国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

秸稈還田下土壤有機(jī)質(zhì)激發(fā)效應(yīng)研究進(jìn)展*

2021-11-15 05:09:16張葉葉溫曉霞廖允成
土壤學(xué)報(bào) 2021年6期
關(guān)鍵詞:碳庫(kù)土壤有機(jī)礦化

張葉葉,莫 非,韓 娟,溫曉霞,廖允成

秸稈還田下土壤有機(jī)質(zhì)激發(fā)效應(yīng)研究進(jìn)展*

張葉葉1,莫 非1?,韓 娟1,溫曉霞1,廖允成2?

(1.西北農(nóng)林科技大學(xué)農(nóng)學(xué)院,陜西楊陵,712100;2. 山西農(nóng)業(yè)大學(xué)農(nóng)學(xué)院,山西太谷,030801)

土壤有機(jī)質(zhì)是農(nóng)田肥力的基礎(chǔ)與核心,對(duì)作物產(chǎn)量、農(nóng)業(yè)環(huán)境,甚至地球碳循環(huán)意義重大。作物秸稈作為農(nóng)田土壤有機(jī)碳庫(kù)的重要外部補(bǔ)充,其還田過程對(duì)土壤有機(jī)碳周轉(zhuǎn)和碳庫(kù)平衡具有顯著影響。激發(fā)效應(yīng)是一種因新鮮有機(jī)質(zhì)輸入而導(dǎo)致土壤本底有機(jī)質(zhì)礦化速率發(fā)生改變的現(xiàn)象。秸稈還田導(dǎo)致的土壤有機(jī)質(zhì)分解激發(fā),不僅涉及秸稈資源化高效利用,還直接關(guān)系到農(nóng)田土壤碳庫(kù)的平衡及其功能,因此備受科學(xué)界關(guān)注。盡管對(duì)外源有機(jī)質(zhì)輸入引起的土壤有機(jī)質(zhì)激發(fā)效應(yīng)的理論研究已取得了較大進(jìn)展,但如何結(jié)合最新的理論結(jié)果到秸稈還田固碳減排的生產(chǎn)實(shí)踐中仍面臨著較大的挑戰(zhàn),這主要?dú)w結(jié)于對(duì)農(nóng)田土壤有機(jī)質(zhì)分解激發(fā)效應(yīng)的發(fā)生特點(diǎn)和規(guī)律,及其背后的土壤、氣候、管理等相關(guān)的驅(qū)動(dòng)因子和過程還未完全明確。據(jù)此,本文首先對(duì)土壤有機(jī)質(zhì)分解激發(fā)效應(yīng)發(fā)生的理論研究進(jìn)展(包括:共代謝理論、氮礦化理論、化學(xué)計(jì)量比和微生物殘?bào)w再利用)進(jìn)行了系統(tǒng)綜述。其次,結(jié)合已有的研究證據(jù)和理論假設(shè)進(jìn)一步概述了秸稈還田過程中影響激發(fā)強(qiáng)度和方向的潛在驅(qū)動(dòng)因素,如:秸稈類型和數(shù)量、還田方式、水肥管理、土壤屬性、氣候因子等。最后,從秸稈還田的高效性、農(nóng)田碳庫(kù)的可持續(xù)和農(nóng)業(yè)環(huán)境的友好性出發(fā),對(duì)秸稈還田土壤有機(jī)質(zhì)分解激發(fā)的潛在研究方向進(jìn)行了展望,并就秸稈還田改善土壤碳庫(kù)的優(yōu)化措施提出了建議。

秸稈還田;激發(fā)效應(yīng);土壤有機(jī)碳

土壤有機(jī)質(zhì)分解的激發(fā)現(xiàn)象最早發(fā)現(xiàn)于1926年L?hnis開展的綠肥分解試驗(yàn)。1953年,Bingeman等[1]正式將該現(xiàn)象命名為“priming action or effect”,即在添加外源有機(jī)物質(zhì)的土壤中,土壤有機(jī)質(zhì)的損失較未添加的土壤有機(jī)質(zhì)損失更大的現(xiàn)象。1963年,我國(guó)學(xué)者朱祖祥在綠肥肥效機(jī)制探討中首次將激發(fā)效應(yīng)的概念引入我國(guó),并定義其為加入少量新鮮綠肥而引起土壤原來(lái)所含難分解有機(jī)質(zhì)和腐殖質(zhì)突然分解的現(xiàn)象[2]。目前,使用更為廣泛的是Kuzyakov等[3]于2000年給出的定義,即由各種新鮮有機(jī)質(zhì)添加引起土壤有機(jī)質(zhì)周轉(zhuǎn)發(fā)生強(qiáng)烈而短期改變的現(xiàn)象。激發(fā)效應(yīng)按照有機(jī)質(zhì)添加引起額外碳釋放的來(lái)源不同可將其分為表觀激發(fā)和真實(shí)激發(fā),前者主要源自微生物周轉(zhuǎn),后者來(lái)自土壤有機(jī)質(zhì)分解。按照對(duì)土壤有機(jī)質(zhì)分解速率改變的方向不同,可分為正激發(fā)與負(fù)激發(fā)[4]。

從20世紀(jì)50年代開始,國(guó)外研究人員利用同位素標(biāo)記技術(shù)對(duì)激發(fā)效應(yīng)率先展開研究,目前研究?jī)?nèi)容已從最初論證這一現(xiàn)象的普遍性逐步發(fā)展到揭示激發(fā)強(qiáng)度的變化過程及其驅(qū)動(dòng)機(jī)制??茖W(xué)界普遍認(rèn)為激發(fā)效應(yīng)的產(chǎn)生主要是由于新鮮有機(jī)質(zhì)輸入引起的微生物生物活性增強(qiáng),進(jìn)而導(dǎo)致土壤有機(jī)質(zhì)分解速率改變。就激發(fā)效應(yīng)的發(fā)生機(jī)制,大量研究已分別從共代謝、氮礦化、化學(xué)計(jì)量比和微生物殘?bào)w再利用等理論分別進(jìn)行了探討[5-8]。國(guó)內(nèi)研究人員近年來(lái)利用同位素標(biāo)記技術(shù)對(duì)森林凋落物、生物炭、可溶性有機(jī)質(zhì)等外源有機(jī)物質(zhì)添加引起的激發(fā)效應(yīng)也進(jìn)行了大量研究[5,9-10]。同時(shí),利用室內(nèi)培養(yǎng)[11]、原位加熱土壤和移植原狀土柱模擬增溫,并結(jié)合整合分析等多種方法[12],我國(guó)研究者從胞外酶活性、微生物生物量等角度分析了激發(fā)效應(yīng)的溫度敏感性機(jī)制,這進(jìn)一步豐富了激發(fā)效應(yīng)的理論研究。

作物秸稈是農(nóng)田土壤有機(jī)碳庫(kù)的重要外部補(bǔ)充[13],其還田過程導(dǎo)致的激發(fā)效應(yīng)普遍存在。盡管大量研究已量化了秸稈引起的激發(fā)強(qiáng)度,但在不同研究中變異幅度較大,主要?dú)w結(jié)于農(nóng)田系統(tǒng)中激發(fā)發(fā)生的多因子依賴性[14]。我國(guó)秸稈年產(chǎn)量居世界首位[15],其資源化綜合利用潛力巨大。秸稈還田是一種簡(jiǎn)單易行增加土壤碳庫(kù)的有效方式,近年來(lái)已得到大面積的推廣應(yīng)用[16]。秸稈還田導(dǎo)致土壤有機(jī)碳激發(fā),不僅關(guān)系到秸稈資源化利用效率,而且涉及農(nóng)田土壤碳庫(kù)構(gòu)建。因此,系統(tǒng)闡明秸稈還田過程對(duì)土壤有機(jī)質(zhì)激發(fā)的驅(qū)動(dòng)因素,將對(duì)秸稈資源化高效利用和農(nóng)田土壤碳庫(kù)科學(xué)管理具有重要意義。

據(jù)此,本文首先對(duì)有機(jī)質(zhì)分解激發(fā)效應(yīng)發(fā)生的可能機(jī)制進(jìn)行了概述和系統(tǒng)總結(jié)。基于激發(fā)效應(yīng)的理論解析和數(shù)據(jù)集成,進(jìn)一步識(shí)別并論述了秸稈還田過程中影響激發(fā)強(qiáng)度和方向的驅(qū)動(dòng)因素。最后從秸稈還田的高效性、農(nóng)田碳庫(kù)的可持續(xù)性和農(nóng)業(yè)環(huán)境的友好性出發(fā),對(duì)秸稈還田與有機(jī)碳耦合關(guān)系的潛在研究方向進(jìn)行了展望,并就優(yōu)化秸稈還田改善土壤碳庫(kù)的管理措施提出了建議,以期為我國(guó)秸稈資源化高效利用提供理論支撐和技術(shù)參考。

