王 碩,蘇道畢力格,王子蒙,蔣易宇,張麗娜,譚 彧
凸輪擺桿式生菜株間除草裝置設(shè)計(jì)與試驗(yàn)
王 碩,蘇道畢力格,王子蒙,蔣易宇,張麗娜,譚 彧※
(中國(guó)農(nóng)業(yè)大學(xué)工學(xué)院,北京 100083)
針對(duì)目前溫室生菜株間自動(dòng)化除草裝置缺乏問(wèn)題,該研究設(shè)計(jì)了基于凸輪擺桿機(jī)構(gòu)的輕量化電動(dòng)株間除草裝置,采用機(jī)器視覺(jué)對(duì)生菜苗進(jìn)行識(shí)別定位,運(yùn)動(dòng)控制系統(tǒng)根據(jù)車(chē)速和保護(hù)半徑區(qū)域?qū)崟r(shí)計(jì)算凸輪各工作段轉(zhuǎn)速,控制一對(duì)除草鏟擺動(dòng)避苗除草。以除草裝置前進(jìn)速度、推程段凸輪轉(zhuǎn)速、除草鏟入土深度作為試驗(yàn)因素,以傷苗率、除草率和株間除草單體避苗功耗為試驗(yàn)指標(biāo),采用響應(yīng)面分析法,進(jìn)行三因素三水平田間試驗(yàn),分析各因素相互作用對(duì)作業(yè)性能指標(biāo)的影響。試驗(yàn)結(jié)果表明,除草鏟入土深度對(duì)除草率影響最顯著(<0.01),前進(jìn)速度對(duì)傷苗率影響最顯著(<0.01),推程段凸輪轉(zhuǎn)速和除草鏟入土深度對(duì)株間除草單體避苗功耗影響最顯著(<0.01)。在最優(yōu)組合為前進(jìn)速度0.56 m/s,推程段凸輪轉(zhuǎn)速242 r/min,除草鏟入土深度12.8 mm時(shí),實(shí)際作業(yè)除草率為93.22%,傷苗率2.87%,單體避苗平均功耗 55.2 W,各項(xiàng)性能指標(biāo)基本滿(mǎn)足溫室散葉生菜株間低傷苗除草作業(yè)需求。
自動(dòng)化;機(jī)器視覺(jué);生菜;株間除草;凸輪擺桿
溫室裸露移栽后的散葉生菜需進(jìn)行2~3次株間除草作業(yè),以提高養(yǎng)分利用率和增強(qiáng)土壤通透性[1]。由于溫室大棚大型除草設(shè)備難以進(jìn)入,且生菜種植密度大,葉片柔嫩松散易損傷,株間機(jī)械自動(dòng)化除草難度大,目前仍以人工除草、地膜覆蓋、除草劑除草為主,生產(chǎn)成本高,同時(shí)農(nóng)藥殘留也影響飲食健康[2-6]。
目前常見(jiàn)的株間機(jī)械除草機(jī)構(gòu)主要有被動(dòng)彈齒式、旋轉(zhuǎn)式、爪齒式和擺動(dòng)式等[7-8]。旋轉(zhuǎn)式除草裝置應(yīng)用較早,英國(guó)Tillett等[9]、國(guó)內(nèi)黃小龍等[10]設(shè)計(jì)了缺口圓盤(pán)刀株間除草機(jī)構(gòu);馬锃宏等[11]通過(guò)控制入土式旋轉(zhuǎn)刀盤(pán)豁口方向?qū)崿F(xiàn)避苗鋤草,在溫室生菜除草試驗(yàn)中,前進(jìn)速度0.33 m/s 時(shí),傷苗率小于 10%。陳子文等[12]設(shè)計(jì)的行星刷式機(jī)構(gòu)利用偏心刀桿的旋轉(zhuǎn)控制刷盤(pán)位置實(shí)現(xiàn)玉米株間除草,平均傷苗率為3.5%。旋轉(zhuǎn)式結(jié)構(gòu)簡(jiǎn)單,但需對(duì)作物進(jìn)行嚴(yán)格定位[7, 13]。
爪齒式也是常采用的除草機(jī)構(gòu),德國(guó)Amazone公司研制的爪齒擺線鋤草刀[14],每個(gè)除草爪齒均能獨(dú)立展開(kāi)和收攏實(shí)現(xiàn)避苗除草動(dòng)作;國(guó)內(nèi)胡煉等[14]和陳樹(shù)人等[15]也分別開(kāi)展余擺式爪齒株間除草裝置和八爪式株間除草裝置研究,除草效果顯著,傷苗率分別在8%和10%以下,但爪齒式結(jié)構(gòu)復(fù)雜,維修成本高,控制難度大[7]。
