時(shí)琦昊,喬長奎,魏孔財(cái),陳寧生,宋志龍
(1.蘭州蘭石石油裝備工程股份有限公司,蘭州 730314;2.川慶鉆探長慶鉆井總公司,西安 710021;3.中國石油和石油化工設(shè)備工業(yè)協(xié)會,北京 100825)
目前,海洋用液壓轉(zhuǎn)盤主要在活動(dòng)鉆具、輔助MWD隨鉆測井中使用,或者為液壓動(dòng)力卡瓦在上卸扣時(shí)提供反轉(zhuǎn)矩[1],具有低速大轉(zhuǎn)矩及傳動(dòng)緊湊、安裝尺寸小等特點(diǎn)。液壓轉(zhuǎn)盤的旋轉(zhuǎn)主要是由布置在液壓轉(zhuǎn)盤4個(gè)角的4個(gè)液壓馬達(dá)驅(qū)動(dòng)。
在活動(dòng)鉆具或者M(jìn)WD隨鉆測井作業(yè)中,轉(zhuǎn)盤復(fù)雜的外負(fù)載環(huán)境,導(dǎo)致液壓馬達(dá)轉(zhuǎn)速波動(dòng),造成轉(zhuǎn)速不同步,影響轉(zhuǎn)盤控制精度,降低馬達(dá)使用壽命。因此,應(yīng)使液壓轉(zhuǎn)盤中的4個(gè)液壓馬達(dá)輸出的轉(zhuǎn)速同步。
根據(jù)液壓控制原理,轉(zhuǎn)盤中4個(gè)液壓馬達(dá)實(shí)現(xiàn)同步控制,主要是控制4個(gè)液壓馬達(dá)具有相同的進(jìn)入流量。隨著控制技術(shù)的不斷發(fā)展,電液比例控制已經(jīng)成為工程中主流的控制技術(shù),在提高系統(tǒng)動(dòng)態(tài)性及控制精度等方面效果明顯[3-5]。因此,液壓采用電液比例控制的方法,運(yùn)用同等控制方式及控制算法[6-7]控制入4個(gè)液壓馬達(dá)的流量,提高馬達(dá)轉(zhuǎn)速同步的性能,使液壓轉(zhuǎn)盤能更好地適應(yīng)現(xiàn)場工況的需求。
轉(zhuǎn)盤同步控制原理如圖1所示。為方便研究,將系統(tǒng)部件簡化為液壓泵站、比例閥、液壓馬達(dá)、轉(zhuǎn)速傳感器等。系統(tǒng)工作原理為:液壓泵站為液壓系統(tǒng)提供動(dòng)力及限制最高工作壓力;系統(tǒng)有4個(gè)液壓馬達(dá),每個(gè)液壓馬達(dá)都有1個(gè)比例閥進(jìn)行單獨(dú)控制和對應(yīng)的轉(zhuǎn)速傳感器采集其轉(zhuǎn)速信息,采集到的轉(zhuǎn)速信號傳送到控制器中,由控制器對其進(jìn)行計(jì)算,計(jì)算后的信號被送入比例放大器中,信號經(jīng)比例放大后,進(jìn)入比例閥中,形成1個(gè)閉環(huán)的馬達(dá)轉(zhuǎn)速同步控制系統(tǒng)。
圖1 轉(zhuǎn)盤同步控制系統(tǒng)原理
系統(tǒng)技術(shù)參數(shù)如表1。
表1 轉(zhuǎn)盤控制系統(tǒng)技術(shù)參數(shù)
為方便對系統(tǒng)進(jìn)行研究,選用DPZA/-A-L5/24型比例閥和190-0236型液壓馬達(dá)。
馬達(dá)電液比例控制原理如圖2所示。
圖2 馬達(dá)電液比例控制原理
比例放大器高的頻率響應(yīng)對系統(tǒng)影響較小,可將輸出比例放大器的電流I和輸入電壓U近似為比例關(guān)系[8],用增益Ka來表示傳遞函數(shù):
(1)
2.2.1 比例閥流量方程
比例閥線性后增量方程:
ΔQL=KXΔX-KPΔpL
(2)
式中:KX為流量增益;KP為流量壓力系數(shù);ΔpL為馬達(dá)進(jìn)回油壓力差;ΔX閥芯位移差;ΔQL為閥流量的增量。
2.2.2 馬達(dá)流量連續(xù)方程
為方便建模和研究單馬達(dá)控制特性,做如下假設(shè)[9-10]:
1) 連接閥與液壓馬達(dá)的管道對稱且短而粗,管道壓力損失和動(dòng)態(tài)忽略不計(jì)。
2) 油液溫度和體積彈性模量恒定。
3) 液壓馬達(dá)內(nèi)泄漏均為層流流動(dòng)。
4) 供油壓力恒定且回油無背壓。
根據(jù)以上假設(shè),馬達(dá)流量連續(xù)方程為:
(3)
2.2.3 液壓馬達(dá)扭矩方程
馬達(dá)轉(zhuǎn)矩負(fù)載平衡方程為:
(4)
式中:T為馬達(dá)輸出轉(zhuǎn)矩,N·m;J為液壓馬達(dá)軸上的總慣量,kg·m2;Bm為馬達(dá)、負(fù)載粘性阻尼系數(shù);G為彈性聯(lián)軸器剛度,(N·m)/rad;TL為馬達(dá)軸上干擾負(fù)載轉(zhuǎn)矩,N·m。
