xì)胞自發(fā)的死亡過(guò)程,也是細(xì)胞維持相對(duì)穩(wěn)定數(shù)量的內(nèi)在機(jī)制[55]。這種機(jī)制如果發(fā)生異常,就有可能導(dǎo)致腫瘤或其他病變。多糖能夠通過(guò)改變腫瘤細(xì)胞線粒體膜電位,阻滯細(xì)胞周期,影響凋亡相關(guān)基因的表達(dá),調(diào)節(jié)Caspase蛋白酶的水平,從而抑制端粒酶活性,誘導(dǎo)腫瘤細(xì)胞凋亡[17]。例如,在體外實(shí)驗(yàn)中,灰樹(shù)花多糖能夠增加乳腺癌MCF-7、MDA-MB-231細(xì)胞活性氧的產(chǎn)生,引起線粒體功能損傷,誘導(dǎo)乳腺癌細(xì)胞凋亡;在體內(nèi)灰樹(shù)花多糖能夠有效抑制MCF-7異種移植瘤的生長(zhǎng)且無(wú)明顯不良反應(yīng)[42]。環(huán)磷腺苷效應(yīng)元件蛋白(cAMP-response Element Binding Protein,CREB)是一種能夠刺激基因轉(zhuǎn)錄的核蛋白,在細(xì)胞凋亡中具有促進(jìn)凋亡相關(guān)蛋白的轉(zhuǎn)錄以及控制Bcl-2蛋白水平的作用。研究發(fā)現(xiàn)當(dāng)歸多糖能夠在體內(nèi)外有效誘導(dǎo)乳腺癌T47D細(xì)胞凋亡,內(nèi)在機(jī)制涉及CREB和Caspase-3的活化[14]。微生物多糖是一種由細(xì)菌、真菌、藍(lán)藻等微生物在代謝過(guò)程中產(chǎn)生的對(duì)微生物具有保護(hù)作用的生物高聚物,具有明顯的抗腫瘤活性。例如,源自海洋芽孢桿菌MHM3胞外多糖能夠引起乳腺癌MCF-7細(xì)胞線粒體損傷,調(diào)控凋亡相關(guān)蛋白,提升Bax/Bcl-2的比值,誘導(dǎo)細(xì)胞凋亡[54]?;倍褐讣纳诨睒?shù)上的木耳,據(jù)報(bào)道槐耳多糖成分能夠降低三陰性乳腺癌細(xì)胞干細(xì)胞樣特征,提升Caspase-3的水平,誘導(dǎo)乳腺癌細(xì)胞凋亡[43]。雌激素受體(Estrogen Receptor,ER)對(duì)于乳腺癌細(xì)胞增殖具有重要的促進(jìn)作用,研究證實(shí)三棱多糖能夠調(diào)節(jié)乳腺癌ZR-75-1細(xì)胞ER的水平,激活Caspase級(jí)聯(lián)反應(yīng)誘導(dǎo)其凋亡[34]??傊?,上述研究說(shuō)明了多糖能夠誘導(dǎo)乳腺癌細(xì)胞凋亡且對(duì)正常組織細(xì)胞無(wú)毒性反應(yīng)。例如,灰樹(shù)花多糖、槐耳多糖可能是潛在的治療乳腺癌藥物。
3.1.3 抑制乳腺癌遷移、侵襲以及血管生成 乳腺癌發(fā)生轉(zhuǎn)移是最危險(xiǎn)的階段,此階段癌細(xì)胞遷移能力加速,繼而侵入周圍組織并傳播全身。轉(zhuǎn)移的內(nèi)在機(jī)制涉及細(xì)胞骨架的重塑為細(xì)胞的遷移提供了基礎(chǔ)結(jié)構(gòu)和驅(qū)動(dòng)力,血管的生成為細(xì)胞提供了充足營(yíng)養(yǎng)。多糖能夠有效抑制乳腺癌的侵襲、遷移以及血管生成。例如,烏頭多糖及其衍生物能夠破壞MDA-MB-453s肌動(dòng)蛋白細(xì)胞骨架的重塑,減少Vav2磷酸化,進(jìn)一步降低了Rac1的活化從而抑制了乳腺癌細(xì)胞的轉(zhuǎn)移[35]。癌細(xì)胞能夠分泌基質(zhì)金屬蛋白酶(Matrix Metalloproteinase,MMPs)降解細(xì)胞外基質(zhì),促進(jìn)細(xì)胞侵襲與轉(zhuǎn)移。在紅花多糖處理的MCF-7細(xì)胞中,觀察到細(xì)胞的凋亡數(shù)量不僅隨著時(shí)間濃度而增多,MMP-9的水平隨之減少,有效減弱了MCF-7細(xì)胞的侵襲性[36]。