国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于模糊隸屬度的多站點(diǎn)多機(jī)協(xié)同即時(shí)響應(yīng)調(diào)度系統(tǒng)

2022-01-27 02:45:04陳燕燕劉亞東張鎮(zhèn)府
關(guān)鍵詞:農(nóng)機(jī)站農(nóng)田遺傳算法

黃 凰,陳燕燕,朱 明,劉亞東,張鎮(zhèn)府

基于模糊隸屬度的多站點(diǎn)多機(jī)協(xié)同即時(shí)響應(yīng)調(diào)度系統(tǒng)

黃 凰1,2,陳燕燕1,2,朱 明1,2,劉亞東1,張鎮(zhèn)府1

(1. 華中農(nóng)業(yè)大學(xué)工學(xué)院,武漢 430070; 2. 農(nóng)業(yè)農(nóng)村部長(zhǎng)江中下游農(nóng)業(yè)裝備重點(diǎn)實(shí)驗(yàn)室,武漢 430070)

為了實(shí)現(xiàn)多農(nóng)機(jī)站聯(lián)合調(diào)配完成農(nóng)戶的實(shí)時(shí)作業(yè)訂單,該研究針對(duì)農(nóng)田與農(nóng)機(jī)的匹配與調(diào)度需求問題,綜合考慮農(nóng)戶滿意度、多農(nóng)機(jī)站協(xié)同、訂單數(shù)量、農(nóng)田面積和位置坐標(biāo)等因素,建立帶有模糊時(shí)間窗并以調(diào)度總時(shí)長(zhǎng)最小和調(diào)度農(nóng)機(jī)數(shù)量最少為目標(biāo)的多農(nóng)機(jī)站即時(shí)響應(yīng)調(diào)度數(shù)學(xué)模型。設(shè)計(jì)了基于保留優(yōu)秀父代基因的改進(jìn)遺傳算法的農(nóng)機(jī)調(diào)度系統(tǒng),完成多農(nóng)機(jī)站響應(yīng)多農(nóng)田的同時(shí)作業(yè)需求的任務(wù),在最短時(shí)間里即時(shí)調(diào)配農(nóng)機(jī)按照最短路徑至各農(nóng)田完成作業(yè)要求。以武漢周邊某地區(qū)的3個(gè)農(nóng)機(jī)站和35個(gè)農(nóng)田作業(yè)訂單為例,驗(yàn)證所提出的模型和智能優(yōu)化算法,并進(jìn)行可視化界面展示。試驗(yàn)表明,當(dāng)模糊隸屬度為0.8,比其為0.9時(shí),調(diào)度總路程減少率為9.89%,農(nóng)機(jī)數(shù)量降低率為15.38%;針對(duì)該地區(qū)各農(nóng)機(jī)站農(nóng)機(jī)數(shù)量的實(shí)際情況,在不影響農(nóng)戶滿意度的前提下,單個(gè)農(nóng)機(jī)站接受實(shí)時(shí)訂單數(shù)量以不超過20為宜。該研究實(shí)現(xiàn)了多農(nóng)機(jī)站對(duì)多農(nóng)田精準(zhǔn)調(diào)度作業(yè),有助于科學(xué)合理調(diào)度農(nóng)機(jī),提高農(nóng)機(jī)作業(yè)效率,節(jié)約成本投入。

農(nóng)業(yè)機(jī)械;調(diào)度;模糊時(shí)間窗;遺傳算法;即時(shí)響應(yīng)

0 引 言

中國(guó)農(nóng)業(yè)在現(xiàn)代化轉(zhuǎn)型過程中,面臨著農(nóng)機(jī)供需信息滯后、資源配置不合理和農(nóng)機(jī)作業(yè)效率低等問題,農(nóng)機(jī)規(guī)?;鳂I(yè)已成為趨勢(shì),農(nóng)機(jī)社會(huì)化服務(wù)形式需不斷創(chuàng)新。在農(nóng)機(jī)社會(huì)化服務(wù)中,包括了農(nóng)機(jī)服務(wù)需求方和農(nóng)機(jī)服務(wù)提供方,需求方發(fā)布自己的作業(yè)需求,其需求包括農(nóng)田面積,作業(yè)類型和時(shí)間限制等,農(nóng)機(jī)服務(wù)組織如農(nóng)機(jī)站對(duì)已發(fā)布需求的眾多農(nóng)田分配合適的農(nóng)機(jī),并規(guī)劃最短的行駛路線,從而實(shí)現(xiàn)即時(shí)調(diào)度的全局最優(yōu)。

農(nóng)機(jī)即時(shí)響應(yīng)調(diào)度的本質(zhì)是農(nóng)機(jī)與農(nóng)田的時(shí)空調(diào)度問題,該問題的目標(biāo)是保證在規(guī)定時(shí)間內(nèi)完成所有農(nóng)田作業(yè)點(diǎn)任務(wù)且盡可能減少調(diào)配成本。隨著農(nóng)機(jī)組織作業(yè)范圍的擴(kuò)大,農(nóng)機(jī)數(shù)量的增加以及與農(nóng)田配置復(fù)雜度的增加,傳統(tǒng)只關(guān)注農(nóng)機(jī)行走路徑的農(nóng)機(jī)調(diào)度方式已不適應(yīng)新形勢(shì)的要求。針對(duì)此問題,智能優(yōu)化算法則在尋求最優(yōu)調(diào)度方式中發(fā)揮著至關(guān)重要的作用,如元啟發(fā)式算中的遺傳算法[1]、蟻群算法[2]、粒子群算法[3]、模擬退火算法[4]、禁忌搜索算法[5-6]等。

在實(shí)現(xiàn)農(nóng)機(jī)合理調(diào)度方面,國(guó)內(nèi)外學(xué)者對(duì)智能調(diào)度算法進(jìn)行了廣泛研究。國(guó)外學(xué)者M(jìn)a等[7]和Ribeiro等[8]研究了帶時(shí)間窗約束和路段容量限制的車輛調(diào)度問題,提出以配送時(shí)間為目標(biāo)函數(shù)的車輛調(diào)度問題。Guan[9-10]對(duì)農(nóng)機(jī)調(diào)度提出兩階段方案,先分配農(nóng)機(jī)資源,再利用模擬退火和遺傳算法求得全局最優(yōu)解。Alaiso等[11]建立的農(nóng)機(jī)調(diào)度模型是旅行商問題的變體,其中對(duì)調(diào)度路徑優(yōu)化采用群組優(yōu)化算法—蟻群算法。Seyyedhasani等[12-13]考慮了多輛農(nóng)機(jī)協(xié)同作業(yè)的情況,使用改進(jìn)的 Clarke-Wright 算法和禁忌搜索算法,將農(nóng)機(jī)調(diào)度問題轉(zhuǎn)換為車輛調(diào)度問題。Ma等[14]將遺傳算法的交叉和突變操作者引入粒子群算法,構(gòu)建了雜交粒子群算法,并采用了三級(jí)編碼規(guī)則,實(shí)現(xiàn)了多個(gè)配送中心危險(xiǎn)品風(fēng)險(xiǎn)均衡化的有力調(diào)度。Tuani等[15]基于旅行商問題,提出的3-opt局部搜索的異質(zhì)自適應(yīng)蟻群優(yōu)化,在蟻群算法中引入自適應(yīng)性,實(shí)現(xiàn)了在優(yōu)化搜索過程中使參數(shù)接近最佳值,以便于找到近乎最佳的解決方案。