1 秸稈還田下土壤有機(jī)質(zhì)分解激發(fā)的可能機(jī)制

秸稈還田土壤有機(jī)質(zhì)激發(fā)效應(yīng)是秸稈、微生物以及土壤有機(jī)質(zhì)共同參與的結(jié)果,較多的研究已從共代謝理論[17]、氮礦化理論[18]、化學(xué)計(jì)量比理論[19]等方面來(lái)解釋激發(fā)效應(yīng)的強(qiáng)度和方向(圖1)。

1.1 共代謝理論

共代謝理論可以理解為作物秸稈中易被分解的簡(jiǎn)單碳源為土壤微生物提供初始的能量來(lái)源,刺激微生物體對(duì)特異性胞外酶的分泌,尤其是參與降解穩(wěn)定性較高的秸稈組分的胞外酶[20]。在此過程中,與秸稈組成和結(jié)構(gòu)相類似的穩(wěn)定性較高的土壤有機(jī)質(zhì)同時(shí)被礦化而觸發(fā)激發(fā)[21],Shahbaz等[17]發(fā)現(xiàn)酶活性和微生物數(shù)量與秸稈的分解相關(guān),且微生物生物量碳中土壤有機(jī)質(zhì)源碳增加。該研究表明土壤碳的礦化與秸稈添加引起的酶活性增強(qiáng)有關(guān),且正激發(fā)的產(chǎn)生伴隨著微生物生物量和胞外酶的同步增加。進(jìn)一步分析主導(dǎo)土壤碳分解的微生物群落發(fā)現(xiàn):周轉(zhuǎn)速度更快的“r”型微生物首先降解秸稈易分解碳源并合成胞外酶[22],增加的酶活性進(jìn)而促進(jìn)周轉(zhuǎn)速率較低的“k”型微生物對(duì)難分解的土壤有機(jī)質(zhì)的礦化分解。與之相反,有研究發(fā)現(xiàn):盡管真菌作為典型的“k”型微生物,在外源有機(jī)質(zhì)輸入后反而表現(xiàn)出較“r”型微生物更高的富集程度,且真菌體內(nèi)外源13C富集得更多[23]。可見,基于共代謝理論的“k”型和“r”型微生物通過胞外酶分泌來(lái)主導(dǎo)激發(fā)效應(yīng)的機(jī)制仍需進(jìn)一步研究。

1.2 氮礦化理論

氮礦化理論認(rèn)為激發(fā)效應(yīng)的發(fā)生是由秸稈碳輸入使微生物增長(zhǎng),以及對(duì)氮素需求增加,進(jìn)而導(dǎo)致微生物從有機(jī)質(zhì)中礦化氮素引起的[24]。換言之,秸稈輸入導(dǎo)致土壤氮有效性在短期內(nèi)降低,且碳氮比失衡,這種環(huán)境下微生物需要礦化土壤有機(jī)質(zhì)來(lái)獲取額外的氮素以滿足生長(zhǎng)和繁殖[25]。由于氮素和碳素的礦化是耦合的,氮的礦化伴隨著碳的分解,土壤有機(jī)質(zhì)分解激發(fā)由此發(fā)生。Moorhead和Sinsabaugh[26]研究發(fā)現(xiàn)隨養(yǎng)分有效性增加,激發(fā)強(qiáng)度減弱。而輸入較高碳氮比的秸稈更易導(dǎo)致土壤微生物處于“氮饑餓”狀態(tài),因而更易增加激發(fā)強(qiáng)度[27-28]。可見激發(fā)的發(fā)生與土壤中氮的有效性相關(guān)。盡管氮礦化理論更多強(qiáng)調(diào)微生物氮素限制在引起激發(fā)效應(yīng)過程中的主導(dǎo)作用,然而微生物的生長(zhǎng)和繁殖還離不開對(duì)其他養(yǎng)分元素如磷,硫等的利用,尤其是在一些特定養(yǎng)分元素限制的區(qū)域。

1.3 化學(xué)計(jì)量比

化學(xué)計(jì)量比理論主張微生物活性受最稀缺的營(yíng)養(yǎng)元素的限制,當(dāng)養(yǎng)分供應(yīng)與微生物的化學(xué)計(jì)量比相匹配時(shí),微生物活性增加,土壤有機(jī)碳礦化加快,更易導(dǎo)致激發(fā)的產(chǎn)生[17]。該理論認(rèn)為在養(yǎng)分計(jì)量比更加平衡的狀態(tài)下,微生物活性能被最大程度地激發(fā)(尤其是“r”型微生物)。因此,當(dāng)整個(gè)體系中養(yǎng)分化學(xué)計(jì)量比符合微生物增長(zhǎng)所需的最佳養(yǎng)分化學(xué)計(jì)量比時(shí),微生物活性和胞外酶的分泌增加,微生物對(duì)土壤有機(jī)質(zhì)分解加速,從而產(chǎn)生激發(fā)。例如,對(duì)水稻秸稈分解及激發(fā)效應(yīng)的研究表明:氮磷共施相對(duì)更加滿足微生物化學(xué)計(jì)量需求,因而促進(jìn)土壤有機(jī)質(zhì)的分解[8]。養(yǎng)分有效性較高的情況下,微生物群體較大,更多受到呼吸能量的限制,因此激發(fā)的碳可能更多來(lái)自微生物的呼吸作用。而氮礦化理論支持激發(fā)的碳來(lái)自于在養(yǎng)分相對(duì)虧缺時(shí),部分活躍的微生物為了“攫取”土壤有機(jī)質(zhì)中的養(yǎng)分而產(chǎn)生的“副產(chǎn)物”這一觀點(diǎn),同時(shí)這部分養(yǎng)分更多的是用于微生物構(gòu)建自身生命體。雖然該理論與氮礦化理論觀點(diǎn)存在差異,但有研究認(rèn)為這兩種理論可能分別解釋土壤有機(jī)碳礦化的不同階段激發(fā)產(chǎn)生的原因[19]。

1.4 微生物殘?bào)w再利用

大量外源碳輸入,微生物快速攝取能量用于構(gòu)建自身生物量(合成代謝)的同時(shí),自身代謝產(chǎn)物積累,微生物對(duì)這些代謝產(chǎn)物的再利用(分解代謝)也隨之加快。大量低質(zhì)量秸稈輸入通常驅(qū)動(dòng)特定微生物種群優(yōu)勢(shì)擴(kuò)大[29],這些微生物分解相對(duì)穩(wěn)定的碳庫(kù)同時(shí),通過“埋藏效應(yīng)”在穩(wěn)定的碳庫(kù)中引入了更多的殘?bào)w物質(zhì),使其成為土壤有機(jī)質(zhì)的一部分。微生物體C︰N比值相對(duì)較低,且各組分沒有與礦物質(zhì)緊密結(jié)合,因此當(dāng)過量的秸稈碳輸入,導(dǎo)致土壤C︰N極端失衡,土壤有機(jī)質(zhì)不能滿足微生物對(duì)氮的需求時(shí),這時(shí)已累積的微生物殘?bào)w和代謝產(chǎn)物易被其他類群微生物利用,以克服化學(xué)計(jì)量比的不平衡,耦合的碳組分隨之被分解,造成土壤本底有機(jī)碳的額外激發(fā)。Shahbaz等[17]從秸稈質(zhì)量和數(shù)量探究土壤碳激發(fā)發(fā)現(xiàn):土壤呼吸增加伴隨著微生物生物量的減少和特異性酶活性的增強(qiáng),但未發(fā)現(xiàn)土壤本底有機(jī)碳被整合到微生物體中,表明激發(fā)的碳源可能來(lái)自微生物殘?bào)w的再利用。由此可見,微生物殘?bào)w既是形成穩(wěn)定土壤有機(jī)質(zhì)的重要基底,又是激發(fā)效應(yīng)的底物。

2 秸稈還田下土壤有機(jī)質(zhì)分解激發(fā)的影響因素

基于上述對(duì)秸稈添加引起土壤有機(jī)質(zhì)分解激發(fā)潛在機(jī)理的認(rèn)識(shí),進(jìn)一步甄別秸稈還田過程中導(dǎo)致激發(fā)發(fā)生的生物和非生物因素,能為提升秸稈還田的土壤固碳潛力提供科學(xué)指導(dǎo)和技術(shù)借鑒。