表皮生長(zhǎng)因子、血管內(nèi)皮生長(zhǎng)因子和TGF-β等細(xì)胞因子能夠啟動(dòng)上皮間質(zhì)轉(zhuǎn)化(Epithelial-mesenchymal Transition,EMT)事件介導(dǎo)腫瘤轉(zhuǎn)移,研究發(fā)現(xiàn)冬蟲(chóng)夏草多糖能夠通過(guò)下調(diào)MCF-7細(xì)胞中TGF-β的水平,提升E-cadherin的水平,抑制乳腺癌EMT事件[41]。癌相關(guān)成纖維細(xì)胞(Carcinoma-associated Fibroblasts,CAFs)不僅能夠促進(jìn)癌癥的發(fā)生、生長(zhǎng)、侵襲、轉(zhuǎn)移和耐藥性,而且參與微環(huán)境事件,包括血管生成、淋巴管生成、細(xì)胞外基質(zhì)重塑、癌癥相關(guān)炎癥和代謝重編程。癌細(xì)胞可以分泌堿性成纖維細(xì)胞生長(zhǎng)因子(Basic Fibroblast Growth Factor,bFGF)來(lái)促進(jìn)基質(zhì)成纖維細(xì)胞轉(zhuǎn)化為CAFs并維持CAFs的功能。Hao等[37]證實(shí)夏枯草多糖能夠降低乳腺癌SKBr-3細(xì)胞中bFGF與CAFs的水平,有效抑制乳腺癌的生長(zhǎng)、遷移以及血管生成。微血管密度(Microvessel Density,MVD)是評(píng)估腫瘤生長(zhǎng)和發(fā)展相關(guān)的重要指標(biāo)。Qin等[51]利用免疫組織化學(xué)分析發(fā)現(xiàn)玉郎傘多糖能夠降低4TI乳腺腫瘤的微血管密度,減少腫瘤血管的生成??傊?,上述研究揭示了多糖能夠有效抑制乳腺癌的侵襲、遷移以及血管生成,這些研究的發(fā)現(xiàn)為臨床預(yù)防乳腺癌的轉(zhuǎn)移提供了新的希望。
3.1.4 調(diào)節(jié)相關(guān)信號(hào)轉(zhuǎn)導(dǎo)通路 乳腺癌的發(fā)生發(fā)展與細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)通路的異常激活相關(guān),從信號(hào)轉(zhuǎn)導(dǎo)通路的分子機(jī)制上闡明多糖的抗乳腺癌作用,是開(kāi)發(fā)多糖類抗乳腺癌靶向藥物必經(jīng)之路。PI3K/AKT信號(hào)通路在腫瘤細(xì)胞的生長(zhǎng)過(guò)程中發(fā)揮著重要作用。PI3K作為一種磷脂酰肌醇-3激酶,本身具有絲氨酸/蘇氨酸(Ser/Thr)激酶的活性。當(dāng)細(xì)胞感受到來(lái)自酪氨酸激酶和G蛋白偶聯(lián)受體信號(hào)時(shí),促使PI3K激活在質(zhì)膜上產(chǎn)生第二信使PIP3,從而導(dǎo)致下游效應(yīng)分子AKT的活化,活化的AKT通過(guò)進(jìn)一步磷酸化下游底物,在細(xì)胞的增殖、凋亡、能量代謝、侵襲等方面發(fā)揮調(diào)控作用[56]。研究證實(shí)褐藻多糖能夠降低乳腺癌MDA-MB-231細(xì)胞中p-PI3K、p-AKT和p-GSK-3β的水平,有效抑制PI3K/AKT信號(hào)通路活化介導(dǎo)的乳腺癌細(xì)胞生長(zhǎng)與轉(zhuǎn)移[45]。據(jù)報(bào)道,ERα-36調(diào)節(jié)PI3K/AKT信號(hào)的激活并促進(jìn)乳腺癌細(xì)胞干性特征,Hu等[43]發(fā)現(xiàn)槐耳多糖能夠有效減少M(fèi)DA-MB-436、SUM159、Hs578T 3種乳腺癌細(xì)胞中ERα-36的水平,抑制AKT/β-catenin信號(hào)激活從而降低乳腺癌細(xì)胞干性特征。