國(guó)內(nèi)學(xué)者李洪等[16]為了解決農(nóng)機(jī)作業(yè)過程中出現(xiàn)的缺乏有效的農(nóng)機(jī)調(diào)度手段以及信息滯后和時(shí)效性差等問題,提出了基于GPS、GPRS和GIS的農(nóng)機(jī)監(jiān)控調(diào)度系統(tǒng),為農(nóng)機(jī)資源的實(shí)時(shí)監(jiān)控和有效調(diào)度提供了一種切實(shí)可行的解決方案。張璠等[17-18]提出了一種基于機(jī)主選擇的農(nóng)機(jī)調(diào)配模式,設(shè)計(jì)了基于啟發(fā)式優(yōu)先級(jí)規(guī)則的農(nóng)機(jī)調(diào)配算法。吳才聰?shù)萚19]以動(dòng)態(tài)規(guī)劃的思想逐步分解決策過程,建立農(nóng)機(jī)時(shí)空調(diào)度模型,給出農(nóng)機(jī)調(diào)度的全局解算方法。王雪陽等[20]提出了基于遺傳算法的農(nóng)機(jī)調(diào)度ASBOGA,考慮了農(nóng)機(jī)在不充足的條件下,產(chǎn)生農(nóng)機(jī)二次分配的情況,使農(nóng)機(jī)在規(guī)定期限內(nèi)完成調(diào)配任務(wù)且使調(diào)配成本最小。馬軍巖等[21]設(shè)計(jì)改進(jìn)模擬退火和粒子群優(yōu)化的混合智能算法求解調(diào)度模型,建立多區(qū)互聯(lián)的農(nóng)機(jī)調(diào)度模型和智能優(yōu)化調(diào)度算法,旨在從全局角度優(yōu)化農(nóng)機(jī)資源配置,實(shí)現(xiàn)資源合理利用。潘帥等[22]研究了多種服務(wù)需求的車輛調(diào)度問題,以禁忌搜索算法為基礎(chǔ),改良解的構(gòu)造方法與鄰域變換規(guī)則,證明了采用改進(jìn)禁忌搜索算法處理此調(diào)度問題的有效性。另外,為實(shí)現(xiàn)農(nóng)機(jī)的調(diào)度模式更符合實(shí)際田間作業(yè)情況,凌海峰等[23-25]在模型中加入時(shí)間窗限制,Sundaranarayana等[26-27]和張帆等[28-29]對(duì)遺傳算法進(jìn)行改進(jìn)優(yōu)化,葉文超等[30-32]搭建農(nóng)機(jī)調(diào)度管理與管理平臺(tái),對(duì)農(nóng)機(jī)進(jìn)行調(diào)度和實(shí)時(shí)監(jiān)控。綜上可見,國(guó)內(nèi)外學(xué)者在農(nóng)機(jī)資源調(diào)度技術(shù)中廣泛應(yīng)用了元啟發(fā)式智能優(yōu)化算法,對(duì)解決農(nóng)機(jī)資源合理分配,提高農(nóng)機(jī)調(diào)度精度和速度方面都有很大的突破和創(chuàng)新,但針對(duì)于跨區(qū)域多農(nóng)機(jī)即時(shí)調(diào)度方面研究較少,且在農(nóng)機(jī)調(diào)度領(lǐng)域無時(shí)間窗限制,或者考慮硬時(shí)間窗和軟時(shí)間窗的較多,而利用模糊時(shí)間窗來提高農(nóng)戶滿意度和降低調(diào)度成本的研究不多。

鑒于此,本文以運(yùn)籌學(xué)中旅行商問題為基礎(chǔ),構(gòu)建以實(shí)現(xiàn)調(diào)度總路程和參與調(diào)度農(nóng)機(jī)數(shù)量最少為優(yōu)化目的,且最大程度上提高農(nóng)戶滿意度的農(nóng)機(jī)調(diào)度模型,并利用改進(jìn)的遺傳算法完成農(nóng)機(jī)調(diào)度路線最優(yōu)解的解算,擬實(shí)現(xiàn)多站點(diǎn)多農(nóng)機(jī)精準(zhǔn)調(diào)度,解決多農(nóng)田即時(shí)作業(yè)問題,提高農(nóng)機(jī)作業(yè)效率。

1 農(nóng)機(jī)調(diào)度模型

1.1 模糊時(shí)間窗的設(shè)計(jì)

在農(nóng)機(jī)調(diào)度實(shí)際過程中,由于時(shí)間窗具有彈性,農(nóng)戶對(duì)農(nóng)機(jī)作業(yè)時(shí)間的要求并不是剛性的,農(nóng)戶偏好于在發(fā)出作業(yè)請(qǐng)求的某一段時(shí)間進(jìn)行作業(yè),農(nóng)機(jī)只要在一定時(shí)間內(nèi)到達(dá)農(nóng)田完成作業(yè)任務(wù),對(duì)農(nóng)作物的耕保收階段都不會(huì)產(chǎn)生很大的影響,但若推遲到達(dá)可能會(huì)引起農(nóng)戶滿意度的下降。因此針對(duì)于本文即時(shí)調(diào)度的情況,借鑒車輛調(diào)度中對(duì)時(shí)間窗的模糊化處理[33-34],設(shè)計(jì)農(nóng)機(jī)調(diào)度的模糊時(shí)間窗,農(nóng)機(jī)站不僅可以對(duì)農(nóng)戶的即時(shí)訂單迅速制定出合理的農(nóng)機(jī)調(diào)度策略,節(jié)省總體調(diào)度成本,而且可以更準(zhǔn)確的反映農(nóng)戶的心理。

本文處理時(shí)間窗所使用的模糊隸屬度函數(shù)表達(dá)式如式(1)所示,利用Qamsari[34]在車輛調(diào)度模型中對(duì)時(shí)間窗用線性函數(shù)來表示早于和晚于服務(wù)時(shí)間的服務(wù)水平,在此基礎(chǔ)上設(shè)計(jì)適應(yīng)農(nóng)機(jī)即時(shí)響應(yīng)調(diào)配任務(wù)的線性模糊隸屬度函數(shù),以此來反映晚于時(shí)間窗引起的農(nóng)戶滿意度變化,其中模糊隸屬度U反映農(nóng)戶滿意度,U值越大,農(nóng)戶滿意度越高。

式中U為模糊隸屬度;l為農(nóng)戶期望的農(nóng)機(jī)最晚到達(dá)時(shí)間;t為農(nóng)機(jī)站M中編號(hào)為的農(nóng)機(jī)到達(dá)農(nóng)田的時(shí)間;L為農(nóng)戶期望的農(nóng)機(jī)到達(dá)時(shí)間。

若農(nóng)機(jī)在時(shí)間L之前到達(dá),農(nóng)戶滿意度為1;若到達(dá)時(shí)間超過農(nóng)戶期望時(shí)間窗L,但在可容忍的最晚時(shí)間即l之前,農(nóng)戶滿意度值在(0,1)范圍內(nèi);若超過l,則農(nóng)戶滿意度為0。

1.2 模型假設(shè)

本文的帶模糊時(shí)間窗農(nóng)機(jī)調(diào)度模型主要針對(duì)以農(nóng)機(jī)站為代表面向農(nóng)戶即時(shí)訂單的服務(wù)形式,該模式的假設(shè)條件:

1)農(nóng)機(jī)站的位置信息、各農(nóng)田的位置和面積以及農(nóng)機(jī)行駛速度均已知,農(nóng)機(jī)的作業(yè)能力一定。

2)每輛農(nóng)機(jī)能夠給多個(gè)農(nóng)田提供服務(wù),一個(gè)農(nóng)田只需要一臺(tái)農(nóng)機(jī)作業(yè)。

3)有多個(gè)農(nóng)機(jī)站,假設(shè)各農(nóng)機(jī)站中針對(duì)不同的農(nóng)機(jī)作業(yè)需求只配有一種車型。