2.1 秸稈類型

不同作物來(lái)源的秸稈因其質(zhì)量差異(如氮濃度、木質(zhì)素和可溶性組分含量、C︰N等),往往導(dǎo)致土壤有機(jī)質(zhì)激發(fā)強(qiáng)度不同。Schmatz等[30]研究發(fā)現(xiàn):野豌豆秸稈本身較高的可溶性碳組分能夠?yàn)槲⑸锾峁┹^多的活性碳源,從而促進(jìn)激發(fā)。可溶性組分含量較高的秸稈,其自身分解速率相對(duì)較快,能夠更快釋放其他養(yǎng)分并刺激微生物生長(zhǎng),進(jìn)而引起更強(qiáng)的激發(fā)[31]。有研究表明:與小麥秸稈相比,油菜秸

稈分解后釋放的N、S含量較高[19],土壤有機(jī)質(zhì)激發(fā)更強(qiáng)。此外,秸稈C︰N通常與土壤碳激發(fā)存在一定的關(guān)系:Yanni等[32]和Maokui等[33]發(fā)現(xiàn)土壤碳礦化速率與秸稈C︰N呈負(fù)相關(guān)。因秸稈C︰N遠(yuǎn)大于微生物體C︰N,富含碳的秸稈輸入會(huì)造成土壤微生物的養(yǎng)分限制。而較低C︰N的秸稈輸入,通過提供更易利用的養(yǎng)分,能夠更大程度地刺激微生物活性,在此過程中,土壤有機(jī)質(zhì)中不易被利用的組分也因微生物活性增加而被分解和利用[32],最終導(dǎo)致土壤碳激發(fā)增強(qiáng)。然而,另有研究表明:相比大豆秸稈,C︰N較高的玉米秸稈還田后會(huì)迫使微生物(尤其是k策略型)從礦物結(jié)合態(tài)有機(jī)質(zhì)中礦化更多的氮素來(lái)緩解化學(xué)計(jì)量比的失衡,最終導(dǎo)致更強(qiáng)的有機(jī)質(zhì)激發(fā)[34]。本研究整合分析發(fā)現(xiàn):盡管小麥和玉米秸稈添加的土壤有機(jī)質(zhì)激發(fā)強(qiáng)度無(wú)顯著差異,但玉米和小麥秸稈還田造成的激發(fā)強(qiáng)度顯著高于豆科和水稻來(lái)源的秸稈(圖2),這一趨勢(shì)符合秸稈C︰N與激發(fā)強(qiáng)度呈正相關(guān)的結(jié)論。盡管大量的研究已量化了秸稈C︰N與激發(fā)強(qiáng)度的關(guān)系,但仍有研究發(fā)現(xiàn)秸稈的化學(xué)組成(如酚類、非結(jié)構(gòu)性碳水化合物等)相比秸稈C︰N在影響有機(jī)質(zhì)激發(fā)中更具主導(dǎo)作用。如Liang等[35]的研究發(fā)現(xiàn):土壤微生物群落結(jié)構(gòu)并不能與秸稈C︰N建立一致的關(guān)系,秸稈中木質(zhì)素等其他化學(xué)組成可能會(huì)導(dǎo)致微生物群落結(jié)構(gòu)發(fā)生改變,不同微生物菌群對(duì)秸稈和土壤有機(jī)質(zhì)的分解能力不同[36],因此秸稈的化學(xué)組成會(huì)影響土壤有機(jī)質(zhì)的激發(fā)強(qiáng)度[37]??梢姡绊懹袡C(jī)質(zhì)激發(fā)強(qiáng)度的秸稈屬性不僅涉及其活性底物的多少,同時(shí)還受限其化學(xué)組成的復(fù)雜程度,未來(lái)研究需要關(guān)注土壤微生物對(duì)不同秸稈及其不同組成物質(zhì)的可利用能力。

2.2 耕作方式

作物秸稈還田引起的土壤有機(jī)質(zhì)激發(fā)受耕作方式(如傳統(tǒng)翻耕、少、免耕等)的顯著影響。Bimüller等[38]和Guppy等[39]對(duì)比了少免耕與翻耕條件下的秸稈還田,發(fā)現(xiàn)后者導(dǎo)致了更為明顯的土壤有機(jī)質(zhì)激發(fā)。一般而言,頻繁耕作對(duì)土壤團(tuán)聚體造成物理破壞,使其結(jié)構(gòu)穩(wěn)定性變差。在秸稈分解過程中釋放的小分子有機(jī)酸使礦物保護(hù)的土壤有機(jī)質(zhì)溶解,被團(tuán)聚體保護(hù)的有機(jī)碳更易暴露且被微生物利用,有機(jī)碳的生物有效性提高[40]。Sarker等[31]的研究進(jìn)一步表明這種團(tuán)聚體有機(jī)碳可利用性的提高顯著增加其礦化,并伴隨著激發(fā)效應(yīng)的增強(qiáng)。此外,耕作強(qiáng)度還會(huì)影響土壤有機(jī)碳庫(kù)組分,尤其是不穩(wěn)定碳組分,進(jìn)而導(dǎo)致這部分有機(jī)質(zhì)更易被激發(fā)。與免耕相比,翻耕秸稈還田使土壤活性碳庫(kù)有效性提高,促進(jìn)細(xì)菌生長(zhǎng)和活性增強(qiáng),加速了微生物對(duì)有機(jī)碳的分解激發(fā)[41]。最近的研究發(fā)現(xiàn):相同條件下翻耕還田的土壤酶轉(zhuǎn)化效率較低,需要微生物釋放更多的胞外酶到土壤中,這種酶的增加使碳底物和胞外酶結(jié)合的可能性提高,進(jìn)而導(dǎo)致土壤碳激發(fā)增強(qiáng)[42]。相應(yīng)地,免耕處理下土壤容重增加,土壤透氣性降低,最終影響好氧微生物群落的增殖,減緩?fù)寥烙袡C(jī)質(zhì)礦化及其激發(fā)效應(yīng)[43]。Sauvadet等[42]還發(fā)現(xiàn):相比翻耕,免耕條件下的土壤微生物具有更高的碳利用效率,一定程度上微生物降低了對(duì)土壤有機(jī)質(zhì)的礦化分解并表現(xiàn)出較弱的激發(fā)效應(yīng)。此外,耕作方式還會(huì)影響土壤本底有機(jī)碳含量,土壤有機(jī)碳含量與激發(fā)強(qiáng)度也存在一定關(guān)系,如Sun等[44]的研究結(jié)果顯示土壤碳激發(fā)強(qiáng)度隨土壤有機(jī)碳含量的增加而下降。本文整合分析結(jié)果表明:碳激發(fā)與土壤有機(jī)碳含量存在一定關(guān)系,當(dāng)土壤有機(jī)碳含量在10~20 g·kg–1區(qū)間內(nèi)激發(fā)強(qiáng)度最高,高于或低于該閾值時(shí)激發(fā)變?nèi)酰▓D3)。以上這種關(guān)系可能源于秸稈添加導(dǎo)致處于土壤有機(jī)碳含量較低環(huán)境中的微生物更加快速增長(zhǎng),微生物對(duì)原土壤有機(jī)碳分解程度更高[20]。此外,土壤碳激發(fā)的難易程度與本底碳的穩(wěn)定性也有關(guān)系:碳含量越高的土壤中碳的吸附電位更多,本底碳的穩(wěn)定性提升,土壤碳庫(kù)抗分解能力增強(qiáng),因此土壤碳激發(fā)更弱[45]。然而,Dimassi等[46]的研究表明:雖然耕作強(qiáng)度能夠改變土壤有機(jī)碳以及微生物生物量的含量,但最終的激發(fā)強(qiáng)度主要受限于土壤活性有機(jī)碳與養(yǎng)分含量的比值關(guān)系,因此與耕作方式相比,土壤中養(yǎng)分的有效性更能解釋有機(jī)質(zhì)激發(fā)的強(qiáng)度。