擺動(dòng)式相較其他幾種方式結(jié)構(gòu)較為緊湊,傷苗率較低。Pérez-Ruíz等[16]通過(guò)兩個(gè)氣缸控制一對(duì)擺動(dòng)鋤頭開(kāi)合完成避苗和除草動(dòng)作,采用人機(jī)協(xié)作方式進(jìn)行作物定位,在0.33 m/s前進(jìn)速度下,僅有0.5%的作物受損,基于RTK-GPS和種子圖信息判斷作物位置,在番茄田里進(jìn)行試驗(yàn),鋤草時(shí)間相比人工節(jié)約57 %。周福君等[17]基于凸輪搖桿機(jī)構(gòu)控制一對(duì)除草刀水平擺動(dòng)避苗,采用接近開(kāi)關(guān)識(shí)別玉米苗,最優(yōu)水平組合下除草率為89.8%,傷苗率為2.1 %。擺動(dòng)式控制雖然簡(jiǎn)單,但目前多采用氣壓驅(qū)動(dòng)擺動(dòng)除草鏟,配套動(dòng)力系統(tǒng)復(fù)雜沉重,難以適應(yīng)輕量化溫室大棚作業(yè)需求,且目前多應(yīng)用于番茄、玉米等葉莖強(qiáng)壯細(xì)長(zhǎng)的大田作物,在葉片松散的生菜等葉菜方面的應(yīng)用鮮有報(bào)道。
基于此,本文設(shè)計(jì)了輕量化凸輪擺桿式株間除草機(jī)構(gòu),通過(guò)電機(jī)控制凸輪精準(zhǔn)旋轉(zhuǎn),帶動(dòng)除草鏟擺動(dòng)避苗除草?;跈C(jī)器視覺(jué)對(duì)生菜苗進(jìn)行精準(zhǔn)定位,并加工樣機(jī),進(jìn)行田間試驗(yàn),尋找最優(yōu)組合作業(yè)參數(shù)。
生菜株間除草裝置如圖1所示,主要由機(jī)架、凸輪擺桿式株間除草單體、橫移機(jī)構(gòu)、地輪、視覺(jué)與運(yùn)動(dòng)控制系統(tǒng)等組成。除草裝置掛載于實(shí)驗(yàn)室自主研制的作業(yè)平臺(tái)上,該平臺(tái)具有四輪獨(dú)立驅(qū)動(dòng)、獨(dú)立轉(zhuǎn)向功能,相關(guān)作業(yè)參數(shù)如表1所示。根據(jù)不同的生菜種植模式,可僅掛載后置株間除草裝置適應(yīng)于2行生菜種植模式,同時(shí)加掛前置除草裝置,適應(yīng)于4行生菜種植模式。株間除草裝置中視覺(jué)與運(yùn)動(dòng)控制系統(tǒng)對(duì)生菜苗進(jìn)行識(shí)別和定位,確定作業(yè)保護(hù)區(qū)域。株間除草單體固定在橫移板上,橫移機(jī)構(gòu)帶動(dòng)株間除草單體橫向擺動(dòng)跟蹤作物行。除草單體基于凸輪擺桿機(jī)構(gòu)將電機(jī)連續(xù)旋轉(zhuǎn)運(yùn)動(dòng)轉(zhuǎn)化為擺桿往復(fù)運(yùn)動(dòng),帶動(dòng)除草鏟開(kāi)合避苗除草。橫移機(jī)構(gòu)通過(guò)螺栓固定在機(jī)架橫梁滑軌上,可水平方向調(diào)整以適應(yīng)不同的種植行距。
1. 前置株間除草裝置 2. 作業(yè)平臺(tái) 3. 后置株間除草裝置 4. 車(chē)輪轉(zhuǎn)向電機(jī) 5.車(chē)輪行走電機(jī) 6. 株間除草單體7. 機(jī)架 8. 視覺(jué)與運(yùn)動(dòng)控制箱 9. 橫移機(jī)構(gòu)10. 行間鏟 11.編碼器 12.地輪
1. Front intra-row weeding device 2. Operating platform 3. Rear intra-row weeding device 4. Steering motor of wheel 5. Travel motor of wheel 6. Intra-row weeding unit 7. Frame 8. Vision and motion control box 9. Transverse mechanism 10. Weeding shovel of inter-row 11. Encoder 12. Ground wheel