4)在一次調(diào)度過程中,被調(diào)配的農(nóng)機(jī)從對(duì)應(yīng)的農(nóng)機(jī)站出發(fā),經(jīng)過調(diào)度路徑上的農(nóng)田作業(yè)點(diǎn)之后,返回其所屬農(nóng)機(jī)站。

5)農(nóng)機(jī)站針對(duì)農(nóng)戶的即時(shí)訂單,須在農(nóng)戶可接受的最遲模糊到達(dá)時(shí)間之前到達(dá)。

6)針對(duì)的是單環(huán)節(jié)作業(yè)問題,農(nóng)田訂單為相同的作業(yè)任務(wù),如油菜機(jī)播,農(nóng)機(jī)站即時(shí)響應(yīng)農(nóng)田訂單,調(diào)配對(duì)應(yīng)農(nóng)機(jī)完成農(nóng)田作業(yè)任務(wù)。

1.3 模型建立

在某區(qū)域范圍內(nèi)有個(gè)農(nóng)機(jī)站,分別編號(hào)為1,2,3,……,M,各農(nóng)機(jī)站農(nóng)機(jī)數(shù)量一定,在時(shí)刻,該區(qū)域中的農(nóng)戶同時(shí)發(fā)出多個(gè)農(nóng)田作業(yè)需求,該作業(yè)需求包括:農(nóng)田編號(hào)分別為1,2……,,農(nóng)田面積S,期望農(nóng)機(jī)到達(dá)作業(yè)時(shí)間L,=1,2,……,。設(shè)農(nóng)機(jī)單位時(shí)間內(nèi)的工作效率為,農(nóng)機(jī)完成有作業(yè)需求的農(nóng)田所需時(shí)間為T,且T=S/;t表示農(nóng)機(jī)站M中編號(hào)為的農(nóng)機(jī)從農(nóng)田到農(nóng)田的時(shí)間;T表示農(nóng)機(jī)站M中編號(hào)為的農(nóng)機(jī)完成農(nóng)田作業(yè)后的時(shí)間。

1.3.1 確立目標(biāo)函數(shù)

由于在該模型中,農(nóng)機(jī)的行駛速度一定,農(nóng)田面積以及農(nóng)機(jī)工作效率和作業(yè)成本一定,則在不計(jì)較損耗的情況下,農(nóng)機(jī)對(duì)每塊農(nóng)田的作業(yè)成本和作業(yè)時(shí)間是固定的,因此同種或相近作業(yè)型號(hào)的農(nóng)機(jī)具有相同的作業(yè)能力,可用被調(diào)配的所有農(nóng)機(jī)在整個(gè)調(diào)度過程中的總行駛和作業(yè)時(shí)間來衡量調(diào)度時(shí)間成本,用參與調(diào)度的農(nóng)機(jī)數(shù)量來衡量農(nóng)機(jī)調(diào)度成本,在模糊隸屬度U情況下,確立目標(biāo)函數(shù)如下:

式中min(U)為在模糊隸屬度U下整個(gè)調(diào)度過程總代價(jià)成本;表示農(nóng)機(jī)總轉(zhuǎn)移時(shí)間在目標(biāo)函數(shù)中的權(quán)重;表示參與調(diào)度的農(nóng)機(jī)數(shù)量在目標(biāo)函數(shù)中的權(quán)重;L表示農(nóng)機(jī)站M中編號(hào)為農(nóng)機(jī)的調(diào)度總路程:X0j表示參與調(diào)度的農(nóng)機(jī)數(shù)量;為農(nóng)機(jī)站中農(nóng)機(jī)數(shù)量;為農(nóng)田數(shù)量。

1.3.2 確立約束條件

農(nóng)田到是否有農(nóng)機(jī)被調(diào)度前往作業(yè),計(jì)算公式為

參與調(diào)度的農(nóng)機(jī)不能超出農(nóng)機(jī)站擁有的總數(shù)量,即

被調(diào)配的農(nóng)機(jī)完成對(duì)應(yīng)的農(nóng)田作業(yè)任務(wù)之后返回到原所屬農(nóng)機(jī)站,即

每個(gè)農(nóng)田需被訪問且只能被訪問一次,計(jì)算公式為

農(nóng)機(jī)完成當(dāng)前農(nóng)田的作業(yè)任務(wù)時(shí)間與到達(dá)下一個(gè)農(nóng)田所花費(fèi)時(shí)間的總和應(yīng)低于下一個(gè)農(nóng)田所要求的最遲到達(dá)時(shí)間,計(jì)算公式為

農(nóng)機(jī)完成當(dāng)前農(nóng)田作業(yè)任務(wù)的時(shí)間、農(nóng)機(jī)從當(dāng)前農(nóng)田到達(dá)下一個(gè)農(nóng)田時(shí)間和下一個(gè)農(nóng)田作業(yè)任務(wù)完成所需時(shí)間之和是下一個(gè)農(nóng)田完成作業(yè)任務(wù)的時(shí)間。計(jì)算公式為

式中,=1,2,…,;=1,2,…,;=1,2,…,;X為農(nóng)機(jī)站M中編號(hào)為的農(nóng)機(jī)從農(nóng)田到農(nóng)田是否參與作業(yè);X0為完成作業(yè)任務(wù)后回到農(nóng)機(jī)站的農(nóng)機(jī)數(shù)量。

2 遺傳算法改進(jìn)

多站點(diǎn)多農(nóng)機(jī)協(xié)同即時(shí)響應(yīng)調(diào)度屬于組合優(yōu)化問題,而在解決該問題的眾多元啟發(fā)式算法中,基于適者生存思想的遺傳算法應(yīng)用較為廣泛,該算法具有很強(qiáng)的搜索最優(yōu)解能力,支持多方向的搜索和信息交換,可自適應(yīng)地調(diào)整搜索方向,因此,本文基于傳統(tǒng)遺傳算法框架來求解構(gòu)建的農(nóng)機(jī)調(diào)度模型。為節(jié)約算法求解時(shí)間,兼顧農(nóng)機(jī)調(diào)度距離最短和調(diào)配農(nóng)機(jī)數(shù)量最少的優(yōu)化目標(biāo),提高算法搜索全局最優(yōu)解能力,本文采用改進(jìn)后的遺傳算法來尋求最優(yōu)調(diào)度路徑。

2.1 染色體編碼

根據(jù)農(nóng)機(jī)調(diào)度的特點(diǎn),農(nóng)機(jī)站和農(nóng)田作業(yè)點(diǎn)是已知的,可采用自然數(shù)編碼方式,能直觀看到農(nóng)機(jī)到農(nóng)田的作業(yè)順序。0代表農(nóng)機(jī)站,1,2,……,代表農(nóng)田,不同農(nóng)機(jī)的配送路線之間用0分隔,例如有塊農(nóng)田有作業(yè)需求,輛農(nóng)機(jī),則染色體長(zhǎng)度為1。

由以上的染色體編碼原則隨機(jī)生成一定數(shù)量的染色體,即構(gòu)成初始種群,以便后續(xù)在此基礎(chǔ)上進(jìn)行遺傳迭代。

2.2 適應(yīng)度函數(shù)和選擇算子

遺傳算法就是學(xué)習(xí)生物遺傳特性—“適者生存”,為了判斷生成的染色體的優(yōu)劣性,除了可行性判斷之外,還需要設(shè)計(jì)適應(yīng)度評(píng)估函數(shù),用來計(jì)算個(gè)體適應(yīng)度,適應(yīng)度越好的個(gè)體遺傳到下代的概率越大。在適應(yīng)度函數(shù)設(shè)計(jì)上,考慮了調(diào)度距離和農(nóng)機(jī)數(shù)量目標(biāo)最小,以及農(nóng)戶能容忍的最晚到達(dá)時(shí)間,相較于基于調(diào)度距離單目標(biāo)建立的適應(yīng)度函數(shù),采用綜合目標(biāo)函數(shù)倒數(shù)作為適應(yīng)度函數(shù)來判斷染色體的優(yōu)劣。采用以下公式計(jì)算種群個(gè)體的適應(yīng)度:

式中為目標(biāo)函數(shù)值;為各可行解的調(diào)配農(nóng)機(jī)數(shù)量;為到達(dá)農(nóng)戶的延遲時(shí)間;為懲罰權(quán)重。

選擇算子采用錦標(biāo)賽選擇法,采用精英保留策略[35],從種群中隨機(jī)選擇個(gè)個(gè)體,對(duì)這個(gè)個(gè)體比較適應(yīng)度值,具有最高適應(yīng)度的個(gè)體勝出,并參與到后續(xù)的交叉變異操作中。

2.3 交叉算子

本文采用的染色體編碼方式為自然數(shù)編碼,而對(duì)自然數(shù)編碼進(jìn)行交叉的方式有順序交叉和循環(huán)交叉等,這些方法被廣泛運(yùn)用在類似旅行商問題的單路徑問題上,但不適用于農(nóng)機(jī)復(fù)雜的調(diào)度條件和多條子路徑的優(yōu)化問題。因此,本文采用改進(jìn)的交叉算子,以便最大可能保留優(yōu)秀子路徑。

步驟一:改進(jìn)的交叉算子分別在兩個(gè)父代染色體1和2上隨機(jī)選擇一段子染色體和作為子路徑,并將被選擇的子染色體分別前置;

步驟二:將父代染色體2中子染色體沒有的編碼,按照其在父代染色體2中的順序添加到父代染色體的子染色體的后面,并在染色體的末尾添加編碼0,得到子代染色體1,同理可得到子染色體2;

步驟三:針對(duì)于步驟二中得到的子代染色體1,在子染色體后面的m個(gè)位置添加1個(gè)編碼0,共有m種情況,分別計(jì)算其適應(yīng)度,將適應(yīng)度最大的個(gè)體作為子代染色體1,子代染色體2同樣方式得到。

2.4 變異算子

相較于傳統(tǒng)的單點(diǎn)變異、單點(diǎn)交換和路徑合并等變異方法,選擇2-opt算法對(duì)得到的子路徑進(jìn)行變異操作,2-opt算法屬于局部搜索算法,而局部搜索算法是解決本文組合最優(yōu)問題的有效工具,其核心在于隨機(jī)選擇一個(gè)區(qū)間段的染色體進(jìn)行優(yōu)化,這個(gè)優(yōu)化只是對(duì)于當(dāng)前一個(gè)狀態(tài)的優(yōu)化,并不是對(duì)全局的優(yōu)化,可加快算法的收斂速度。

步驟一:隨機(jī)選擇一個(gè)可行解染色體,并假設(shè)這個(gè)可行解是最優(yōu)解;

步驟二:運(yùn)用2-opt算法,在這個(gè)染色體上隨機(jī)選擇兩點(diǎn)ik,保持i之前的染色體不變并添加到新染色體中,將ik之間的染色體翻轉(zhuǎn)其編號(hào)添加到新染色體中,保持k之后的染色體不變并添加到新染色體中。

步驟三:對(duì)于步驟二得到的新染色體,計(jì)算其適應(yīng)度值,并與原染色體的適應(yīng)度比較,選取適應(yīng)度最好的染色體作為當(dāng)前最優(yōu)路徑,再重復(fù)上述過程直到迭代結(jié)束,找到最優(yōu)路徑。

3 實(shí)例分析

3.1 農(nóng)機(jī)調(diào)度結(jié)果可視化展示

在湖北省沙洋縣油菜輪作試點(diǎn)建有3個(gè)農(nóng)機(jī)站,各農(nóng)機(jī)站的某種型號(hào)農(nóng)機(jī)數(shù)量均為7,農(nóng)機(jī)行駛速度為 30 km/h,農(nóng)機(jī)日工作量為5.33 hm2。在同一時(shí)間段,各農(nóng)機(jī)站附近均勻分布35個(gè)農(nóng)田訂單作業(yè)需求,由于農(nóng)戶對(duì)農(nóng)機(jī)作業(yè)需求的同時(shí)性,可優(yōu)先按照距離劃分農(nóng)機(jī)站和對(duì)應(yīng)服務(wù)的農(nóng)田,各農(nóng)機(jī)站對(duì)分配到的農(nóng)田訂單進(jìn)行單獨(dú)調(diào)度作業(yè),并將農(nóng)田分別編碼,編碼后農(nóng)機(jī)站和對(duì)應(yīng)農(nóng)田基本信息見表1。

根據(jù)表1中的農(nóng)田和農(nóng)機(jī)站的基本信息,劃定一定區(qū)域表示某一地區(qū)的農(nóng)田總數(shù)。可得到如圖1所示的農(nóng)機(jī)農(nóng)田位置示意圖。

表1 農(nóng)機(jī)站對(duì)應(yīng)服務(wù)農(nóng)田的基本信息

農(nóng)機(jī)站編號(hào)及位置Agricultural machinery station No. and position農(nóng)田編號(hào)Farmland numberXY農(nóng)田面積Farmland area/hm2最遲作業(yè)時(shí)間Latest operating time/d完成作業(yè)任務(wù)時(shí)間The time of completing the task/d 3(40, 25)845162.0020.4 940381.3320.2 1035302.0020.4 1142152.6720.5 1233101.3310.2 1327201.6010.3

注:和表示農(nóng)田的坐標(biāo)和坐標(biāo),km。農(nóng)機(jī)站位置和農(nóng)田坐標(biāo)的參考坐標(biāo)系以112.304932°E和30.745032°N為坐標(biāo)原點(diǎn),以正東、正北方向?yàn)檩S、軸。最遲作業(yè)時(shí)間是指發(fā)出農(nóng)田作業(yè)訂單后,農(nóng)戶期望的農(nóng)機(jī)最遲作業(yè)時(shí)間,1、2分別表示發(fā)出訂單第一、二日農(nóng)機(jī)能完成作業(yè);完成作業(yè)任務(wù)時(shí)間是指農(nóng)機(jī)完成農(nóng)田訂單的作業(yè)時(shí)間,計(jì)算公式:完成作業(yè)任務(wù)時(shí)間=農(nóng)田面積/農(nóng)機(jī)日工作量。

Note:andrepresent theandcoordinates of the farmland, and the units of X coordinate and Y coordinate units are km. Reference coordinate system for the position of agricultural machinery station and farmland coordinates took east longitude 112.304932 and north latitude 30.745032 as the coordinate origin and took the east and north directions as theaxis andaxis. The latest operation time in the table refers to the latest operation time of agricultural machinery expected by farmers after issuing farmland operation orders. 1, 2 means that agricultural machinery can complete the operation on the first and second days of issuing orders, and 2 means that agricultural machinery can complete the operation on the second day of issuing orders. Completion task time refers to the operation time of agricultural machinery to complete farmland orders. The calculation formula is: completion task time = farmland area / daily workload of agricultural machinery.