Wnt信號(hào)通路是哺乳動(dòng)物進(jìn)化中相對(duì)保守的信號(hào)轉(zhuǎn)導(dǎo)途徑。細(xì)胞質(zhì)中的β-catenin積累并向核內(nèi)轉(zhuǎn)移是該通路活化的標(biāo)志,活化的Wnt/β-catenin常與其他信號(hào)通路協(xié)同作用調(diào)節(jié)腫瘤細(xì)胞的增殖、凋亡和遷移[57]。研究證實(shí)黃芪多糖能夠抑制乳腺癌MCF-7、MDA-MB-231細(xì)胞中Wnt/β-catenin信號(hào)以及下游靶蛋白Snail、Vimentin的表達(dá),減少乳腺癌細(xì)胞的轉(zhuǎn)移[58]。MAPK傳導(dǎo)途徑在絲裂原,神經(jīng)遞質(zhì),細(xì)胞因子等因素作用下被激活,繼而將胞外信號(hào)向內(nèi)傳導(dǎo),進(jìn)而調(diào)控多種細(xì)胞過(guò)程的關(guān)鍵信號(hào)通路,包括增殖、分化、凋亡和應(yīng)激反應(yīng)[59]。研究表明,靈芝多糖能夠調(diào)節(jié)乳腺癌MCF-7細(xì)胞MAPK傳導(dǎo)途徑,促進(jìn)p38和JNK磷酸化,提升自噬相關(guān)基因LC3和Beclin1的水平,誘導(dǎo)MCF-7細(xì)胞早期自噬[44];枸杞多糖阿拉伯半乳糖組分能夠調(diào)節(jié)p38、JNK、Erk的磷酸化水平,誘導(dǎo)乳腺癌MCF-7細(xì)胞凋亡[13];海星多糖能夠通過(guò)p38、JNK、Erk信號(hào)調(diào)節(jié)c-jun的表達(dá),抑制AP-1的轉(zhuǎn)錄活性,從而降低COX-2和MMP-9的水平抑制乳腺癌MCF-7細(xì)胞轉(zhuǎn)移[47]。
3.2 間接抗乳腺癌作用
3.2.1 調(diào)節(jié)免疫 許多惡性腫瘤的發(fā)生與生長(zhǎng)都伴隨著免疫系統(tǒng)逃逸,在這種情況下,腫瘤細(xì)胞將獲得免疫抑制作用進(jìn)而更具侵襲性,此時(shí)的腫瘤細(xì)胞常表現(xiàn)出抑制有效抗腫瘤免疫分子的反應(yīng)[60]。因此,恢復(fù)抗腫瘤免疫分子的功能,形成天然和獲得性免疫系統(tǒng)對(duì)腫瘤細(xì)胞產(chǎn)生免疫應(yīng)答,是不容忽視的抗腫瘤有效治療手段。多糖不僅能夠刺激T細(xì)胞、B細(xì)胞、NK細(xì)胞、CTL細(xì)胞、LAK細(xì)胞等免疫細(xì)胞的活性,激活網(wǎng)狀內(nèi)皮系統(tǒng),清除老化細(xì)胞、異物和病原體;還促進(jìn)IL-1、IL-2、TNF-α、TNF-γ、NO的釋放,調(diào)節(jié)機(jī)體抗體和補(bǔ)體的形成;提高機(jī)體的抗腫瘤免疫力[17]。例如,黃芪多糖能夠有效阻滯乳腺癌MCF-7細(xì)胞G1期,提升Bax/Bcl-2的比值,且激活巨噬細(xì)胞釋放NO和TNF-α促進(jìn)腫瘤免疫應(yīng)答[38];龍葵多糖能夠顯著提升4T1荷瘤小鼠腫瘤組織中TNF-α,TNF-γ,IL-4的水平,有效延緩移植瘤的生長(zhǎng)且無(wú)不良反應(yīng)[39];貓爪草多糖成分能夠抑制乳腺癌MCF-7細(xì)胞的生長(zhǎng)且提升NK細(xì)胞的數(shù)量[40]。
