楊佳佳
摘? ? 要:本文主要研究帶有分?jǐn)?shù)階耗散的二維Camassa-Holm方程在有界光滑區(qū)域上解的長時(shí)間動(dòng)力學(xué)行為問題。通過利用半群分解技巧來證明該方程的解所生成的解半群的漸近緊性,從而得到全局吸引子和指數(shù)吸引子在相空間中的存在性。
關(guān)鍵詞:粘性Camassa-Holm方程;全局吸引子;指數(shù)吸引子
中圖分類號(hào):O19? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)識(shí)碼:A? ? ? ? ? ? ? ?文章編號(hào):2095-7394(2021)04-0038-10
近年來,對(duì)具有非局部效應(yīng)或異常擴(kuò)散的流體動(dòng)力學(xué)方程漸近行為問題的研究受到了廣泛的關(guān)注。特別地,Camassa-Holm方程由對(duì)淺水方程的漸近研究而產(chǎn)生,是一類非常重要的新型淺水波方程。GAN等人[1]證明了當(dāng)[s=n/4,1n=2,3]時(shí),帶粘性的Camassa-Holm方程在有界光滑區(qū)域上是全局適定的,即解關(guān)于時(shí)間的全局存在性、唯一性以及對(duì)初值的連續(xù)依賴性,并進(jìn)一步研究[2]得到該Camassa-Holm方程的解在Sobolev空間更高的正則性估計(jì)。
本文擬對(duì)帶有分?jǐn)?shù)階耗散的二維Camassa-Holm方程解的長時(shí)間動(dòng)力學(xué)行為問題展開研究,假定[Ω?R2]是有界光滑區(qū)域,[s∈1,∞],則有以下方程:
方程(1)描述了在有界光滑區(qū)域內(nèi)帶有分?jǐn)?shù)階耗散的二維粘性流體的運(yùn)動(dòng),能有效模擬水動(dòng)力問題、流體中界面運(yùn)動(dòng),以及捕捉許多流體動(dòng)力學(xué)的非局部特征,如非局部漂移、擴(kuò)散、熱效應(yīng)及電磁效應(yīng)[1-2]。當(dāng)[s=1]時(shí),該方程則是經(jīng)典的Camassa-Holm方程,簡稱為LANS-ɑ模型。在過去二十多年里,學(xué)界對(duì)該方程已有廣泛而深入的研究[3]。
本文主要研究在有界光滑區(qū)域內(nèi),帶有分?jǐn)?shù)階耗散的二維粘性Camassa-Holm方程解的長時(shí)間動(dòng)力學(xué)行為;利用半群技巧來研究該方程的解所生成的解半群的漸近行為,通過全局吸引子和指數(shù)吸引子的存在性來對(duì)其刻畫。
以下,在本文第二部分首先介紹一些預(yù)備知識(shí);第三部分給出了本文要證明的主要結(jié)論;第四部分證明了Camassa-Holm方程的解所生成的解半群的連續(xù)性;第五、六部分,基于半群分解技巧證明了解半群的漸近緊性,從而得到全局吸引子和指數(shù)吸引子的存在性。
參考文獻(xiàn):
[1] GAN Z H,CENTER FOR APPLIED MATHEMATICS TIANJIN UNIVERSITY TIANJIN CHINA,LIN F H,et al. On the viscous Camassa-Holm equations with fractional diffusion[J]. Discrete & Continuous Dynamical Systems- A,2020,40(6):3427-3450.
[2] GAN Z H,GUO Q,LU Y.? Regularity and stability of finite energy weak solutions for the Camassa-Holm equations with nonlocal viscosity[J]. Calculus of Variations and Partial Differential Equations,2021,60(1):1-27.
[3] MARSDEN J E,SHKOLLER S. Global well-posedness for the Lagrangian averaged Navier-Stokes(LANS-α) equations on bounded domains[J]. Philosophical Transactions of the Royal Society of London Series A: Mathematical,Physical and Engineering Sciences,2001, 359(1784):1449-1468.
[4] ROBINSON J C,PIERRE C. Infinite-dimensional dynamical systems:an introduction to dissipative parabolic PDEs and the theory of global attractors. Cambridge texts in applied mathematics[J]. Applied Mechanics Reviews,2003,56(4):B54-B55.
[5] Huang A,Huo W. The global attractors of the 2D Boussinesq equations with fractional Laplacian in subcritical case[J]. Discrete and Continuous Dynamical Systems-Series B (DCDS-B),2017,21(8):2531-2550.
[6] FOIAS C,MANLEY O,ROSA R,et al. Navier-stokes equations and turbulence[M]. Cambridge:Cambridge University Press,2001,136-168.
[7] HALE J. Asymptotic behavior of dissipative systems[M]. Providence,Rhode Island:American Mathematical Society,1998,175-184.
[8] KALANTAROV V K,TITI E S. Global attractors and determining modes for the 3D Navier-Stokes-Voight equations[J]. Chinese Annals of Mathematics,Series B, 2009,30(6):697-714.
[9] LADYZHENSKAYA O. Evolution equations of hyperbolic type[M]//Attractors for semigroups and evolution equations. Cambridge:Cambridge University Press,1991: 43-69.
[10] TEMAM R. Infinite-dimensional dynamical systems in mechanics and physics[M]. New York,NY:Springer US, 1988,56-72.
[11] FABRIE P,GALUSINSKI C,MIRANVILLE A,et al. Uniform exponential attractors for a singularly perturbed damped wave equation[J]. Discrete and Continuous Dynamical Systems,2004,10(1/2):211-238.
[12] COTI ZELATI M,GAL C G. Singular limits of Voigt models in fluid dynamics[J]. Journal of Mathematical Fluid Mechanics,2015,17(2):233-259.
責(zé)任編輯? ? 王繼國