圖1 除草裝置試驗(yàn)樣機(jī)結(jié)構(gòu)圖
Fig.1 Structure diagrams of prototype of weeding device
表1 整機(jī)作業(yè)參數(shù)
株間除草單體結(jié)構(gòu)如圖2所示,由凸輪、擺桿、齒輪組、扭簧、橫桿、除草鏟等組成。其中凸輪與驅(qū)動(dòng)電機(jī)輸出軸相連,與擺桿位于同一水平面,擺桿固定在右側(cè)主軸上,擺桿頂端裝有滾輪軸承,滾輪軸承時(shí)刻緊壓在凸輪上,形成凸輪副。2個(gè)相互嚙合的齒輪分別固定在2個(gè)主軸上,齒輪上均勻設(shè)有一圈通孔,扭簧支腳分別固定在齒輪內(nèi)壁預(yù)留孔和單體機(jī)架上組成復(fù)位機(jī)構(gòu),通過(guò)調(diào)整扭簧與齒輪安裝孔的連接位置,可以調(diào)節(jié)扭簧的預(yù)緊扭矩,提供除草鏟閉合時(shí)的驅(qū)動(dòng)扭矩。橫桿垂直焊接在主軸上,與擺桿平行,當(dāng)滾輪軸承與凸輪近休止端接觸時(shí),2個(gè)橫桿處于平行狀態(tài),除草鏟閉合。連接套為倒“L”形,上部為水平段,下部為豎直段,可伸縮調(diào)整除草鏟與旋轉(zhuǎn)主軸軸心的垂直距離和除草鏟入土深度。
株間除草單體避苗過(guò)程如圖3所示,除草裝置隨作業(yè)平臺(tái)以一定的速度前進(jìn),控制系統(tǒng)識(shí)別到株間除草鏟靠近作物保護(hù)區(qū)域時(shí)發(fā)出避苗動(dòng)作指令,凸輪開(kāi)始旋轉(zhuǎn),進(jìn)入推程段,推動(dòng)擺桿進(jìn)行擺動(dòng),從而帶動(dòng)除草鏟張開(kāi),進(jìn)行避苗;在凸輪遠(yuǎn)休止段,擺桿保持最大擺角,除草刀呈最大張開(kāi)狀態(tài),越過(guò)作物;越過(guò)作物后,凸輪進(jìn)入回程段,擺桿在回位扭簧扭矩作用下帶動(dòng)除草鏟回到閉合狀態(tài)進(jìn)行株間除草。
目前苗草識(shí)別定位方法多采用機(jī)器視覺(jué)、光譜、近距離傳感器、接觸測(cè)量等[18-23]。近距離傳感器如光電、激光接近開(kāi)關(guān)等雖然成本較低,操作方便[7, 17],但散葉生菜外形松散,傳感器安裝位置不佳極易造成識(shí)別失敗,造成除草鏟侵入傷苗;接觸測(cè)量方法[13]也不適應(yīng)生菜葉片松軟易損特點(diǎn),因此本文應(yīng)用機(jī)器視覺(jué)對(duì)生菜精準(zhǔn)識(shí)別定位,提前預(yù)判生菜位置和保護(hù)區(qū)域。每一個(gè)株間除草單體配有一個(gè)近距120°廣角攝像頭和樹(shù)莓派4B圖像處理設(shè)備,負(fù)責(zé)識(shí)別定位當(dāng)前行的生菜苗。
注:為除草裝置前進(jìn)速度,m·s-1;0、1、2、3分別為凸輪遠(yuǎn)休止角、近休止角、推程角、回程角,rad;為凸輪轉(zhuǎn)動(dòng)角速度,rad·s-1;為擺桿擺角,rad。
Note:is the forward speed of the weeding device, m·s-1;0,1,2,3are farthest dwell angle, nearest dwell angle, motion angle for rise travel and motion angle for return travel of camrespectively, rad ;is the angular speed of cam rotation, rad·s-1;is swing angle of swing rod, rad.