2.3 秸稈還田量

秸稈還田量關(guān)系到微生物可利用碳底物的有效性,最終影響對(duì)土壤有機(jī)質(zhì)的激發(fā)。盡管大量的研究表明激發(fā)強(qiáng)度與外源碳添加量呈正相關(guān)[47-48],但Blagodatskaya和Kuzyakov[20]的整合研究發(fā)現(xiàn)外源碳輸入量與激發(fā)強(qiáng)度存在非線性關(guān)系,即當(dāng)秸稈碳輸入量超過土壤微生物生物量碳的50%時(shí),激發(fā)強(qiáng)度開始降低,當(dāng)超過微生物生物量碳的2倍~5倍時(shí),激發(fā)強(qiáng)度趨于零或變?yōu)樨?fù)值。另有研究也證實(shí)了過量秸稈碳輸入后激發(fā)效應(yīng)的飽和現(xiàn)象[49],甚至激發(fā)強(qiáng)度下降[50-51]。本研究的綜合分析同樣表明:秸稈碳輸入量大于相當(dāng)于30%土壤有機(jī)碳含量時(shí),土壤有機(jī)質(zhì)激發(fā)有減弱的趨勢(shì)(圖4)。

在相對(duì)低量的秸稈輸入情況下,激發(fā)強(qiáng)度隨秸稈添加量的增加而增大,這主要與微生物群落結(jié)構(gòu)的變化和它對(duì)其他營(yíng)養(yǎng)物質(zhì)的需求有關(guān)。從養(yǎng)分需求角度解釋:相對(duì)較高含量的秸稈輸入,使微生物獲

得大量可利用組分,激活并使微生物生物量增加[50],此時(shí)微生物開始受到氮限制,導(dǎo)致微生物開始礦化土壤有機(jī)質(zhì)中的氮而伴隨碳激發(fā)[18];Blagodatskaya和Kuzyakov[20]從微觀角度分析發(fā)現(xiàn),具有分解秸稈和土壤碳功能微生物數(shù)量的變化,可能會(huì)導(dǎo)致整個(gè)土壤微生物群落結(jié)構(gòu)發(fā)生變化,并認(rèn)為與少量外源基質(zhì)添加相比,更多的基質(zhì)添加首先會(huì)使土壤中部分“獲益”于秸稈養(yǎng)分的微生物活化,之后,處于休眠狀態(tài)的特定微生物被激活,并且這些微生物可以快速生長(zhǎng)并成為優(yōu)勢(shì)物種,在降解外源基質(zhì)的過程中促進(jìn)了對(duì)土壤有機(jī)質(zhì)的共代謝,因此有機(jī)碳的激發(fā)增強(qiáng)。Landi等[52]通過凝膠電泳和磷脂脂肪酸分析進(jìn)一步驗(yàn)證了真實(shí)激發(fā)的增強(qiáng)伴隨著微生物群落結(jié)構(gòu)的改變。相對(duì)應(yīng)的較少量的秸稈添加,沒有導(dǎo)致微生物量的大小和群落組成發(fā)生變化,且微生物未釋放更多的胞外酶去分解原土壤有機(jī)質(zhì),故激發(fā)強(qiáng)度較低。其次,過量秸稈輸入可能導(dǎo)致土壤有機(jī)質(zhì)激發(fā)強(qiáng)度下降,主要有以下兩個(gè)支持性觀點(diǎn):大量研究表明,這種秸稈大量輸入后,微生物從利用養(yǎng)分有效性較低的土壤有機(jī)質(zhì)轉(zhuǎn)向利用養(yǎng)分有效性更高的秸稈,從而降低有機(jī)碳的激發(fā)[53]。此外,激發(fā)“飽和”的現(xiàn)象與土壤有機(jī)質(zhì)的可接觸性有關(guān),盡管微生物可以產(chǎn)生大量的酶,但仍有部分有機(jī)質(zhì)被保護(hù)而構(gòu)成穩(wěn)定的碳庫(kù),許多有機(jī)化合物仍不能被觸及,因此激發(fā)強(qiáng)度被土壤碳庫(kù)的穩(wěn)定性限制[54],F(xiàn)alloon和Smith[55]研究顯示穩(wěn)定而不易被分解的有機(jī)碳約占土壤總有機(jī)碳的15%~59%,這部分有機(jī)碳的存在導(dǎo)致激發(fā)強(qiáng)度逐漸平穩(wěn)。

2.4 肥料管理

施肥措施直接決定土壤養(yǎng)分的有效性,進(jìn)而改變土壤微生物對(duì)底物的利用情況,最終影響土壤有機(jī)質(zhì)的激發(fā)強(qiáng)度。Wang等[56]通過室內(nèi)培養(yǎng)發(fā)現(xiàn):無(wú)機(jī)氮添加提高了土壤氮素有效性,降低了微生物對(duì)土壤有機(jī)質(zhì)中氮的獲取,最終顯著降低了土壤碳的激發(fā)強(qiáng)度,該研究也一定程度上解釋了在土壤養(yǎng)分含量相對(duì)較低的農(nóng)田進(jìn)行秸稈還田后土壤碳激發(fā)增強(qiáng)的現(xiàn)象。在氮素有效性較低的情況下,大量秸稈輸入導(dǎo)致土壤底物中碳濃度增加,加劇了微生物的養(yǎng)分限制,迫使微生物體從土壤有機(jī)質(zhì)中礦化出更多的N、P、S等養(yǎng)分元素來(lái)克服化學(xué)計(jì)量比不平衡性以保證自身的生長(zhǎng)和繁殖,有機(jī)質(zhì)中養(yǎng)分的釋放和有機(jī)碳的礦化是耦合的,額外的養(yǎng)分獲取伴隨著有機(jī)碳分解的激發(fā)[57]。氮素有效性的改善通常能夠顯著降低土壤有機(jī)質(zhì)的激發(fā)強(qiáng)度。一方面,解除微生物的氮限制,另一方面,氮素添加后導(dǎo)致土壤溶液中有毒物質(zhì)滲透,微生物量下降,微生物對(duì)土壤有機(jī)質(zhì)的礦化能力減弱[46],最終導(dǎo)致激發(fā)弱于低養(yǎng)分處理的土壤碳激發(fā)。然而,另有研究發(fā)現(xiàn)土壤養(yǎng)分有效性較高觸發(fā)的有機(jī)質(zhì)激發(fā)強(qiáng)度反而更大[58]。依據(jù)Kuzyakov和Bol[59]的研究:激發(fā)強(qiáng)度與土壤有機(jī)碳含量呈正相關(guān),微生物活性隨碳含量增加而升高。當(dāng)在較高土壤養(yǎng)分條件下進(jìn)行秸稈還田時(shí),土壤有機(jī)碳積累和微生物活性的增加[60],很可能導(dǎo)致更大的有機(jī)質(zhì)激發(fā)。由此可見,養(yǎng)分有效性與碳激發(fā)關(guān)系的中間因子可能是土壤有機(jī)碳含量與微生物活性。從微生物群落組成角度來(lái)看,高養(yǎng)分環(huán)境意味著化學(xué)計(jì)量比(C︰N︰P)較低,可能更利于專性降解穩(wěn)定性高的土壤有機(jī)質(zhì)的微生物占據(jù)主導(dǎo)地位,這種微生物在高碳、高氮的環(huán)境下持續(xù)專性分解土壤有機(jī)質(zhì),促進(jìn)了土壤碳的激發(fā)[19]。進(jìn)一步,F(xiàn)ang等[21]和Chen等[19]從碳礦化的時(shí)間尺度上研究發(fā)現(xiàn)土壤高養(yǎng)分有效性觸發(fā)激發(fā)通常發(fā)生在秸稈分解的后期[19,21]。此外,分解有機(jī)物的微生物活性的增加除了與土壤氮有效性有關(guān)外,還與磷元素有關(guān)[61],如土壤中添加無(wú)機(jī)磷緩解微生物的磷限制[62]并與吸附的有機(jī)化合物發(fā)生交換,使有機(jī)化合物分解增強(qiáng)[63],最終增強(qiáng)了土壤碳激發(fā)?;谝陨涎芯拷Y(jié)果和作物生產(chǎn)需要,建議秸稈還田前期合理配施化肥,改善土壤養(yǎng)分狀況,使土壤處于養(yǎng)分均衡狀態(tài),并減少土壤有機(jī)碳礦化[64]。將來(lái)的研究需進(jìn)一步探究外源養(yǎng)分資源輸入與微生物需求之間的平衡問題,并結(jié)合土壤碳礦化,更加全面、系統(tǒng)地評(píng)估秸稈還田與肥料配施對(duì)土壤肥力提升的效應(yīng)。