注:五角星圖案和圓點(diǎn)圖案分別代表農(nóng)機(jī)站和農(nóng)田,其上的數(shù)字表示其編號(hào)。

針對(duì)本文的農(nóng)機(jī)調(diào)度問題,由提出的改進(jìn)的遺傳算法進(jìn)行優(yōu)化規(guī)劃,經(jīng)過對(duì)種群規(guī)模、交叉和變異概率的多次調(diào)試,種群初始規(guī)模為100時(shí)已能滿足文中農(nóng)機(jī)站對(duì)農(nóng)機(jī)訂單的調(diào)配任務(wù),且調(diào)度距離趨于穩(wěn)定的迭代次數(shù)在50~200之間,交叉和變異算子分別為0.8和0.1時(shí)的調(diào)度距離較短。故將參數(shù)設(shè)置如下:種群初始規(guī)模為100,最大迭代次數(shù)為200次,交叉概率為0.8,變異概率為0.1。當(dāng)模糊隸屬度U=1,權(quán)重=0.5,=0.5時(shí),得到如圖2所示農(nóng)機(jī)調(diào)度可視化路線示意圖,從線條和箭頭指示方向可看出,調(diào)配的農(nóng)機(jī)對(duì)應(yīng)的農(nóng)田作業(yè)訂單和作業(yè)順序,例如針對(duì)農(nóng)機(jī)站1,一臺(tái)農(nóng)機(jī)的調(diào)度路線為0-9-7-10-12-11-0。

根據(jù)本文提出的帶模糊時(shí)間窗的農(nóng)機(jī)調(diào)度模型以及遺傳算法,可得如表2所示的農(nóng)機(jī)調(diào)度路線結(jié)果。每個(gè)農(nóng)機(jī)站參與調(diào)度的農(nóng)機(jī)數(shù)相差不大,分別為4和5,不超過農(nóng)機(jī)站擁有的最大農(nóng)機(jī)數(shù)量;每個(gè)農(nóng)機(jī)在農(nóng)田訂單作業(yè)時(shí)間窗內(nèi)完成作業(yè),且農(nóng)機(jī)站最長(zhǎng)調(diào)度時(shí)間都未超過最遲接受作業(yè)時(shí)間的2 d。

3.2 試驗(yàn)任務(wù)分配結(jié)果分析

針對(duì)本文農(nóng)戶同時(shí)發(fā)出的35個(gè)農(nóng)田作業(yè)訂單,改變模糊隸屬度U的大小,U在區(qū)間[0.5-1.0]范圍內(nèi)逐次降低,使其在不同農(nóng)戶滿意度情況下,以不同的權(quán)重進(jìn)行農(nóng)機(jī)調(diào)配試驗(yàn),試驗(yàn)結(jié)果如表3所示。

由表3試驗(yàn)結(jié)果可看出,調(diào)度總路程和調(diào)配農(nóng)機(jī)數(shù)量權(quán)重相同情況下,降低模糊隸屬度,調(diào)度總代價(jià)成本逐漸減小??紤]到實(shí)際農(nóng)機(jī)作業(yè)和調(diào)度分配情況,農(nóng)戶發(fā)出即時(shí)作業(yè)訂單,需要農(nóng)機(jī)站快速響應(yīng),而農(nóng)機(jī)站對(duì)于作業(yè)任務(wù)訂單,會(huì)優(yōu)先考慮總調(diào)度路程代價(jià)成本,因而當(dāng)取值較大,取值較小時(shí),可以得到路程代價(jià)成本和農(nóng)機(jī)數(shù)量代價(jià)成本較均衡的農(nóng)機(jī)分配結(jié)果。為了觀察U(農(nóng)戶滿意度)和農(nóng)戶訂單數(shù)量對(duì)農(nóng)機(jī)調(diào)度的影響,本文在其他影響因素不變的情況下,提取這兩項(xiàng)影響因素分別分析農(nóng)機(jī)任務(wù)分配結(jié)果,分別以折線圖和迭代次數(shù)圖對(duì)代價(jià)成本變化進(jìn)行直觀展示。

注:箭頭表示從農(nóng)機(jī)站出發(fā)的農(nóng)機(jī)完成分配到的農(nóng)田作業(yè)任務(wù),最終返回到農(nóng)機(jī)站,數(shù)字表示農(nóng)田的編號(hào)。實(shí)線、長(zhǎng)劃線-點(diǎn)、圓點(diǎn)、短劃線和長(zhǎng)劃線箭頭分別代表各農(nóng)機(jī)站中農(nóng)機(jī)編號(hào)為1、2、3、4和5的調(diào)度路徑。

表2 3個(gè)農(nóng)機(jī)站調(diào)配農(nóng)機(jī)路線結(jié)果

表3 不同模糊隸屬度、權(quán)重下的3個(gè)農(nóng)機(jī)站調(diào)配試驗(yàn)結(jié)果

注:表示農(nóng)機(jī)總調(diào)度路程在目標(biāo)函數(shù)中的權(quán)重;表示參與調(diào)度的農(nóng)機(jī)數(shù)量在目標(biāo)函數(shù)中的權(quán)重。

Note:represents the weight of the total dispatch distance of agricultural machinery in the objective function;represents the weight of the number of agricultural machinery participating in scheduling in the objective function.

(1)農(nóng)戶滿意度對(duì)農(nóng)機(jī)任務(wù)分配的影響

由于模糊隸屬度U側(cè)面反映的是農(nóng)戶滿意度,下面將以農(nóng)戶滿意度來代替模糊隸屬度進(jìn)行分析,農(nóng)戶滿意度對(duì)農(nóng)機(jī)任務(wù)分配的影響見圖3。

圖3 調(diào)度總路程、農(nóng)機(jī)數(shù)量與農(nóng)戶滿意度的關(guān)系

當(dāng)農(nóng)戶滿意度從1.0到0.5逐漸降低時(shí),對(duì)相鄰滿意度下的調(diào)度總路程和農(nóng)機(jī)數(shù)量變化進(jìn)行分析,可得出以下結(jié)論:當(dāng)農(nóng)戶滿意度在0.8時(shí),用本文算法得出的農(nóng)機(jī)調(diào)度總路程變化最快,比農(nóng)戶滿意度為0.9時(shí)的調(diào)度總路程下降了近9.89%,下降趨勢(shì)較為明顯,大幅度節(jié)約了調(diào)度成本,當(dāng)滿意度低于0.8時(shí),調(diào)度總路程變化較平緩,無明顯變化;相鄰農(nóng)戶滿意度下的農(nóng)機(jī)數(shù)量進(jìn)行比較,當(dāng)農(nóng)戶滿意度為0.8時(shí),參與調(diào)度的農(nóng)機(jī)數(shù)量才開始減少,此時(shí)的農(nóng)機(jī)數(shù)量與農(nóng)戶滿意度為0.9下的農(nóng)機(jī)數(shù)量相比,下降了15.38%,遠(yuǎn)遠(yuǎn)高于其他相鄰滿意度下的農(nóng)機(jī)數(shù)量下降率,這也與實(shí)際生產(chǎn)情況相符合,農(nóng)機(jī)在一定時(shí)間內(nèi)到達(dá)農(nóng)田作業(yè)即可滿足農(nóng)戶訂單要求。故可建議將農(nóng)戶滿意度設(shè)置為0.8,以便于滿足大部分農(nóng)戶,但若農(nóng)戶對(duì)作業(yè)時(shí)間要求較高,需將其設(shè)置為0.9~1.0;若農(nóng)戶對(duì)作業(yè)時(shí)間要求較低可將其設(shè)置為0.8以下。因此,具體的農(nóng)戶滿意度參數(shù)設(shè)置需視農(nóng)戶實(shí)際需求情況而定,以滿足不同要求的農(nóng)戶,并以此來提高農(nóng)機(jī)站的服務(wù)水平。