圖3 凸輪機(jī)構(gòu)與避苗過(guò)程
Fig.3 Cam mechanism and the process of seedling avoidance
圖像背景信息主要包括田壟土壤、雜草、石塊等。考慮田間光照強(qiáng)度變化較大,因此本文采用CIE—Lab 顏色模型,其中a分量對(duì)綠色信息敏感,可明顯區(qū)分作物與土壤背景,同時(shí)降低超綠法在灰度化過(guò)程中土壤噪聲的干擾[18, 24]。圖4a為晴天中午的生菜圖像,圖4b為a分量灰度圖。
圖4中a分量區(qū)分界線明顯,采用最大類(lèi)間方差自動(dòng)閾值分割算法對(duì)a分量灰度圖二值化處理。為減少光照不均和土塊產(chǎn)生的噪聲影響,應(yīng)用中值濾波對(duì)圖像進(jìn)行平滑處理,并采用先開(kāi)后閉運(yùn)算,除去小面積雜草噪聲和填補(bǔ)前景作物內(nèi)部小孔,結(jié)果如圖5所示。
作物識(shí)別定位主要目標(biāo)為作物輪廓提取、形心坐標(biāo)和作物半徑信息計(jì)算,其主要干擾源為綠葉類(lèi)雜草、鄰行生菜葉片。通過(guò)分析對(duì)比生菜和干擾源,發(fā)現(xiàn)兩者在面積、圓度等形態(tài)特征存在差異。計(jì)算圖5b中每一輪廓區(qū)域的面積,設(shè)定面積特征閾值1,去除殘留噪聲和一部分小型雜草。利用整株生菜和干擾源的形狀差別(雜草和鄰行生菜葉片多為修長(zhǎng)狀態(tài))設(shè)定形狀比例閾值2,計(jì)算輪廓區(qū)域面積與其最小包圍圓面積的比值,若小于設(shè)定的閾值,則認(rèn)為是干擾,舍去。對(duì)篩選后的輪廓利用各階特征矩計(jì)算質(zhì)心坐標(biāo)(,),以質(zhì)心坐標(biāo)近似代替作物的形心,計(jì)算公式為
式中00()為第個(gè)輪廓的零階矩;10()為方向的一階矩;01()為方向的一階矩;()為輪廓內(nèi)的像素個(gè)數(shù);()為最小包圍圓內(nèi)的像素個(gè)數(shù)。
識(shí)別符合要求的作物坐標(biāo)和保護(hù)半徑(最小包圍圓半徑)后,以除草裝置前進(jìn)方向第一個(gè)顆生菜作為“避苗對(duì)象”,計(jì)算其與一對(duì)株間除草鏟中心的橫向距離和縱向距離。為降低計(jì)算中坐標(biāo)變換產(chǎn)生的累計(jì)誤差,選擇在像素平面計(jì)算歐氏距離。在實(shí)際應(yīng)用過(guò)程中考慮到牽引裝置的導(dǎo)航精度誤差和行種植直線度誤差,在同一視野范圍內(nèi)水平方向會(huì)出現(xiàn)鄰行半顆左右作物,依賴(lài)面積和形狀濾波難以排除干擾,影響避苗對(duì)象的判斷,通過(guò)大量試驗(yàn),確定避苗對(duì)象形心橫坐標(biāo)()需滿(mǎn)足條件:
式中為圖像寬度,像素。
若不滿(mǎn)足條件則判定為鄰行枝葉噪聲,舍棄,識(shí)別定位結(jié)果如圖5c所示,本文圖像處理系統(tǒng)的單幅圖像處理時(shí)間為30~35 ms。
2.3.1 凸輪轉(zhuǎn)角分配
凸輪結(jié)構(gòu)參數(shù)直接影響除草鏟運(yùn)動(dòng)軌跡,根據(jù)2.1節(jié)除草鏟運(yùn)動(dòng)過(guò)程分析,凸輪在遠(yuǎn)休止段需完全越過(guò)作物,遠(yuǎn)休止角0應(yīng)滿(mǎn)足[17]:
式中S為凸輪轉(zhuǎn)過(guò)遠(yuǎn)休止段,除草裝置前進(jìn)的距離,m;為作物最大直徑,m。
根據(jù)圖2和圖3所示,除草鏟的最大張開(kāi)距離1為
式中為除草鏟重心與旋轉(zhuǎn)主軸垂直距離,m;為除草鏟刀刃工作幅寬,m;為凸輪擺桿機(jī)構(gòu)的擺角,rad。
2.3.2 擺桿運(yùn)動(dòng)規(guī)律和凸輪輪廓線設(shè)計(jì)
為降低除草鏟速度突變對(duì)土壤產(chǎn)生剛性沖擊,從而對(duì)生菜葉莖造成損傷,擺桿選用擺線運(yùn)動(dòng)(正弦加速度)規(guī)律,擺桿擺角隨凸輪運(yùn)動(dòng)角的運(yùn)動(dòng)公式為