2.5 溫度

溫度是一切酶促反應(yīng)的重要驅(qū)動(dòng)[65],酶活性的改變是變溫過程中土壤有機(jī)碳分解的主要驅(qū)動(dòng)因子。偏離酶活性最適溫度的增溫或者降溫均會(huì)影響土壤酶對(duì)新鮮有機(jī)質(zhì)的分解以及對(duì)本底有機(jī)碳的礦化分解,進(jìn)而影響激發(fā)效應(yīng)的強(qiáng)度和方向[66]。生產(chǎn)實(shí)踐中,地理位置、栽培方式、水分條件等因素的不同直接作用于土壤溫度狀況[67-68],這很可能最終影響秸稈還田引起的土壤有機(jī)質(zhì)激發(fā)效應(yīng)。通常認(rèn)為:相對(duì)于低溫條件,溫度升高可降低反應(yīng)活化能,提高酶的反應(yīng)速率,土壤的呼吸速率上升[69-70]。溫度敏感性Q10(溫度每增加10℃土壤呼吸所增加的倍數(shù))經(jīng)常被用來(lái)衡量變溫對(duì)土壤碳礦化的影響。研究發(fā)現(xiàn):與低溫相比,持續(xù)升溫導(dǎo)致激發(fā)效應(yīng)的溫度敏感性逐漸下降[71]。Liu等[72]的研究顯示:胞外酶活性與土壤有機(jī)碳源CO2排放速率呈正線性相關(guān),但隨著時(shí)間延長(zhǎng),酶活性隨溫度升高而降低,導(dǎo)致激發(fā)效應(yīng)溫度敏感性(Q10)與溫度呈負(fù)相關(guān)[73]。從反應(yīng)底物的有效性來(lái)看,溫度逐漸升高使土壤變得更加干燥,外源可溶性基質(zhì)溶解、擴(kuò)散速率降低,微生物可利用的碳源減少,激發(fā)效應(yīng)的溫度敏感性下降[74]。在秸稈分解后期,有機(jī)質(zhì)的分解對(duì)增溫的響應(yīng)逐漸減弱,可能歸因于微生物對(duì)升溫的逐漸適應(yīng)或發(fā)生了酶降解[72,75]。此外,有研究發(fā)現(xiàn)土壤碳礦化的溫度敏感性還與土壤碳庫(kù)的質(zhì)量有關(guān):室內(nèi)培養(yǎng)長(zhǎng)期原位加熱的森林土壤發(fā)現(xiàn),土壤木質(zhì)素等抗分解的物質(zhì)含量較高,導(dǎo)致土壤中的微生物可利用養(yǎng)分的有效性下降,微生物種群數(shù)量受到限制,土壤碳的分解速率降低,因此僅提升微生物活動(dòng)的溫度不會(huì)刺激土壤碳的分解[76],最終這種土壤碳分解速率的減小導(dǎo)致累積土壤碳激發(fā)減弱。盡管激發(fā)效應(yīng)的發(fā)生是由微生物群落的特定組成部分主導(dǎo)的[77],但溫度對(duì)土壤微生物群落結(jié)構(gòu)的長(zhǎng)期影響以及由此驅(qū)動(dòng)的土壤碳的激發(fā)還未被完全了解,它們之間的關(guān)系尚需進(jìn)一步研究。

2.6 水分

水分狀況決定了可溶性底物在土壤中的擴(kuò)散程度,從而影響微生物體對(duì)底物的利用程度,最終改變土壤有機(jī)質(zhì)的激發(fā)強(qiáng)度。大量研究借助干濕交替的室內(nèi)模擬已探討了水分有效性對(duì)土壤有機(jī)質(zhì)激發(fā)效應(yīng)的影響,這為不同氣候條件下秸稈還田引起的激發(fā)強(qiáng)度的研究提供了重要借鑒。研究表明:與持續(xù)濕潤(rùn)的土壤相比,秸稈添加后干濕循環(huán)處理使土壤碳激發(fā)高出1.71~3.58(mg·kg–1·d–1,以C計(jì))[78]。土壤水分過高,微生物遭受缺氧可能導(dǎo)致其活性下降。與持續(xù)干燥的土壤相比,干濕循環(huán)使土壤碳排放增加約72%[79]。土壤水分有效性很大程度上決定可溶性養(yǎng)分的擴(kuò)散程度,影響?zhàn)B分的可利用性,土壤水分過低時(shí)土壤表面水膜厚度減小,基質(zhì)向微生物的擴(kuò)散速度降低[80],秸稈添加后微生物可利用養(yǎng)分有效性低,導(dǎo)致土壤碳激發(fā)的反應(yīng)速率下降。一方面,干濕循環(huán)會(huì)導(dǎo)致自由水快速攝入,空氣被截留在孔隙中,再經(jīng)歷凍融使土壤團(tuán)聚體和微生物經(jīng)歷物理?yè)p傷,這種膨脹破壞可能導(dǎo)致大團(tuán)聚體周轉(zhuǎn)加速以及其中有機(jī)物損失[81],這種團(tuán)聚體結(jié)構(gòu)被破壞后有機(jī)物質(zhì)被釋放的這部分土壤碳更易被激發(fā)。經(jīng)歷干燥時(shí)部分微生物死亡,土壤復(fù)濕后氨基酸、甘油等細(xì)胞溶質(zhì)暴露增加并被微生物再利用,微生物可利用養(yǎng)分的增加促進(jìn)了它對(duì)土壤本底碳的分解能力,這個(gè)過程中微生物殘?bào)w和秸稈分解的副產(chǎn)物均參與土壤碳激發(fā)增強(qiáng)的過程。另一方面,干濕循環(huán)還會(huì)影響土壤的通氣性,創(chuàng)造交替的厭氧和好氧環(huán)境,使微生物種類更加豐富,尤其是細(xì)菌群落的變化可以解釋部分地區(qū)土壤經(jīng)歷干濕循環(huán)后土壤碳礦化速率的下降[82],土壤碳激發(fā)由微生物驅(qū)動(dòng),若微生物對(duì)碳的礦化速率下降,也就意味著對(duì)土壤本底碳的激發(fā)有所緩解。部分研究者認(rèn)為大多數(shù)團(tuán)聚體在經(jīng)歷了干濕循環(huán)后會(huì)逐漸適應(yīng)濕潤(rùn)環(huán)境,有機(jī)碳在大團(tuán)聚體中仍處于被保護(hù)狀態(tài)[83],對(duì)微生物的分解仍具有物理防護(hù)作用,這種不可接觸性保護(hù)有機(jī)碳不易被激發(fā)。干燥或濕潤(rùn)持續(xù)時(shí)間和循環(huán)次數(shù)與微生物能否適應(yīng)環(huán)境壓力、保持活性或面臨死亡存在關(guān)聯(lián),所以可能造成激發(fā)強(qiáng)度存在差異。Zhang等[79]通過整合分析發(fā)現(xiàn)在干濕循環(huán)次數(shù)較多的土壤中,團(tuán)聚體的物理保護(hù)作用在較穩(wěn)定土壤碳的分解過程起著決定性作用,而土壤本底碳庫(kù)能否經(jīng)受多次循環(huán),保持團(tuán)聚體結(jié)構(gòu)不被破壞這些問題均需要更進(jìn)一步探究。

3 結(jié)論與展望

土壤有機(jī)質(zhì)是農(nóng)田肥力的基礎(chǔ)與核心,對(duì)作物產(chǎn)量和農(nóng)業(yè)環(huán)境可持續(xù)性具有重要意義。作物秸稈作為農(nóng)田土壤有機(jī)碳庫(kù)的重要外部來(lái)源,對(duì)改善土壤有機(jī)質(zhì)狀況具有顯著影響。秸稈還田導(dǎo)致的土壤有機(jī)質(zhì)分解的激發(fā)效應(yīng)是普遍存在的,但其發(fā)生機(jī)制是復(fù)雜的。總體而言,激發(fā)效應(yīng)的發(fā)生和動(dòng)態(tài)變化主要是由土壤微生物體對(duì)不同來(lái)源的底物進(jìn)行差異化利用而造成的。就土壤有機(jī)質(zhì)本身而言,其不同的穩(wěn)定程度是決定激發(fā)強(qiáng)度的重要因素。激發(fā)效應(yīng)發(fā)生的方向和強(qiáng)度是多變的,但秸稈還田對(duì)農(nóng)田土壤有機(jī)碳的影響緩慢且深遠(yuǎn),由于作用時(shí)間的滯后性,目前還未將秸稈還田下土壤有機(jī)質(zhì)分解激發(fā)與秸稈腐解過程中能量和養(yǎng)分釋放建立直接聯(lián)系。因此探究長(zhǎng)期土壤有機(jī)碳輸入與輸出的動(dòng)態(tài)平衡將對(duì)優(yōu)化秸稈還田技術(shù)具有宏觀指導(dǎo)意義。