(2)訂單數(shù)量對(duì)農(nóng)機(jī)任務(wù)分配的影響

為了更加直觀看出訂單數(shù)量對(duì)農(nóng)機(jī)站調(diào)配農(nóng)機(jī)的影響,以農(nóng)機(jī)站1為例,在農(nóng)戶滿意度為1的情況下,調(diào)度距離隨算法迭代次數(shù)的變化如圖4所示,當(dāng)訂單數(shù)量分別為12,17和20時(shí),調(diào)度路程趨于穩(wěn)定的最少算法迭代次數(shù)分別接近30次,100次和150次,訂單數(shù)量越多,調(diào)度距離趨于穩(wěn)定且最短所需的迭代次數(shù)越多。其中最少迭代次數(shù)、調(diào)度最短路程、農(nóng)機(jī)數(shù)量和算法運(yùn)算時(shí)間如表5所示。

從表4可看出,本試驗(yàn)當(dāng)農(nóng)機(jī)站1號(hào)的訂單數(shù)量為17時(shí),該農(nóng)機(jī)站所有農(nóng)機(jī)參與此次即時(shí)調(diào)度作業(yè),且農(nóng)戶滿意度為1,農(nóng)戶不需要多余等待時(shí)間。如果農(nóng)機(jī)站1接受農(nóng)戶訂單數(shù)量超過17(例如表4中訂單數(shù)量為20時(shí)),若還需在農(nóng)戶指定時(shí)間里完成作業(yè),參與調(diào)度農(nóng)機(jī)數(shù)量將超過該農(nóng)機(jī)站擁有的總數(shù)7輛,此時(shí)可參照上文所講農(nóng)戶滿意度對(duì)調(diào)度的影響,減小模糊隸屬度,適當(dāng)降低農(nóng)戶滿意度,以此來達(dá)到作業(yè)要求。由此可見,本文所建模型和智能優(yōu)化算法能滿足多種情況下的農(nóng)機(jī)調(diào)度作業(yè)。若在不影響農(nóng)戶滿意度的提前下,依據(jù)本文模型和算法,單個(gè)農(nóng)機(jī)站接受實(shí)時(shí)訂單數(shù)量以不超過20為宜。

圖4 訂單數(shù)量分別為12、17、20時(shí)的調(diào)度路程隨迭代次數(shù)變化曲線

3.3 算法對(duì)比分析

為進(jìn)一步驗(yàn)證本文所提算法的性能,與目前運(yùn)用較多的混合遺傳算法進(jìn)行比較,其中混合遺傳算法采用貪婪策略為農(nóng)田訂單分配農(nóng)機(jī),并采用基于傳統(tǒng)遺傳算法的順序交叉算子和粒子群算法進(jìn)行解的空間搜索。表5為本文算法和混合遺傳算法的對(duì)比結(jié)果,由表5可知,各農(nóng)機(jī)站在兩種算法下需要調(diào)配的農(nóng)機(jī)數(shù)量一致,但調(diào)度路程和算法運(yùn)行時(shí)間卻有差異:對(duì)于農(nóng)機(jī)站1,使用改進(jìn)遺傳算法進(jìn)行農(nóng)機(jī)調(diào)度作業(yè)時(shí),調(diào)度路程和運(yùn)算時(shí)間分別縮短14.14%和0.55%;對(duì)于農(nóng)機(jī)站2,調(diào)度路程和運(yùn)算時(shí)間分別縮短11.05%和7.66%;對(duì)于農(nóng)機(jī)站3,調(diào)度路程和運(yùn)算時(shí)間分別縮短4.90%和14.78%。

從對(duì)比結(jié)果可看出,本文采用的改進(jìn)遺傳算法總體上優(yōu)于混合遺傳算法,縮短了調(diào)配算法運(yùn)算時(shí)間,農(nóng)機(jī)調(diào)配任務(wù)分配結(jié)果更加合理,減少了調(diào)度路程。

4 結(jié) 論

1)本文在建模的基礎(chǔ)上,增加了模糊時(shí)間窗,該方法更加貼合農(nóng)機(jī)調(diào)度的實(shí)際情況,其中模糊隸屬度則反映了農(nóng)戶滿意度。從以上農(nóng)戶滿意度對(duì)調(diào)度總路程和時(shí)間、農(nóng)機(jī)數(shù)量的影響可看出,建議將農(nóng)戶滿意度設(shè)置為0.8,相較于農(nóng)戶滿意度為0.9時(shí)的農(nóng)機(jī)調(diào)度路程,其調(diào)度路程減少率可達(dá)9.89%,可滿足大部分農(nóng)戶對(duì)作業(yè)時(shí)間的需求,若農(nóng)戶對(duì)作業(yè)時(shí)間要求較高或者較低,可視情況設(shè)置為高于0.8或低于0.8。

2)基于改進(jìn)的遺傳算法,相比于傳統(tǒng)的遺傳算法,本文對(duì)于交叉和變異算子的改進(jìn),減少了運(yùn)算結(jié)果陷入局部最優(yōu)解的風(fēng)險(xiǎn),三個(gè)農(nóng)機(jī)站調(diào)配農(nóng)機(jī)的算法運(yùn)行時(shí)間分別縮短了0.55%、7.66%和14.78%,調(diào)度路程分別縮短了14.14%、11.05%和4.90%。

實(shí)例分析中選取的是湖北省沙洋縣油菜輪作試點(diǎn),若用文中提出的模型和算法來解決相似問題時(shí),需修改對(duì)應(yīng)的農(nóng)機(jī)站和農(nóng)田訂單信息,且文中農(nóng)田訂單位置相對(duì)較分散,故以地塊中心點(diǎn)來代表農(nóng)田位置,未來進(jìn)一步研究相對(duì)集中的農(nóng)田田塊時(shí)需考慮每個(gè)地塊的農(nóng)機(jī)進(jìn)入作業(yè)點(diǎn)和離開作業(yè)點(diǎn)的位置,且本文考慮的是單環(huán)節(jié)作業(yè)問題,若考慮的是流水作業(yè)問題,多個(gè)作業(yè)環(huán)節(jié)同時(shí)進(jìn)行,不同環(huán)節(jié)之間存在作業(yè)時(shí)間的交叉,需要對(duì)模型中的約束方程進(jìn)行補(bǔ)充,增加其他環(huán)節(jié)對(duì)該環(huán)節(jié)作業(yè)影響的約束條件。

[1] Li X, Shi X, He J, et al. Coupling simulation and optimization to solve planning problems in a fast-developing area[J]. Annals of The Association of American Geographers, 2011, 101(5): 1032-1048.

[2] Chavez, Jhon J S, Escobar J W, et al. A multi-objective pareto ant colony algorithm for the multi-depot vehicle routing problem with backhauls[J]. International Journal of Industrial Engineering Computations, 2016, 7(1): 35-48.

[3] Xia L, Yeh G O. Integration of genetic algorithms and GIS for optimal location search[J]. International Journal of Geographical Information Science, 2005, 19(5): 581-601.

[4] Dupanloup I, Schneider S, Excoffier L. A simulated annealing approach to define the genetic structure of populations[J]. Molecular Ecology, 2010, 11(12): 2571-2581.

[5] Basnet C B, Foulds L R, Wilson J M. Scheduling contractors' farm-to-farm crop harvesting operations[J]. International Transactions in Operational Research, 2006, 13(1): 1-15.

[6] Schneider M. The vehicle-routing problem with time windows and driver specific times[J] European Journal of Operational Research, 2016, 250(1): 101-119.

[7] Ma H, Cheang B, Lim A, et al. An investigation into the vehicle routing problem with time windows and link capacity constraints[J]. Omega, 2011, 40(3): 336 -347.

[8] Ribeiro G M, Laporte G. An adaptive large neighborhood search heuristic for the cumulative capacitated vehicle routing problem[J]. Computers and Operations Research, 2011, 39(3): 728-735.

[9] Guan S, Nakamura M, Shikanai T, et al. Resource assignment and scheduling based on a two-phase metaheuristic for cropping system[J]. Computers and Electronics in Agriculture, 2009, 66(2): 181-190.