3.2.2 藥物載體 天然多糖可以增強(qiáng)化療藥物以及納米粒子(Nanoparticles,NPs)的生物相容性和穩(wěn)定性,降低其生物毒性,是藥物傳遞的優(yōu)良載體。有研究將紅松多糖作為紫杉醇(PTX)載體制備成PTX凝膠,在體外實(shí)驗(yàn)中發(fā)現(xiàn)PTX凝膠對(duì)乳腺癌4T1和MCF-7細(xì)胞系的增殖具有明顯抑制作用,在體內(nèi)有效抑制腫瘤的生長(zhǎng)且降低全身毒性[61]。也有研究為了提升鹽酸阿霉素(DOX)在納米給藥系統(tǒng)中的低載藥量,成功制備了黑木耳多糖(AAP)-殼聚糖(CS)-納米粒子(NPs)作為DOX的載體。隨后在體外細(xì)胞實(shí)驗(yàn)中觀察到,DOX AAP-CS-NPs顯著增加了DOX對(duì)乳腺癌MCF-7細(xì)胞的毒性[62]。硒化合物可以作為癌癥化學(xué)預(yù)防的有效藥物。然而,硒的有益劑量和毒性劑量之間的狹窄界限限制了它在膳食補(bǔ)充劑中的應(yīng)用。Gao等[63]以豬苓多糖(PUP)作為封端劑,在亞硒酸鹽和抗壞血酸的氧化還原體系中制備了豬苓多糖-硒納米粒(PUP-SeNPs)。體外實(shí)驗(yàn)中發(fā)現(xiàn)PUP-SeNPs具有選擇性腫瘤毒性,以劑量依賴的方式抑制4種癌細(xì)胞系的增殖,而沒(méi)有觀察到對(duì)3種正常細(xì)胞系的顯著細(xì)胞毒性。與其他癌細(xì)胞系(HepG2、Hela和HT29)比較,PUP-SeNPs對(duì)乳腺癌MDA-MB-231細(xì)胞最敏感。
4 總結(jié)與展望
近年來(lái),許多生物活性多糖相繼被證實(shí)能夠有效抑制乳腺癌的發(fā)生與發(fā)展。生物活性多糖的抗乳腺癌作用機(jī)制涉及抑制乳腺癌細(xì)胞增殖、轉(zhuǎn)移、侵襲及血管生成,誘導(dǎo)乳腺癌細(xì)胞凋亡,調(diào)節(jié)機(jī)體免疫等多個(gè)生物學(xué)過(guò)程。尤其是多糖在發(fā)揮抗乳腺癌作用的同時(shí),并未對(duì)機(jī)體產(chǎn)生任何不良反應(yīng),這使其具有巨大臨床應(yīng)用的優(yōu)勢(shì)與潛力。盡管越來(lái)越多的研究闡明了多糖抗乳腺癌的生物學(xué)功能,但仍有許多領(lǐng)域需要更深入的研究以揭示多糖抗乳腺癌的分子機(jī)制。如由于多糖具有復(fù)雜的結(jié)構(gòu)以及不同的提取方法往往會(huì)表現(xiàn)出不固定的抗乳腺癌活性,因此,需進(jìn)一步研究多糖結(jié)構(gòu)與功能的關(guān)系,確定其有效抗乳腺癌活性成分;多糖的硫酸化、硒化等化學(xué)修飾方法的使用可能有助于提升多糖的抗乳腺癌活性??傊?,考慮到生物活性多糖的生物學(xué)特性及其獨(dú)特的藥理活性在乳腺癌臨床治療及藥物研發(fā)中的巨大應(yīng)用潛力,應(yīng)進(jìn)一步深度解析多糖抗乳腺癌的分子作用機(jī)制,結(jié)合更多的臨床實(shí)驗(yàn)研究,使這一類豐富的天然資源盡早服務(wù)于乳腺癌的臨床治療[64]。
參考文獻(xiàn)
[1]D′Oronzo S,Silvestris E,Paradiso A,et al.Role of Bone Targeting Agents in the Prevention of Bone Metastases from Breast Cancer[J].Int J Mol Sci,2020,21(8):3022-3036.
[2]Harbeck N,Gnant M.Breast cancer[J].Lancet,2017,389(10074):1134-1150.
[3]Jameera Begam A,Jubie S,Nanjan MJ.Estrogen receptor agonists/antagonists in breast cancer therapy:A critical review[J].Bioorg Chem,2017,71:257-274.
[4]Normanno N,Morabito A,De Luca A,et al.Target-based therapies in breast cancer:current status and future perspectives[J].Endocr Relat Cancer,2009,16(3):675-702.