根據(jù)擺桿運(yùn)動(dòng)規(guī)律和機(jī)構(gòu)尺寸確定凸輪基圓半徑0和機(jī)構(gòu)中心距L,本文取L=60 mm,0=22 mm??紤]擺桿的動(dòng)載荷影響,確定擺桿長(zhǎng)度L和許用最大法向應(yīng)力為
式中M為為擺桿的負(fù)載扭矩,N·m;[F]為凸輪輪廓與擺桿滾輪之間的許用法向推力,N;[]為許用壓力角,rad。
由式(6)可知,合理設(shè)計(jì)凸輪機(jī)構(gòu)的中心距,可有效減小機(jī)構(gòu)運(yùn)行的法向推力,降低零件磨損,綜合考慮凸輪運(yùn)動(dòng)不失真及機(jī)構(gòu)整體尺寸設(shè)計(jì)要求,取L=50 mm。利用計(jì)算機(jī)根據(jù)反轉(zhuǎn)法求出凸輪理論輪廓線,并求解最小內(nèi)凹曲線段的曲率半徑選擇合適的滾輪半徑1尺寸,取1=8 mm。
2.3.3 除草鏟運(yùn)動(dòng)分析
凸輪擺桿機(jī)構(gòu)將電機(jī)連續(xù)旋轉(zhuǎn)運(yùn)動(dòng)轉(zhuǎn)化為除草鏟的開(kāi)合擺動(dòng),除草鏟的行進(jìn)軌跡直接影響避苗除草效果,因此需分析除草鏟的運(yùn)動(dòng)軌跡和絕對(duì)速度[17],確定凸輪最大轉(zhuǎn)速等參數(shù),以指導(dǎo)電機(jī)減速比選型。除草鏟避苗過(guò)程中的運(yùn)動(dòng)由隨機(jī)架的前進(jìn)運(yùn)動(dòng)和除草鏟繞主軸的旋轉(zhuǎn)運(yùn)動(dòng)合成,如圖6所示,以株間除草鏟重心為參考點(diǎn),以凸輪主軸為原點(diǎn),以前進(jìn)方向?yàn)檩S正向,建立除草鏟閉合、張開(kāi)、避苗、回位4個(gè)狀態(tài)的運(yùn)動(dòng)數(shù)學(xué)模型如下:
點(diǎn)在閉合階段的運(yùn)動(dòng)軌跡和絕對(duì)速度0為
點(diǎn)在除草鏟張開(kāi)階段的運(yùn)動(dòng)軌跡和絕對(duì)速度1為
點(diǎn)在避苗階段的運(yùn)動(dòng)軌跡和絕對(duì)速度2為
點(diǎn)在除草鏟回位階段的運(yùn)動(dòng)軌跡和絕對(duì)速度3為
式中1為擺桿旋轉(zhuǎn)角速度,rad/s;0為凸輪近休止段與擺滾輪接觸時(shí)擺桿的初始擺角,rad;為時(shí)間,s。
2.3.4 凸輪各工作段轉(zhuǎn)速與前進(jìn)速度、作物保護(hù)區(qū)域半徑匹配
除草率和傷苗率不僅取決于識(shí)別定位的精度,也取決于凸輪各工作段轉(zhuǎn)速與前進(jìn)速度的匹配關(guān)系,以覆蓋率1和侵入率2代替除草率和傷苗率作為評(píng)價(jià)指標(biāo)[26],株間除草鏟在植株周?chē)母采w面積越大,侵入植株保護(hù)區(qū)的范圍越小,除草效果越理想,如圖7所示。
1.除草鏟側(cè)鏟尖運(yùn)動(dòng)軌跡 2.作物保護(hù)區(qū)域 3.除草鏟 4.除草覆蓋區(qū)域 5. 除草未覆蓋區(qū)域
注:為除草鏟張開(kāi)起點(diǎn);為除草鏟張開(kāi)終點(diǎn);為除草鏟閉合起點(diǎn);為除草鏟閉合終點(diǎn);為除草鏟側(cè)刀尖;為生菜形心與的橫向偏差,m;為生菜形心與的縱向偏差,m;為作物保護(hù)區(qū)域半徑,m。
1. Side shovel tip movement trajectory 2. Crop protection area 3. Weeding shovel 4. Weeding covered area 5. Unweeding area
Note:isweeding shovel opening starting point;is weeding shovel opening end point;is weeding shovel closing starting point;is weeding shovel closing end point;is side tip of the weeding shovel;is horizontal deviation of lettuce centroid from, m;is longitudinal deviation of lettuce centroid from, m;is the radius of crop protection area, m.