[10] Guan S, Nakamura M, Shikanai T, et al. A two-phase metaheuristic for farm work scheduling[J]. IFIP Advances in Information and Communication Technology, 2009, 1(295): 1999-2010.

[11] Alaiso S, Backman J, Visala A. Ant colony optimization for scheduling of agricultural contracting work[J]. IFAC Proceedings Volumes, 2013, 46(18): 133-137.

[12] Seyyedhasani H, Dvorak J S. Reducing field work time using fleet routing optimization[J]. Biosystems Engineering. 2018, 169: 1-10.

[13] Seyyedhasani H, Dvorak J S. Dynamic rerouting of a fleet of vehicles in agricultural operations through a dynamic multiple depot vehicle routing problem representation[J]. Biosystems Engineering. 2018, 171: 63-77.

[14] MaC, LiuP, XuX. Vehiclesrobustschedulingofhazardousmaterialsbasedonhybridparticleswarmoptimizationandgeneticalgorithm[J]. IETIntelligentTransportSystems, 2020, 14(14):1955-1966

[15] TuaniAF, KeedwellE, CollettM. Heterogenousadaptiveantcolonyoptimizationwith3-optlocalsearchforthetravellingsalesmanproblem[J]. AppliedSoftComputing, 2020, 97(4):106720.

[16] 李洪,姚光強(qiáng),陳立平.基于GPS、GPRS和GIS的農(nóng)機(jī)監(jiān)控調(diào)度系統(tǒng)[J].農(nóng)業(yè)工程學(xué)報(bào),2008,24(增刊2):119-122.

Li Hong, Yao Guangqiang, Chen Liping. Farm machinery monitoring and scheduling system based on GPS, GPRS and GIS[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(Supp. 2): 119-122. (in Chinese with English abstract)

[17] 張璠,滕桂法,馬建斌,等.基于啟發(fā)式優(yōu)先級(jí)規(guī)則的農(nóng)機(jī)調(diào)配算法[J].農(nóng)業(yè)工程學(xué)報(bào),2012,28(10):78-85.

Zhang Fan, Teng Guifa, Ma Jianbin, et al. Farm machinery scheduling and allocating based on heuristic priority rules[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28 (10): 78-85. (in Chinese with English abstract)

[18] 張璠,滕桂法,苑迎春,等.農(nóng)機(jī)跨區(qū)作業(yè)緊急調(diào)配算法適宜性選擇[J] .農(nóng)業(yè)工程學(xué)報(bào),2018,34(5):47-53.

Zhang Fan, Teng Guifa, Yuan Yingchun, et al. Suitability selection of emergency scheduling and allocating algorithm of agricultural machinery[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(5): 47-53. (in Chinese with English abstract)

[19] 吳才聰,蔡亞平,羅夢(mèng)佳,等.基于時(shí)間窗的農(nóng)機(jī)資源時(shí)空調(diào)度模型[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(5):237-241,231.

Wu Caicong, Cai Yaping, Luo Mengjia, et al. Time-windows based temporal and spatial scheduling model for agricultural machinery resources[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(5): 237-241,231. (in Chinese with English abstract)

[20] 王雪陽,苑侗侗,苑迎春,等.帶時(shí)間窗的農(nóng)機(jī)調(diào)度方法研究[J].河北農(nóng)業(yè)大學(xué)學(xué)報(bào),2016,39(6):117-123.

Wang Xueyang, Yuan Tongtong, Yuan Yingchun, et al. A Study on method of agricultural scheduling with time window[J]. Journal of Hebei Agricultural University. 2016, 39(6): 117-123. (in Chinese with English abstract)

[21] 馬軍巖,袁逸萍,任年魯,等.多區(qū)域協(xié)調(diào)調(diào)度架構(gòu)下的農(nóng)機(jī)服務(wù)資源優(yōu)化配置方法[J].中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2020,25(4):113-122.

Ma Junyan, Yuan Yiping, Ren Nianlu, et al. Optimal allocation of agricultural machinery service resources under multi-regional coordinated scheduling architecture[J]. Journal of China Agricultural University, 2020, 25(4): 113-122.(in Chinese with English abstract)

[22] 潘帥,陳鈺成,高元,等.帶軟時(shí)間窗的多種服務(wù)需求車輛調(diào)度問題及其禁忌搜索算法研究[J].武漢理工大學(xué)學(xué)報(bào):交通科學(xué)與工程版,2020,44(6):1123-1128.

Pan Shuai, Chen Yucheng, Gao Yuan, et al. Research on the vehicle scheduling problem of multiple service demands with soft Time window and its tabu search algorithm[J]. Journal of Wuhan University of Technology: Transportation Science and Engineering Edition, 2020, 44 (6): 1123-1128. (in Chinese with English abstract)

[23] 凌海峰,谷俊輝.帶軟時(shí)間窗的多車場(chǎng)開放式車輛調(diào)度[J].計(jì)算機(jī)工程與應(yīng)用,2017,53(14):232-239.

Ling Haifeng, Gu Junhui. Study on multi-depot open vehicle routing problem with soft time windows[J]. Computer Engineering and Applications, 2017, 53(14): 232-239. (in Chinese with English abstract)

[24] 張惠珍,劉云,倪靜.基于客戶滿意度的MOVRPFTW的單親遺傳混合蟻群算法[J].系統(tǒng)管理學(xué)報(bào),2019,28 (5):927- 933.

Zhang Huizhen, Liu Yun, Ni Jing. MOVRPFTW's partheno-genetic hybrid ant colony algorithm based on customer satisfaction[J]. Journal of System Management, 2019, 28(5): 927-933. (in Chinese with English abstract)

[25] 唐麗敏,張雅茹,潘相君,等.帶雙時(shí)間窗約束的糧食專用車調(diào)度優(yōu)化[J].上海海事大學(xué)學(xué)報(bào),2021,42 (1):50-55.

Tang Limin, Zhang Yaru, Pan Xiangjun, et al. Scheduling optimization of special grain vehicles with dual time windows constraints[J]. Journal of Shanghai Maritime University, 2021, 42(1): 50-55. (in Chinese with English abstract)

[26] Sundaranarayana D, Suresh A, Saravanan G. A improved genetic algorithm based proficient resource management and scheduling[J]. Materials Today: Proceedings, 2020, 481(11): 1-7.

[27] Kuo R J, Zulvia F E. Hybrid genetic ant colony optimization algorithm for capacitated vehicle routing problem with fuzzy demand-a case study on garbage collection system[C]. 4th Intemational Conference on Industrial Engineering and Applications. IEEE, 2017: 244-248.

[28] 張帆,羅錫文,張智剛,等.基于改進(jìn)多父輩遺傳算法的農(nóng)機(jī)調(diào)度優(yōu)化方法[J].農(nóng)業(yè)工程學(xué)報(bào),2021,37(9):192-198.

Zhang Fan, Luo Xiwen, Zhang Zhigang, et al. Optimization method for agricultural machinery scheduling based on improved multi-parent genetic algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(9): 192-198. (in Chinese with English abstract)

[29] 王占中,趙利英,曹寧博.基于多層編碼遺傳算法的危險(xiǎn)品運(yùn)輸調(diào)度模型[J].吉林大學(xué)學(xué)報(bào):工學(xué)版,2017,47(3):751-755.

Wang Zhanzhong, Zhao Liying, Cao Ningbo. Hazardous material transportation scheduling model based on multilayer coding genetic algorithm[J]. Journal of Jilin University: Engineering and Technology Edition, 2017, 47(3): 751-755. (in Chinese with English abstract)

[30] 葉文超,張小花,廖東東,等.基于Android的農(nóng)機(jī)調(diào)度與管理平臺(tái)設(shè)計(jì)與應(yīng)用[J].仲愷農(nóng)業(yè)工程學(xué)院學(xué)報(bào),2019,32(3):53-57.