我國(guó)農(nóng)業(yè)氣候資源多樣,且各地水熱條件和農(nóng)業(yè)管理模式差別較大,導(dǎo)致秸稈還田對(duì)土壤有機(jī)質(zhì)激發(fā)的強(qiáng)度不同,探究不同地區(qū)環(huán)境因子和人為因素對(duì)激發(fā)引起的碳損失的相對(duì)貢獻(xiàn),對(duì)農(nóng)田土壤碳庫(kù)管理具有重要的實(shí)踐意義。但考慮到秸稈還田土壤有機(jī)質(zhì)分解激發(fā)的普遍性及其對(duì)土壤碳庫(kù)影響的顯著性,實(shí)施秸稈還田技術(shù)需要關(guān)注土壤有機(jī)質(zhì)分解激發(fā)強(qiáng)度和方向的影響因素。比如長(zhǎng)期單一作物秸稈還田不利于構(gòu)建多樣的微生物環(huán)境,易造成同一營(yíng)養(yǎng)型微生物富集,對(duì)土壤有機(jī)碳造成長(zhǎng)期損耗,需要結(jié)合不同地區(qū)光熱資源發(fā)展多種作物配套還田;減少長(zhǎng)期深翻對(duì)土壤有機(jī)質(zhì)物理保護(hù)屏障造成的破壞,需要塑造良好的土壤微環(huán)境,改進(jìn)秸稈還田技術(shù)以適應(yīng)不同作物及耕作制度,在土壤質(zhì)地較好且適宜發(fā)展保護(hù)性農(nóng)業(yè)的地區(qū)推廣秸稈覆蓋和翻耕還田相結(jié)合的還田策略;結(jié)合區(qū)域土壤養(yǎng)分水平和微生物組成與結(jié)構(gòu)特征,不同地區(qū)需要考慮還田量及秸稈類型來(lái)設(shè)計(jì)還田策略;土壤微生物不僅是土壤有機(jī)物質(zhì)轉(zhuǎn)化的執(zhí)行者,又是植物營(yíng)養(yǎng)元素的活性庫(kù)。要充分發(fā)揮微生物的調(diào)節(jié)功能,調(diào)節(jié)施肥配比及施用時(shí)間,構(gòu)建秸稈腐解微生物和作物間的養(yǎng)分平衡利用關(guān)系;減小環(huán)境因子對(duì)土壤有機(jī)碳損失的影響,需要根據(jù)氣候條件調(diào)節(jié)秸稈還田時(shí)間,實(shí)現(xiàn)秸稈資源的更高效利用。

[1] Bingeman C W,Varner J E,Martin W P. The effect of the addition of organic materials on the decomposition of an organic soil[J]. Soil Science Society of America Journal,1953,17(1):34—38.

[2] Zhu Z X. Discussing the fertilizer effect mechanism of green manure and its application problems[J]. Journal of Zhejiang Agricultural Sciences,1963,4(3):104—109. [朱祖祥. 從綠肥的起爆效應(yīng)探討它的肥效機(jī)制及其在施用上的若干問題[J]. 浙江農(nóng)業(yè)科學(xué),1963,4(3):104—109.

[3] Kuzyakov Y,F(xiàn)riedel J K,Stahr K. Review of mechanisms and quantification of priming effects[J]. Soil Biology and Biochemistry,2000,32(11/12):1485—1498.

[4] Blagodatsky S,Blagodatskaya E,Yuyukina T,et al. Model of apparent and real priming effects:Linking microbial activity with soil organic matter decomposition[J]. Soil Biology and Biochemistry,2010,42(8):1275—1283.

[5] Cui J,Zhu Z K,Xu X L,et al. Carbon and nitrogen recycling from microbial necromass to cope with C︰N stoichiometric imbalance by priming[J]. Soil Biology and Biochemistry,2020,142:107720.

[6] Jenkins S N,Rushton S P,Lanyon C V,et al. Taxon-specific responses of soil bacteria to the addition of low level C inputs[J]. Soil Biology and Biochemistry,2010,42(9):1624—1631.

[7] Li L J,Zhu-Barker X,Ye R Z,et al. Soil microbial biomass size and soil carbon influence the priming effect from carbon inputs depending on nitrogen availability[J]. Soil Biology and Biochemistry,2018,119:41—49.

[8] Zhu Z K,Ge T D,Luo Y,et al. Microbial stoichiometric flexibility regulates rice straw mineralization and its priming effect in paddy soil[J]. Soil Biology and Biochemistry,2018,121:67—76.

[9] Li Y,Zhou C F,Qiu Y X,et al. Effects of biochar and litter on carbon and nitrogen mineralization and soil microbial community structure in a China fir plantation[J]. Journal of Forestry Research,2019,30(5):1913—1923.

[10] Yuan S F,Wang S L,Zhang W D. Effect of external organic carbon and temperature on SOC decomposition[J]. Chinese Journal of Soil Science,2015,46(4):916—922. [袁淑芬,汪思龍,張偉東. 外源有機(jī)碳和溫度對(duì)土壤有機(jī)碳分解的影響[J]. 土壤通報(bào),2015,46(4):916—922.]

[11] Yuan S F,Wang S L,Zhang W D. Effect of external organic carbon and temperature on soc decomposition. Chinese Journal of Soil Science,2015.

[12] Zhang W D,Wang X F,Wang S L. Addition of external organic carbon and native soil organic carbon decomposition:A meta-analysis[J]. PLoS One,2013,8(2):e54779.

[13] Jin Z Q,Shah T,Zhang L,et al. Effect of straw returning on soil organic carbon in rice-wheat rotation system:A review[J]. Food and Energy Security,2020,9(2):e200.

[14] Ding F,van Zwieten L,Zhang W D,et al. A meta-analysis and critical evaluation of influencing factors on soil carbon priming following biochar amendment[J]. Journal of Soils and Sediments,2018,18(4):1507—1517.

[15] Jiao L N,Li H Z,Yin C C. Research status of straw returning in improving soil fertility[J]. Anhui Agricultural Science Bulletin,2014,20(10):54—56. [矯麗娜,李志洪,殷程程. 秸稈還田培肥土壤的研究現(xiàn)狀[J]. 安徽農(nóng)學(xué)通報(bào),2014,20(10):54—56.]

[16] Dou L Y. Effects of straw return to field on stability,organic carbon content and distribution of different types of soil aggregates[D]. Shenyang:Shenyang Agricultural University,2018. [竇莉洋. 秸稈還田對(duì)不同類型土壤團(tuán)聚體穩(wěn)定性、有機(jī)碳含量及其分布的影響[D]. 沈陽(yáng):沈陽(yáng)農(nóng)業(yè)大學(xué),2018.]

[17] Shahbaz M,Kuzyakov Y,Sanaullah M,et al. Microbial decomposition of soil organic matter is mediated by quality and quantity of crop residues:Mechanisms and thresholds[J]. Biology and Fertility of Soils,2017,53(3):287—301.

[18] Fontaine S,Henault C,Aamor A,et al. Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect[J]. Soil Biology and Biochemistry,2011,43(1):86—96.

[19] Chen R R,Senbayram M,Blagodatsky S,et al. Soil C and N availability determine the priming effect:Microbial N mining and stoichiometric decomposition theories[J]. Global Change Biology,2014,20(7):2356—2367.

[20] Blagodatskaya Е,Kuzyakov Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure:Critical review[J]. Biology and Fertility of Soils,2008,45(2):115—131.

[21] Fang Y Y,Nazaries L,Singh B K,et al. Microbial mechanisms of carbon priming effects revealed during the interaction of crop residue and nutrient inputs in contrasting soils[J]. Global Change Biology,2018,24(7):2775—2790.

[22] Schimel J P,Bennett J. Nitrogen mineralization:Challenges of a changing paradigm[J]. Ecology,2004,85(3):591—602.

[23] Fabian J,Zlatanovic S,Mutz M,et al. Fungal-bacterial dynamics and their contribution to terrigenous carbon turnover in relation to organic matter quality[J]. The ISME Journal,2017,11(2):415—425.

[24] Craine J M,Morrow C,F(xiàn)ierer N. Microbial nitrogen limitation increases decomposition. Ecology,2007,88(8):2105—2113.

[25] Shahbaz M,Kumar A,Kuzyakov Y,et al. Priming effects induced by glucose and decaying plant residues on SOM decomposition:A three-source13C/14C partitioning study[J]. Soil Biology and Biochemistry,2018,121:138—146.

[26] Moorhead D L,Sinsabaugh R L. A theoretical model of litter decay and microbial interaction[J]. Ecological Monographs,2006,76(2):151—174.