[5]ávalos-Moreno M,López-Tejada A,Blaya-Cánovas JL,et al.Drug Repurposing for Triple-Negative Breast Cancer[J].J Pers Med,2020,10(4):200-206.
[6]Guo YH,Kuruganti R,Gao Y.Recent Advances in Ginsenosides as Potential Therapeutics Against Breast Cancer[J].Curr Top Med Chem,2019,19(25):2334-2347.
[7]Gan QX,Wang J,Hu J,et al.Modulation of Apoptosis by Plant Polysaccharides for Exerting Anti-Cancer Effects:A Review[J].Front Pharmacol,2020,11:792.
[8]Li X,He Y,Zeng P,et al.Molecular basis for Poria cocos mushroom polysaccharide used as an antitumour drug in China[J].J Cell Mol Med,2019,23(1):4-20.
[9]Zhang R,Zhang X,Tang Y,et al.Composition,isolation,purification and biological activities of Sargassum fusiforme polysaccharides:A review[J].Carbohydr Polym,2020,228:115381.
[10]Ma J,Liu H,Wang X.Effect of ginseng polysaccharides and dendritic cells on the balance of Th1/Th2 T helper cells in patients with non-small cell lung cancer[J].J Tradit Chin Med,2014,34(6):641-645.
[11]Hsieh CH,Lin CY,Hsu CL,et al.Incorporation of Astragalus polysaccharides injection during concurrent chemoradiotherapy in advanced pharyngeal or laryngeal squamous cell carcinoma:preliminary experience of a phase Ⅱ double-blind,randomized trial[J].J Cancer Res Clin Oncol,2020,146(1):33-41.
[12]Sun LX,Li WD,Lin ZB,et al.Protection against lung cancer patient plasma-induced lymphocyte suppression by Ganoderma lucidum polysaccharides[J].Cell Physiol Biochem,2014,33(2):289-299.
[13]Gong G,Liu Q,Deng Y,et al.Arabinogalactan derived from Lycium barbarum fruit inhibits cancer cell growth via cell cycle arrest and apoptosis[J].Int J Biol Macromol,2020,149:639-650.