Ye Wenchao, Zhang Xiaohua, Liao Dongdong, et al. Design and application of agricultural machinery scheduling and management platform based on Android[J]. Journal of Zhongkai University of Agricultural Engineering, 2019, 32(3): 53-57. (in Chinese with English abstract)

[31] 劉振宇,梁建平.基于BDS的農(nóng)機(jī)精確調(diào)度和高效作業(yè)平臺(tái)設(shè)計(jì)與應(yīng)用[J].中國(guó)農(nóng)機(jī)化學(xué)報(bào),2018,39(10):97- 102.

Liu Zhenyu, Liang Jianping. Design and application of accurate scheduling and efficient operation platform for agricultural machinery based on BDS[J]. Chinese Journal of Agricultural Machinery Chemistry, 2018, 39(10): 97-102. (in Chinese with English abstract)

[32] 朱登勝,方慧,胡韶明,等.農(nóng)機(jī)遠(yuǎn)程智能管理平臺(tái)研發(fā)及其應(yīng)用[J].智慧農(nóng)業(yè)(中英文),2020,2(2):67-81.

Zhu Dengsheng, Fang Hui, Hu Shaoming, et al. Development and application of remote intelligent management platform for agricultural machinery[J]. Smart Agriculture (Chinese and English), 2020, 2(2): 67-81. (in Chinese with English abstract)

[33] 曹慶奎,楊凱文,任向陽,等.基于交通流的多模糊時(shí)間窗車輛路徑優(yōu)化[J].運(yùn)籌與管理,2018,27(8):20-26.

Cao Qingkui, Yang Kaiwen, Ren Xiangyang, et al. Multi-fuzzy time window vehicle path optimization based on traffic flow[J]. Operations Research and Management, 2018, 27(8): 20-26. (in Chinese with English abstract)

[34] Qamsari A, Hosseini-Motlagh S M, Ghannadpour S F. A column generation approach for an inventory routing problem with fuzzy time windows[J]. Operational Research, 2020: 1-51.

[35] 張浩為,謝軍偉,張昭建,等.基于混合自適應(yīng)遺傳算法的相控陣?yán)走_(dá)任務(wù)調(diào)度[J].兵工學(xué)報(bào),2017,38(9):1761-1770.

Zhang Haowei, Xie Junwei, Zhang Zhaojian, et al. Task scheduling of phased array radar based on hybrid adaptive genetic algorithm[J]. Acta Armamentarii, 2017, 38(9): 1761-1770. (in Chinese with English abstract)

Multi-site and multi-machine cooperative instant response scheduling system based on fuzzy membership

Huang Huang1,2, Chen Yanyan1,2, Zhu Ming1,2, Liu Yadong1, Zhang Zhenfu1

(1.430070;2.430070)

This study aims to realize the joint deployment of multiple agricultural machinery stations, particularly for the real-time job orders. A mathematical model with a fuzzy time window was also established to minimize the total scheduling time and the number of dispatching agricultural machinery. Some factors were comprehensively considered, such as farmers' satisfaction, the cooperation of multiple agricultural machinery stations, the number of orders, the area of farmland, and the location coordinates. An improved genetic method (GA) with excellent parent genes was designed to fulfill the task of multi machine station responding to the demand of multi farmland. At the same time, the agricultural machinery was allocated in the shortest time to implement the operation requirements of each farmland, according to the shortest path. A case study was carried out to verify the model and the visual interface, including three stations of agricultural machinery and 35 operation orders of farmland in a certain area around Wuhan, Hubei Province of China. The results showed that an excellent searching and stable convergence were achieved in the scheduling system of agricultural machinery. Specifically, the reduction rate of the total scheduling distance was 9.89%, and the reduction rate of the number of agricultural machinery was 15.38%, when the fuzzy membership degree was 0.8. An optimal number of real-time orders accepted by a single farm station was not more than 20, according to the actual situation of the agricultural machinery quantity in each station. Furthermore, the improved GA presented a better performance than the hybrid genetic in general, indicating the less calculation time of the deployment, the more reasonable allocation of tasks, and the reduced scheduling distance. The multi-site and multi-machine cooperative instant repose scheduling was also considered the joint deployment agricultural machinery and fuzzy time window in the modeling. There was a higher accuracy of the scheduling operation on agricultural machinery, and the fully considered satisfaction of farmers, even though the complexity of model increased, compared with the scheduling operation at a single agricultural machinery station. In the scheduling algorithm, the crossover and mutation operators were improved to reduce the risk of the operation data falling into the local optimal solution with the less running time. Consequently, the scheme can be widely expected to completely deal with agricultural machinery scheduling under complex backgrounds, fully meeting the cooperative operation of multiple agricultural machinery stations for the real-time operation needs of farmers. This finding can provide a strong support to the cost-saving and high efficiency of operation on agricultural machinery in modern agriculture.

agricultural machinery; dispatching; fuzzy time window; genetic algorithm; immediate response

10.11975/j.issn.1002-6819.2021.21.009

S232.3

A

1002-6819(2021)-21-0071-09

黃凰,陳燕燕,朱明,等.基于模糊隸屬度的多站點(diǎn)多機(jī)協(xié)同即時(shí)響應(yīng)調(diào)度系統(tǒng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(21):71-79.doi:10.11975/j.issn.1002-6819.2021.21.009 http://www.tcsae.org

Huang Huang, Chen Yanyan, Zhu Ming, et al. Multi-site and multi-machine cooperative instant response scheduling system based on fuzzy membership[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(21): 71-79. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.21.009 http://www.tcsae.org

2021-06-04

2021-10-23

國(guó)家自然科學(xué)基金項(xiàng)目(71503095);湖北省農(nóng)業(yè)科技創(chuàng)新行動(dòng);中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金資助項(xiàng)目(2662015QC017,2662014BQ037);中國(guó)工程院咨詢項(xiàng)目(2019-ZD-5)

黃凰,博士,講師,研究方向?yàn)檗r(nóng)業(yè)機(jī)械化與農(nóng)業(yè)智能化管理。E-mail:wmyhuang@qq.com

猜你喜歡
農(nóng)機(jī)站農(nóng)田遺傳算法
達(dá)爾頓老伯的農(nóng)田
當(dāng)前農(nóng)機(jī)站面臨的困境與今后發(fā)展思路
基于自適應(yīng)遺傳算法的CSAMT一維反演
一種基于遺傳算法的聚類分析方法在DNA序列比較中的應(yīng)用
基于遺傳算法和LS-SVM的財(cái)務(wù)危機(jī)預(yù)測(cè)
農(nóng)田創(chuàng)意秀
農(nóng)田搞養(yǎng)殖需辦哪些證
農(nóng)田制作所
基于改進(jìn)的遺傳算法的模糊聚類算法
鄉(xiāng)鎮(zhèn)農(nóng)機(jī)站建設(shè)中存在的問題與對(duì)策
江陵县| 肃宁县| 万载县| 闽侯县| 侯马市| 奈曼旗| 洛扎县| 松江区| 永城市| 宽甸| 仁寿县| 太原市| 嘉祥县| 叙永县| 赤水市| 昌吉市| 门头沟区| 南雄市| 杂多县| 临泽县| 台北县| 石景山区| 藁城市| 长阳| 黄梅县| 清水河县| 渭源县| 鹤壁市| 通化市| 故城县| 钦州市| 威海市| 西乌| 政和县| 隆子县| 四子王旗| 神农架林区| 彭阳县| 明星| 东乡族自治县| 额尔古纳市|