[27] Kuzyakov Y. Priming effects:Interactions between living and dead organic matter[J]. Soil Biology and Biochemistry,2010,42(9):1363—1371.

[28] Wild B,Li J,Pihlblad J,et al. Decoupling of priming and microbial N mining during a short-term soil incubation[J]. Soil Biology and Biochemistry,2019,129:71—79.

[29] Kaiser C,F(xiàn)ranklin O,Dieckmann U,et al. Microbial community dynamics alleviate stoichiometric constraints during litter decay[J]. Ecology Letters,2014,17(6):680—690.

[30] Schmatz R,Recous S,Aita C,et al. Crop residue quality and soil type influence the priming effect but not the fate of crop residue C[J]. Plant and Soil,2017,414(1/2):229—245.

[31] Sarker J R,Singh B P,Cowie A L,et al. Carbon and nutrient mineralisation dynamics in aggregate-size classes from different tillage systems after input of canola and wheat residues[J]. Soil Biology and Biochemistry,2018,116:22—38.

[32] Lyu M K,Nie Y Y,Giardina C P,et al. Litter quality and site characteristics interact to affect the response of priming effect to temperature in subtropical forests[J]. Functional Ecology,2019,33(11):2226—2238.

[33] Yanni S F,Whalen J K,Simpson M J,et al. Plant lignin and nitrogen contents control carbon dioxide production and nitrogen mineralization in soils incubated with Bt and non-Bt corn residues[J]. Soil Biology and Biochemistry,2011,43(1):63—69.

[34] Mazzilli S R,Kemanian A R,Ernst O R,et al. Priming of soil organic carbon decomposition induced by corn compared to soybean crops[J]. Soil Biology and Biochemistry,2014,75:273—281.

[35] Liang X,Yuan J,Yang E,et al. Responses of soil organic carbon decomposition and microbial community to the addition of plant residues with different C︰N ratio[J]. European Journal of Soil Biology,2017,82:50—55.

[36] Meidute S,Demoling F,B??th E. Antagonistic and synergistic effects of fungal and bacterial growth in soil after adding different carbon and nitrogen sources[J]. Soil Biology and Biochemistry,2008,40(9):2334—2343.

[37] Hamer U,Marschner B. Priming effects of sugars,amino acids,organic acids and catechol on the mineralization of lignin and peat[J]. Journal of Plant Nutrition and Soil Science,2002,165(3):261—268.

[38] Bimüller C,Kreyling O,K?lbl A,et al. Carbon and nitrogen mineralization in hierarchically structured aggregates of different size[J]. Soil and Tillage Research,2016,160:23—33.

[39] Guppy C N,Menzies N W,Moody P W,et al. Competitive sorption reactions between phosphorus and organic matter in soil:A review[J]. Soil Research,2005,43(2):189—202.

[40] Xue J F,Pu C,Zhao X,et al. Changes in soil organic carbon fractions in response to different tillage practices under a wheat-maize double cropping system[J]. Land Degradation & Development,2018,29(6):1555—1564.

[41] Sarker J R,Singh B P,F(xiàn)ang Y Y,et al. Tillage history and crop residue input enhanced native carbon mineralisation and nutrient supply in contrasting soils under long-term farming systems[J]. Soil and Tillage Research,2019,193:71—84.

[42] Sauvadet M,Lashermes G,Alavoine G,et al. High carbon use efficiency and low priming effect promote soil C stabilization under reduced tillage[J]. Soil Biology and Biochemistry,2018,123:64—73.

[43] Kan Z R,Virk A L,Wu G,et al. Priming effect intensity of soil organic carbon mineralization under no-till and residue retention[J]. Applied Soil Ecology,2020,147:103445.

[44] Sun Z L,Liu S G,Zhang T,et al. Priming of soil organic carbon decomposition induced by exogenous organic carbon input:A meta-analysis[J]. Plant and Soil,2019,443(1/2):463—471.

[45] Zimmerman A R,Gao B,Ahn M Y. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils[J]. Soil Biology and Biochemistry,2011,43(6):1169—1179.

[46] Dimassi B,Mary B,F(xiàn)ontaine S,et al. Effect of nutrients availability and long-term tillage on priming effect and soil C mineralization[J]. Soil Biology and Biochemistry,2014,78:332—339.

[47] Fontaine S,Mariotti A,Abbadie L. The priming effect of organic matter:A question of microbial competition?[J]. Soil Biology and Biochemistry,2003,35(6):837—843.

[48] Tian J,Pausch J,Yu G R,et al. Aggregate size and their disruption affect14C-labeled glucose mineralization and priming effect[J]. Applied Soil Ecology,2015,90:1—10.

[49] Paterson E,Sim A. Soil-specific response functions of organic matter mineralization to the availability of labile carbon[J]. Global Change Biology,2013,19(5):1562—1571.

[50] Blagodatskaya E V,Blagodatsky S A,Anderson T H,et al. Priming effects in Chernozem induced by glucose and N in relation to microbial growth strategies[J]. Applied Soil Ecology,2007,37(1/2):95—105.

[51] Qiao N,Schaefer D,Blagodatskaya E,et al. Labile carbon retention compensates for CO2released by priming in forest soils[J]. Global Change Biology,2014,20(6):1943—1954.

[52] Landi L,Valori F,Ascher J,et al. Root exudate effects on the bacterial communities,CO2evolution,nitrogen transformations and ATP content of rhizosphere and bulk soils[J]. Soil Biology and Biochemistry,2006,38(3):509—516.

[53] Kuzyakov Y. Review:Factors affecting rhizosphere priming effects[J]. Journal of Plant Nutrition and Soil Science,2002,165(4):382.

[54] Lützow M V,K?gel-Knabner I,Ekschmitt K,et al. Stabilization of organic matter in temperate soils:Mechanisms and their relevance under different soil conditions - A review[J]. European Journal of Soil Science,2006,57(4):426—445.

[55] Falloon P D,Smith P. Modelling refractory soil organic matter[J]. Biology and Fertility of Soils,2000,30(5/6):388—398.

[56] Wang H,Hu G Q,Xu W H,et al. Effects of nitrogen addition on soil organic carbon mineralization after maize stalk addition[J]. European Journal of Soil Biology,2018,89:33—38.

[57] Fontaine S,Barot S. Size and functional diversity of microbe populations control plant persistence and long-term soil carbon accumulation[J]. Ecology Letters,2005,8(10):1075—1087.

[58] Xu Y D,Ding F,Gao X D,et al. Mineralization of plant residues and native soil carbon as affected by soil fertility and residue type[J]. Journal of Soils and Sediments,2019,19(3):1407—1415.

[59] Kuzyakov Y,Bol R. Sources and mechanisms of priming effect induced in two grassland soils amended with slurry and sugar[J]. Soil Biology and Biochemistry,2006,38(4):747—758.

[60] Jin X X,Gall A R,Saeed M F,et al. Plastic film mulching and nitrogen fertilization enhance the conversion of newly-added maize straw to water-soluble organic carbon[J]. Soil and Tillage Research,2020,197:104527.

[61] Ilstedt U,Singh S. Nitrogen and phosphorus limitations of microbial respiration in a tropical phosphorus-fixing acrisol(ultisol)compared with organic compost[J]. Soil Biology and Biochemistry,2005,37(7):1407—1410.

[62] Li Y,Niu S L,Yu G R. Aggravated phosphorus limitation on biomass production under increasing nitrogen loading:A meta-analysis[J]. Global Change Biology,2016,22(2):934—943.

[63] Spohn M,Schleuss P M. Addition of inorganic phosphorus to soil leads to desorption of organic compounds and thus to increased soil respiration[J]. Soil Biology and Biochemistry,2019,130:220—226.

[64] Ma X,Wei L,Tang M L,et al. Effects of varying long-term fertilization on organic carbon mineralization and priming effect of paddy soil[J]. Environmental Science,2018,39(12):5680—5686. [馬欣,魏亮,唐美玲,等. 長(zhǎng)期不同施肥對(duì)稻田土壤有機(jī)碳礦化及激發(fā)效應(yīng)的影響[J]. 環(huán)境科學(xué),2018,39(12):5680—5686.]

[65] Davidson E A,Janssens I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J]. Nature,2006,440(7081):165—173.

[66] Sayer E J,Powers J S,Tanner E V. Increased litterfall in tropical forests boosts the transfer of soil CO2to the atmosphere[J]. PLoS One,2007,2(12):e1299. https://doi.org/10.1371/journal.pone.0001299.