[14]Zhou WJ,Wang S,Hu Z,et al.Angelica sinensis polysaccharides promotes apoptosis in human breast cancer cells via CREB-regulated caspase-3 activation[J].Biochem Biophys Res Commun,2015,467(3):562-569.
[15]Park JY,Shin MS,Kim SN,et al.Polysaccharides from Korean Citrus hallabong peels inhibit angiogenesis and breast cancer cell migration[J].Int J Biol Macromol,2016,85:522-529.
[16]Xiong J,Jiang B,Luo Y,et al.Multifunctional Nanoparticles Encapsulating Astragalus Polysaccharide and Gold Nanorods in Combination with Focused Ultrasound for the Treatment of Breast Cancer[J].Int J Nanomedicine,2020,15:4151-4169.
[17]Chen L,Huang G.Antitumor Activity of Polysaccharides:An Overview[J].Curr Drug Targets,2018,19(1):89-96.
[18]Xie JH,Jin ML,Morris GA,et al.Advances on Bioactive Polysaccharides from Medicinal Plants[J].Crit Rev Food Sci Nutr,2016,56(1):S60-84.
[19]Peng P,Yang K,Tong G,et al.Polysaccharide Nanoparticles for Targeted Cancer Therapies[J].Curr Drug Metab,2018,19(9):781-792.
[20]Yu Y,Shen M,Song Q,et al.Biological activities and pharmaceutical applications of polysaccharide from natural resources:A review[J].Carbohydr Polym,2018,183:91-101.
[21]Paterson RR.Cordyceps:a traditional Chinese medicine and another fungal therapeutic biofactory?[J].Phytochemistry,2008,69(7):1469-1495.
[22]Fernando I,Sanjeewa K,Lee HG,et al.Fucoidan Purified from Sargassum polycystum Induces Apoptosis through Mitochondria-Mediated Pathway in HL-60 and MCF-7 Cells[J].Mar Drugs,2020,18(4):196.
[23]Lyu F,Xu X,Zhang L.Natural polysaccharides with different conformations:extraction,structure and anti-tumor activity[J].J Mater Chem B,2020,8(42):9652-9667.
[24]Wan X,Jin X,Xie M,et al.Characterization of a polysaccharide from Sanghuangporus vaninii and its antitumor regulation via activation of the p53 signaling pathway in breast cancer MCF-7 cells[J].Int J Biol Macromol,2020,163:865-877.
[25]Zhu Q,Jiang Y,Lin S,et al.Structural identification of(1→6)-α-d-glucan,a key responsible for the health benefits of longan,and evaluation of anticancer activity[J].Biomacromolecules,2013,14(6):1999-2003.
[26]Wasser SP.Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides[J].Appl Microbiol Biotechnol,2002,60(3):258-274.
[27]來(lái)魯華,楊昱婷.寡糖的構(gòu)象分析[J].生物化學(xué)與生物物理進(jìn)展,1995,22(4):290-294.
[28]Peters T,Meyer B,Stuike-Prill R,et al.A Monte Carlo method for conformational analysis of saccharides[J].Carbohydr Res,1993,238:49-73.
[29]Imberty A,Pérez S,Hricovíni M,et al.Flexibility in a tetrasaccharide fragment from the high mannose type of N-linked oligosaccharides[J].Int J Biol Macromol,1993,15(1):17-23.
[30]Zhang L,Li X,Xu X,et al.Correlation between antitumor activity,molecular weight,and conformation of lentinan[J].Carbohydr Res,2005,340(8):1515-1521.
[31]Maeda YY,Watanabe ST,Chihara C,et al.Denaturation and renaturation of a beta-1,6;1,3-glucan,lentinan,associated with expression of T-cell-mediated responses[J].Cancer Res,1988,48(3):671-675.
[32]Mueller A,Raptis J,Rice PJ,et al.The influence of glucan polymer structure and solution conformation on binding to(1-->3)-beta-D-glucan receptors in a human monocyte-like cell line[J].Glycobiology,2000,10(4):339-346.