對式(2)進(jìn)行拉氏變換:
QL(s)=KXX(s)-KPpL(s)
(5)
對式(3)進(jìn)行拉氏變換:
(6)
對式(4)進(jìn)行拉氏變換:
T=Bmsθc(s)+Js2θc(s)+Gθc(s)+TL
(7)
整理式(5)~(7)并簡化,忽略閥控馬達(dá)彈簧負(fù)載。當(dāng)G=0,可得液壓馬達(dá)輸出的轉(zhuǎn)角:
(8)
馬達(dá)轉(zhuǎn)角對閥芯位移的傳遞函數(shù):
(9)
馬達(dá)轉(zhuǎn)角對外負(fù)載的傳遞函數(shù):
(10)
將馬達(dá)轉(zhuǎn)速信號轉(zhuǎn)換為電壓信號輸出:
(11)
式中:Us為轉(zhuǎn)速傳感器輸出電壓,V;Km為轉(zhuǎn)速傳感器增益。
對式(11)進(jìn)行拉氏變換:
Gθ(s)=Kms
(12)
根據(jù)以上公式,可得系統(tǒng)開環(huán)傳遞函數(shù):
(13)
參照文獻(xiàn)[10]中參數(shù)處理的辦法,結(jié)合本系統(tǒng),得出表2數(shù)學(xué)模型參數(shù)。
表2 數(shù)學(xué)模型參數(shù)
將表1和表2中的參數(shù)代進(jìn)式(13),得到系統(tǒng)的開環(huán)傳遞函數(shù)為:
(14)
根據(jù)式(14),采用時(shí)域分析的方法,求解控制系統(tǒng)閉環(huán)特征方程的根的方法來判斷系統(tǒng)的穩(wěn)定性,即,如果求解的根實(shí)部大于零,則判斷系統(tǒng)不穩(wěn)定,非線性。反之,則系統(tǒng)穩(wěn)定[11]。利用Matlab對式(14)求解其閉環(huán)特征方程的根,求解程序如下[12]:
num=2850000;den=[1 90 1000 0];
s=tf(num,den);
sys=feedback(s,1);
roots(sys.den{1})
程序運(yùn)行后可得:
ans =
-1.7616 + 0.0000i
0.4308 + 1.1968i
0.4308 - 1.1968i
根據(jù)計(jì)算結(jié)果,可知馬達(dá)同步控制系統(tǒng)為非線性系統(tǒng)。因此,需要加入相應(yīng)的控制算法,以提高系統(tǒng)的同步控制精度。
控制原理如圖3所示。系統(tǒng)反饋誤差E和誤差變化EC為輸入,匹配模糊規(guī)則,整定出調(diào)節(jié)PID參數(shù)的調(diào)整量,即ΔKp、ΔKi、ΔKd。在系統(tǒng)運(yùn)行中,呈現(xiàn)動(dòng)態(tài)變化,不斷檢測,并適時(shí)修正,以達(dá)到控制預(yù)設(shè)的目標(biāo)值。此控制器適應(yīng)系統(tǒng)內(nèi)部參數(shù)變化,克服外界干擾的能力強(qiáng),使被控對象具有良好的動(dòng)態(tài)和靜態(tài)特性[13]。
圖3 控制器工作原理
運(yùn)用Matlab/Simulink軟件對自整定模糊PID控制器進(jìn)行設(shè)計(jì)。
3.2.1 各變量隸屬度函數(shù)的確定
如圖3所示,定義E和EC、ΔKp、ΔKi、ΔKd的模糊子集及含義為{NB(負(fù)大),NM(負(fù)中),NS(負(fù)小),ZO(零),PS(正小),PM(正中),PB(正大)};定義論域的范圍在[-6,6];在模糊邏輯工具箱的隸屬度函數(shù)編輯器中,將輸入量E和EC的隸屬函數(shù)選為高斯型,輸出ΔKp、ΔKi、ΔKd的隸屬函數(shù)為三角形[14-15]。
3.2.2 參數(shù)隸屬度函數(shù)曲線設(shè)計(jì)
模糊控制編輯器如圖4所示。
圖4 模糊控制編輯器
E和EC的隸屬函數(shù)曲線如圖5所示。
圖5 E和EC的隸屬度函數(shù)曲線
ΔKp、ΔKi和ΔKd隸屬度函數(shù)曲線如圖6所示。
圖6 ΔKp、ΔKi和ΔKd隸屬度函數(shù)曲線
3.2.3 模糊推理規(guī)則設(shè)計(jì)
在Malab/Simulink中編輯適合本系統(tǒng)需求的模糊推理規(guī)則,如圖7所示。
至此,完成自整定模糊PID控制器設(shè)計(jì)。