[67] Lenka S,Trivedi P,Singh B,et al. Effect of crop residue addition on soil organic carbon priming as influenced by temperature and soil properties[J]. Geoderma,2019,347:70—79.

[68] Yu Y Y,Turner N C,Gong Y H,et al. Benefits and limitations to straw- and plastic-film mulch on maize yield and water use efficiency:A meta-analysis across hydrothermal gradients[J]. European Journal of Agronomy,2018,99:138—147.

[69] Blagodatskaya E,Blagodatsky S,Khomyakov N,et al. Temperature sensitivity and enzymatic mechanisms of soil organic matter decomposition along an altitudinal gradient on Mount Kilimanjaro[J]. Scientific Reports,2016,6:22240.

[70] Daniel R M,Danson M J. A new understanding of how temperature affects the catalytic activity of enzymes[J]. Trends in Biochemical Sciences,2010,35(10):584—591.

[71] Melillo J M,Steudler P A,Aber J D,et al. Soil warming and carbon-cycle feedbacks to the climate system[J]. Science,2002,298(5601):2173—2176.

[72] Liu Q Y,Xu X L,Wang H M,et al. Dominant extracellular enzymes in priming of SOM decomposition depend on temperature[J]. Geoderma,2019,343:187—195.

[73] Peterson M E,Daniel R M,Danson M J,et al. The dependence of enzyme activity on temperature:Determination and validation of parameters[J]. The Biochemical Journal,2007,402(2):331—337.

[74] Wang C K,Yang J Y,Zhang Q Z. Soil respiration in six temperate forests in China[J]. Global Change Biology,2006,12(11):2103—2114.

[75] Alvarez G,Shahzad T,Andanson L,et al. Catalytic power of enzymes decreases with temperature:New insights for understanding soil C cycling and microbial ecology under warming[J]. Global Change Biology,2018,24(9):4238—4250.

[76] Giardina C P,Ryan M G. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature[J]. Nature,2000,404(6780):858—861.

[77] Romaní A M,F(xiàn)ischer H,Mille-Lindblom C,et al. Interactions of bacteria and fungi on decomposing litter:Differential extracellular enzyme activities[J]. Ecology,2006,87(10):2559—2569.

[78] Liu E K,Wang J B,Zhang Y Q,et al. Priming effect of (13)C-labelled wheat straw in no-tillage soil under drying and wetting cycles in the Loess Plateau of China[J]. Scientific Reports,2015,5:13826.

[79] Zhang S,Yu Z G,Lin J J,et al. Responses of soil carbon decomposition to drying-rewetting cycles:A meta-analysis[J]. Geoderma,2020,361:114069.

[80] Stark J M,F(xiàn)irestone M K. Mechanisms for soil moisture effects on activity of nitrifying bacteria[J]. Applied and Environmental Microbiology,1995,61(1):218—221.

[81] Denef K,Six J,Bossuyt H,et al. Influence of dry-wet cycles on the interrelationship between aggregate,particulate organic matter,and microbial community dynamics[J]. Soil Biology and Biochemistry,2001,33(12/13):1599—1611.

[82] Fierer N,Schimel J P,Holden P A. Influence of drying-rewetting frequency on soil bacterial community structure[J]. Microbial Ecology,2003,45(1):63—71.

[83] Magid J,Kj?rgaard C,Gorissen A,et al. Drying and rewetting of a loamy sand soil did not increase the turnover of native organic matter,but retarded the decomposition of added14C-labelled plant material[J]. Soil Biology and Biochemistry,1999,31(4):595—602.

Research Progress on the Native Soil Carbon Priming after Straw Addition

ZHANG Yeye1, MO Fei1?, HAN Juan1, WEN Xiaoxia1, LIAO Yuncheng2?

(1. College of Agronomy,Northwest A&F University,Yangling, Shaanxi 712100,China; 2. College of Agronomy,Shanxi Agricultural University,Taigu,Shanxi 030801,China)

Soil organic carbon is the foundation and core of farmland fertility, which is of great significance for crop yield, agricultural environment and the earth's carbon cycling. Crop straw is one of the important external sources for soil organic carbon replenishment in cropping soils. The processes of returning straw to soil exert a significant effect on the turnover of soil organic carbon and hence carbon pool balance. Soil carbon priming is a common phenomenon, which can be defined as an distinct shift of native organic carbon mineralization due to fresh organic matter inputs into the soils. There is an increased attention to the straw-induced priming effect in the recent years, due mainly to the fact that straw incorporation not only involves high-effective resource utilization of crop straw residue, but also directly relates to the balance of soil carbon pool and its functionality. Despite a tremendous advance in the theoretical study on soil organic carbon priming following the external organic matter inputs, we are currently facing other big challenges. For instance, that how to combine this latest theoretical knowledge into the practical application of straw residue management aiming to promote soil carbon sequestration and reduce carbon emissions. To tackle these difficulties, the characteristics and potential mechanisms of the organic carbon priming due to straw return to soils should be clarified, and its specific drivers (i.e., edaphic, climatic and anthropogenic factors) should also be fully identified fully. This paper first systematically summarized the potential theoretical basis of organic carbon priming such as co-metabolism theory, N-mining theory, stoichiometric decomposition and microbial, and necromass reuse. Secondly, we combined existing research data and theoretical hypotheses to elaborate a series of implicit factors that govern the direction and magnitude of soil carbon priming, including the straw type and quantity, return method, water and fertilizer management, soil properties, and climatic agency, et al. Finally, taking into the consideration the high-effective utilization of straw residue, the sustainable build-up of soil carbon pool, and environmentally friendly farming practices, the potential research directions on straw-induced soil carbon priming we proposed, and the adaptative straw management methods designed to promote soil carbon sequestration were also outlined.

Straw return; Priming effect; Soil organic carbon

S15

A

10.11766/trxb202006260259

張葉葉,莫非,韓娟,溫曉霞,廖允成. 秸稈還田下土壤有機(jī)質(zhì)激發(fā)效應(yīng)研究進(jìn)展[J]. 土壤學(xué)報(bào),2021,58(6):1381–1392.

ZHANG Yeye,MO Fei,HAN Juan,WEN Xiaoxia,LIAO Yuncheng. Research Progress on the Native Soil Carbon Priming after Straw Addition[J]. Acta Pedologica Sinica,2021,58(6):1381–1392.

*國(guó)家自然科學(xué)基金項(xiàng)目(3180101087)資助 Supported by the National Natural Science Foundation of China(No. 3180101087)

Corresponding author,E-mail:yunchengliao@163.com;mofei@nwafu.edu.cn

張葉葉(1995—),女,陜西咸陽(yáng)人,博士研究生,主要從事農(nóng)業(yè)生態(tài)學(xué)研究。E-mail:zhangyeye8296@nwafu.edu.cn

2020–06–26;

2021–03–07;

2021–03–31

(責(zé)任編輯:檀滿枝)

猜你喜歡
碳庫(kù)土壤有機(jī)礦化
礦化劑對(duì)硅酸鹽水泥煅燒的促進(jìn)作用
大麥蟲對(duì)聚苯乙烯塑料的生物降解和礦化作用
長(zhǎng)期定位試驗(yàn)下砒砂巖與沙復(fù)配土的碳庫(kù)管理指數(shù)
綠色科技(2020年20期)2020-11-20 01:56:34
秸稈還田對(duì)農(nóng)田土壤碳庫(kù)和溫室氣體排放的影響研究進(jìn)展
大氣氮沉降對(duì)森林土壤碳庫(kù)的影響
西雙版納橡膠林土壤有機(jī)碳分布特征研究
秸稈還田的土壤有機(jī)碳周轉(zhuǎn)特征
土壤有機(jī)碳轉(zhuǎn)化研究及其進(jìn)展
AMDIS在土壤有機(jī)污染物鑒別中表征性統(tǒng)計(jì)量的探究
不同礦化方式下絲素蛋白電紡纖維的仿生礦化
絲綢(2014年5期)2014-02-28 14:55:12
溆浦县| 木里| 辛集市| 乌兰浩特市| 项城市| 广德县| 龙州县| 梁山县| 隆尧县| 句容市| 东兴市| 木兰县| 汾阳市| 晋江市| 内乡县| 琼海市| 措勤县| 东兰县| 游戏| 诏安县| 双城市| 兴城市| 图片| 深圳市| 铜陵市| 彭水| 东安县| 抚松县| 台东县| 沙坪坝区| 广昌县| 民和| 日照市| 铁岭市| 金门县| 合山市| 察隅县| 华池县| 尼勒克县| 衡南县| 黄陵县|