[33]林夢(mèng)感,楊義芳,李永輝.多糖抗腫瘤活性構(gòu)效關(guān)系的研究進(jìn)展[J].中草藥,2007,38(6):949-953.
[34]Wu YZ,Sun J,Wang YB.Selective estrogen receptor modulator:A novel polysaccharide from Sparganii Rhizoma induces apoptosis in breast cancer cells[J].Carbohydr Polym,2017,163:199-207.
[35]Zhang Y,Wu W,Kang L,et al.Effect of Aconitum coreanum polysaccharide and its sulphated derivative on the migration of human breast cancer MDA-MB-435s cell[J].Int J Biol Macromol,2017,103:477-483.
[36]Luo Z,Zeng H,Ye Y,et al.Safflower polysaccharide inhibits the proliferation and metastasis of MCF-7 breast cancer cell[J].Mol Med Rep,2015,11(6):4611-4616.
[37]Hao J,Ding XL,Yang X,et al.Prunella vulgaris Polysaccharide Inhibits Growth and Migration of Breast Carcinoma-Associated Fibroblasts by Suppressing Expression of Basic Fibroblast Growth Factor[J].Chin J Integr Med,2020,26(4):270-276.
[38]Li W,Song K,Wang S,et al.Anti-tumor potential of astragalus polysaccharides on breast cancer cell line mediated by macrophage activation[J].Mater Sci Eng C Mater Biol Appl,2019,98:685-695.
[39]Razali FN,Sinniah SK,Hussin H,et al.Tumor suppression effect of Solanum nigrum polysaccharide fraction on Breast cancer via immunomodulation[J].Int J Biol Macromol,2016,92:185-193.
[40]Sun DL,Xie HB,Xia YZ.A study on the inhibitory effect of polysaccharides from Radix ranunculus ternati on human breast cancer MCF-7 cell lines[J].Afr J Tradit Complement Altern Med,2013,10(6):439-443.
[41]Lin S,Lyu X,Yu J,et al.MHP-1 inhibits cancer metastasis and restores topotecan sensitivity via regulating epithelial-mesenchymal transition and TGF-β signaling in human breast cancer cells[J].Phytomedicine,2016,23(10):1053-1063.
[42]Zhang Y,Sun D,Meng Q,et al.Grifola frondosa polysaccharides induce breast cancer cell apoptosis via the mitochondrial-dependent apoptotic pathway[J].Int J Mol Med,2017,40(4):1089-1095.
[43]Hu B,Yan W,Wang M,et al.Huaier polysaccharide inhibits the stem-like characteristics of ERα-36 high triple negative breast cancer cells via inactivation of the ERα-36 signaling pathway[J].Int J Biol Sci,2019,15(7):1358-1367.
[44]Hanyu X,Lanyue L,Miao D,et al.Effect of Ganoderma applanatum polysaccharides on MAPK/ERK pathway affecting autophagy in breast cancer MCF-7 cells[J].Int J Biol Macromol,2020,146:353-362.
[45]Xue M,Ji X,Xue C,et al.Caspase-dependent and caspase-independent induction of apoptosis in breast cancer by fucoidan via the PI3K/AKT/GSK3β pathway in vivo and in vitro[J].Biomed Pharmacother,2017,94:898-908.
[46]Wu J,Li H,Wang X,et al.Effect of polysaccharide from Undaria pinnatifida on proliferation,migration and apoptosis of breast cancer cell MCF7[J].Int J Biol Macromol,2019,121:734-742.
[47]Lee KS,Shin JS,Nam KS.Starfish polysaccharides downregulate metastatic activity through the MAPK signaling pathway in MCF-7 human breast cancer cells[J].Mol Biol Rep,2013,40(10):5959-5966.
[48]常萍,徐艷,周大宇,等.銀杏多糖對(duì)小鼠乳腺癌4T1細(xì)胞增殖及GLUT家族基因表達(dá)的影響[J].中國(guó)藥理學(xué)通報(bào),2018,34(9):1301-1307.