根據(jù)本系統(tǒng)數(shù)學(xué)模型,利用Matlab/Simulink
圖7 模糊推理規(guī)則設(shè)計(jì)
建立其控制系統(tǒng)。采用PID控制及參數(shù)自整定模糊PID控制兩種控制算法分別對馬達(dá)同步系統(tǒng)進(jìn)行控制,并對2種控制算法的仿真結(jié)果進(jìn)行分析,以驗(yàn)證其有效性。
由于液壓轉(zhuǎn)盤在實(shí)際應(yīng)用中,所受負(fù)載因鉆井工況的影響,會不斷的變化,因此,負(fù)載的變化假定按正弦曲線規(guī)律變化。
根據(jù)式(9)和式(10),得出單液壓馬達(dá)控制系統(tǒng)simulink模型,如圖8所示。
依據(jù)圖8,得出4個(gè)馬達(dá)控制系統(tǒng)simulink模型,如圖9所示。
圖9 PID四液壓馬達(dá)控制系統(tǒng)Smulink模型
根據(jù)式(10)和式(11),得出單馬達(dá)控制系統(tǒng)simulink模型,如圖10所示。其中,PID控制器和模糊控制器的simulink模型如圖11~12所示。
圖10 單馬達(dá)自整定模糊PID控制Simulink模型
圖11 PID控制器模型
圖12 模糊控制器模型
依據(jù)圖10~12,得出本系統(tǒng)同步馬達(dá)控制simulink模型,如圖13所示。
圖13 四馬達(dá)自整定模糊PID控制Smulink模型
按以下步驟進(jìn)行仿真:
1) 設(shè)定系統(tǒng)仿真采樣時(shí)間為1 s。
2) 試湊PID的3個(gè)參數(shù),最終得出Kp=0.25、Ki=0.24、Kd=0.02。
3) 根據(jù)步驟2),將3個(gè)參數(shù)代入控制器中。
4) 液壓轉(zhuǎn)盤在最大轉(zhuǎn)矩下的轉(zhuǎn)速約為6 r/min,因此設(shè)置理想轉(zhuǎn)速為此轉(zhuǎn)速。
根據(jù)以上步驟,分別采用PID控制器和自整定模糊PID控制器對液壓轉(zhuǎn)盤馬達(dá)同步控制系統(tǒng)進(jìn)行仿真分析。
4.3.1 PID控制仿真
4個(gè)馬達(dá)的轉(zhuǎn)速在PID控制器調(diào)節(jié)下,得出以下控制結(jié)果:
1) 在復(fù)雜工況變負(fù)載的環(huán)境下,系統(tǒng)穩(wěn)定后,最大轉(zhuǎn)速偏差為0.28 r/min,同步性較好,如圖14所示。
2) 最大同步偏差為0.55 r/min,如圖15所示。
圖14 4個(gè)馬達(dá)在PID控制下轉(zhuǎn)速曲線
圖15 4個(gè)馬達(dá)在PID控制下轉(zhuǎn)速最大偏差曲線
4.3.2 自整定模糊PID控制仿真
4個(gè)馬達(dá)的轉(zhuǎn)速在自整定模糊PID控制器調(diào)節(jié)下,得出以下控制結(jié)果:
1) 在復(fù)雜工況變負(fù)載的環(huán)境下,系統(tǒng)穩(wěn)定后,最大轉(zhuǎn)速偏差為0.28 r/min,如圖16所示。
2) 最大同步偏差為0.37 r/min,如圖17所示。
圖16 4個(gè)馬達(dá)在自整定模糊PID控制下的轉(zhuǎn)速曲線
圖17 4個(gè)馬達(dá)在自整定模糊PID控制下轉(zhuǎn)速的最大偏差曲線
1) 針對液壓轉(zhuǎn)盤馬達(dá)轉(zhuǎn)速存在不同步的問題,通過設(shè)計(jì)同步控制系統(tǒng),分析系統(tǒng)數(shù)學(xué)模型,研究其動(dòng)態(tài)特性,采用增加控制算法的方式,使4個(gè)液壓馬達(dá)輸出轉(zhuǎn)速同步效果得到改善,系統(tǒng)穩(wěn)定性增強(qiáng),具有較強(qiáng)的環(huán)境變負(fù)載適應(yīng)能力,同時(shí)也延長液壓馬達(dá)的使用壽命。
2) 通過對液壓轉(zhuǎn)盤同步控制系統(tǒng)仿真驗(yàn)證可知,自整定模糊PID的控制效果好于單純PID控制,更適用于控制性能要求較高的工程領(lǐng)域。
3) 經(jīng)對液壓轉(zhuǎn)盤同步控制系統(tǒng)的研究,其控制思路亦可用于石油鉆采設(shè)備及井口自動(dòng)化機(jī)具,且具有多液壓馬達(dá)同時(shí)工作并需要同步的情形,對此類同步控制系統(tǒng)具有參考意義。