[49]Hashemifesharaki R,Xanthakis E,Altintas Z,et al.Microwave-assisted extraction of polysaccharides from the marshmallow roots:Optimization,purification,structure,and bioactivity[J].Carbohydr Polym,2020,240:116301.
[50]Yuan C,Wang C,Wang J,et al.Inhibition on the growth of human MDA-MB-231 breast cancer cells in vitro and tumor growth in a mouse xenograft model by Se-containing polysaccharides from Pyracantha fortuneana[J].Nutr Res,2016,36(11):1243-1254.
[51]Qin N,Lu S,Chen N,et al.Yulangsan polysaccharide inhibits 4T1 breast cancer cell proliferation and induces apoptosis in vitro and in vivo[J].Int J Biol Macromol,2019,121:971-980.
[52]Lin HC,Lin JY.GSF3,a polysaccharide from guava(Psidium guajava L.) seeds,inhibits MCF-7 breast cancer cell growth via increasing Bax/Bcl-2 ratio or Fas mRNA expression levels[J].Int J Biol Macromol,2020,161:1261-1271.
[53]Li Y,Qin G,Cheng C,et al.Purification,characterization and anti-tumor activities of polysaccharides from Ecklonia kurome obtained by three different extraction methods[J].Int J Biol Macromol,2020,150:1000-1010.
[54]Mahgoub AM,Mahmoud MG,Selim MS,et al.Exopolysaccharide from Marine Bacillus velezensis MHM3 Induces Apoptosis of Human Breast Cancer MCF-7 Cells through a Mitochondrial Pathway[J].Asian Pac J Cancer Prev,2018,19(7):1957-1963.
[55]D′Arcy MS.Cell death:a review of the major forms of apoptosis,necrosis and autophagy[J].Cell Biol Int,2019,43(6):582-592.
[56]Hinz N,Jücker M.Distinct functions of AKT isoforms in breast cancer:a comprehensive review[J].Cell Commun Signal,2019,17(1):154.
[57]Anthony C C,Robbins D J,Ahmed Y,et al.Nuclear Regulation of Wnt/β-Catenin Signaling:It′s a Complex Situation[J].Genes(Basel),2020,11(8):886.
[58]Yang S,Sun S,Xu W,et al.Astragalus polysaccharide inhibits breast cancer cell migration and invasion by regulating epithelial mesenchymal transition via the Wnt/β-catenin signaling pathway[J].Mol Med Rep,2020,21(4):1819-1832.
[59]Guo YJ,Pan WW,Liu SB,et al.ERK/MAPK signalling pathway and tumorigenesis[J].Exp Ther Med,2020,19(3):1997-2007.
[60]Rodríguez E,Schetters S,van Kooyk Y.The tumour glyco-code as a novel immune checkpoint for immunotherapy[J].Nat Rev Immunol,2018,18(3):204-211.
[61]Jang H,Zhi K,Wang J,et al.Enhanced therapeutic effect of paclitaxel with a natural polysaccharide carrier for local injection in breast cancer[J].Int J Biol Macromol,2020,148:163-172.
[62]Xiong W,Li L,Wang Y,et al.Design and evaluation of a novel potential carrier for a hydrophilic antitumor drug:Auricularia auricular polysaccharide-chitosan nanoparticles as a delivery system for doxorubicin hydrochloride[J].Int J Pharm,2016,511(1):267-275.
[63]Gao X,Li X,Mu J,et al.Preparation,physicochemical characterization,and anti-proliferation of selenium nanoparticles stabilized by Polyporus umbellatus polysaccharide[J].Int J Biol Macromol,2020,152:605-615.
[64]馬孝秋,殷東風(fēng),高宏,等.高暴露中藥治療對(duì)三陰性乳腺癌術(shù)后生存的影響[J].中國(guó)實(shí)驗(yàn)方劑學(xué)雜志,2021,27(14):99-105.
(2021-07-27收稿 責(zé)任編輯:王明)
本期責(zé)任編輯:王明