圖7 避苗除草原理示意圖
Fig.7 Schematic diagram of the principle of seedling avoidance and weeding
覆蓋率1和侵入率2受除草鏟在點(diǎn)、點(diǎn)、點(diǎn)、點(diǎn)的位置、凸輪在各工作段的旋轉(zhuǎn)角速度和作物保護(hù)區(qū)域半徑影響,以推程段為例,1和2的計(jì)算公式如 下:
式中s為點(diǎn)距離作物冠層中心水平距離,m;s為點(diǎn)距離作物冠層中心水平距離,m;01為推程段凸輪旋轉(zhuǎn)角速度,rad。
控制系統(tǒng)主控制器為STM32F407,讀取地輪編碼器的脈沖信息,計(jì)算株間除草裝置的前進(jìn)速度,各株間除草單元圖像處理設(shè)備樹(shù)莓派4B作為從機(jī),通過(guò)485通信Modbus協(xié)議接收主控制器下發(fā)的作業(yè)指令和前進(jìn)速度。考慮到執(zhí)行機(jī)構(gòu)的控制精度,橫向驅(qū)動(dòng)電機(jī)和除草驅(qū)動(dòng)電機(jī)均采用直流無(wú)刷伺服電機(jī),驅(qū)動(dòng)器自帶位置閉環(huán)功能,樹(shù)莓派4B通過(guò)485通信下發(fā)動(dòng)作指令,同時(shí)驅(qū)動(dòng)器將電機(jī)轉(zhuǎn)速、位置以及狀態(tài)參數(shù)等信息回傳。
開(kāi)始作業(yè)后,樹(shù)莓派4B接收攝像頭拍攝的圖像,對(duì)生菜和雜草進(jìn)行識(shí)別,計(jì)算避苗對(duì)象的中心坐標(biāo)位置和生菜保護(hù)區(qū)域半徑,并計(jì)算像素平面中生菜形心與株間除草鏟中心的橫向偏差和縱向距離。
株間除草末端相對(duì)作物行的橫向偏差應(yīng)控制在不傷害作物的范圍內(nèi)[7, 27-28],對(duì)行誤差過(guò)大會(huì)增加傷苗率,本文主要研究除草單體作業(yè)參數(shù)對(duì)試驗(yàn)指標(biāo)的影響,因此除草鏟在進(jìn)入作物保護(hù)區(qū)域前通過(guò)橫移機(jī)構(gòu)提前完成對(duì)行操作。橫移機(jī)構(gòu)最大移動(dòng)速度為62.5 mm/s,為提高除草鏟對(duì)行響應(yīng)速度,橫向偏差采用比例控制,圖像實(shí)時(shí)更新反饋橫向偏差,為降低系統(tǒng)振蕩,當(dāng)橫向偏差在8個(gè)像素(坐標(biāo)轉(zhuǎn)換后實(shí)際偏差10 mm)內(nèi)時(shí),橫向驅(qū)動(dòng)電機(jī)停止運(yùn)行,通過(guò)多次田間預(yù)試驗(yàn),能夠保證較高的對(duì)行精度。
避苗過(guò)程中,樹(shù)莓派4B實(shí)時(shí)計(jì)算縱向偏差、保護(hù)區(qū)域半徑、并讀取除草裝置前進(jìn)速度,確定凸輪從近休止端中心開(kāi)始轉(zhuǎn)動(dòng)的時(shí)刻,當(dāng)除草鏟靠近生菜保護(hù)區(qū)域時(shí)凸輪轉(zhuǎn)動(dòng),控制除草鏟及時(shí)打開(kāi)。由于圖像處理存在的延遲,會(huì)導(dǎo)致凸輪開(kāi)始轉(zhuǎn)動(dòng)的時(shí)間延遲,除草鏟侵入到作物保護(hù)區(qū)域,碰到生菜葉片,造成傷苗,需根據(jù)車(chē)速對(duì)保護(hù)區(qū)域半徑進(jìn)行補(bǔ)償更新:
對(duì)隧道位移時(shí)間序列S(t),執(zhí)行式(1)、式(2)所示步驟,就可以得到不同頻率小波變換下的隧道位移時(shí)變序列。高頻序列和低頻序列進(jìn)行疊加,可以得到原始隧道位移序列。
1=+··1(13)
式中1為補(bǔ)償后的保護(hù)區(qū)域半徑,m;為像素坐標(biāo)與實(shí)際距離的轉(zhuǎn)換系數(shù);1為圖像處理時(shí)間,s。
通過(guò)多次預(yù)試驗(yàn),取0.8。同時(shí)根據(jù)凸輪運(yùn)動(dòng)角、機(jī)構(gòu)傳動(dòng)比和推導(dǎo)的凸輪速度匹配公式(12),計(jì)算凸輪各運(yùn)動(dòng)階段中電機(jī)的轉(zhuǎn)動(dòng)圈數(shù)和轉(zhuǎn)動(dòng)速度,控制株間除草電機(jī)轉(zhuǎn)動(dòng),保證除草鏟順利越過(guò)作物,駛出保護(hù)區(qū)域時(shí)及時(shí)關(guān)閉,株間避苗除草控制流程如圖8所示。
為驗(yàn)證凸輪擺桿機(jī)構(gòu)的組合運(yùn)動(dòng)能否順利避苗,基于Solidworks對(duì)除草裝置進(jìn)行虛擬裝配和運(yùn)動(dòng)學(xué)仿真分析,分析其運(yùn)動(dòng)軌跡和刀尖最大速度,同時(shí)計(jì)算輸入扭矩和功率,指導(dǎo)電機(jī)選型。對(duì)株間除草單體各零部件之間進(jìn)行接觸定義,設(shè)置各部件間摩擦系數(shù)和阻尼,添加重力環(huán)境,并在擺桿臂上添加模擬負(fù)載扭矩。
凸輪主要需克服土壤阻力扭矩和扭簧扭矩,除草鏟在開(kāi)合過(guò)程中受力是隨機(jī)波動(dòng)的,受土壤性質(zhì)、刀具尺寸、車(chē)速等因素影響,為保證擺桿滾輪在凸輪回程階段始終緊壓在凸輪上,扭簧扭矩應(yīng)盡量大些,基于土壤阻力公式[17],選擇線徑2.5 mm、外徑25 mm、圈數(shù)6圈、120°的碳鋼扭簧,經(jīng)大量預(yù)試驗(yàn)測(cè)試,該扭簧滿(mǎn)足凸輪回程段運(yùn)動(dòng)不失真要求,根據(jù)選擇的扭簧計(jì)算回位扭矩。
在凸輪旋轉(zhuǎn)軸心添加旋轉(zhuǎn)馬達(dá),方向?yàn)槟鏁r(shí)針,取300 r/min,在前進(jìn)方向上添加線性馬達(dá),速度為0.8 m/s,橫桿長(zhǎng)取0.13 m。選取一對(duì)除草鏟內(nèi)側(cè)刀尖為觀測(cè)對(duì)象,其運(yùn)動(dòng)軌跡、絕對(duì)速度和旋轉(zhuǎn)馬達(dá)輸出扭矩仿真結(jié)果如圖9所示。
根據(jù)圖9a除草鏟的運(yùn)動(dòng)軌跡,除草裝置能夠順利避開(kāi)作物。從圖9b中可以看出,除草鏟絕對(duì)速度最大幅值為2.23 m/s,低于4 m/s的要求;從圖9c中可以看出凸輪最大驅(qū)動(dòng)扭矩應(yīng)大于8.23 N·m,取安全系數(shù)為1.4,則電機(jī)額定輸出扭矩應(yīng)不低于11.2 N·m?;诜抡娼Y(jié)果,凸輪驅(qū)動(dòng)電機(jī)選用翼志公司生產(chǎn)的伺服電機(jī),并配有10:1的行星減速器減速增扭輸出,額定輸出轉(zhuǎn)速為350 r/min,額定功率400 W,額定扭矩12.7 N·m。
試驗(yàn)在北京市通州區(qū)生菜種植溫室內(nèi)進(jìn)行,以移栽19 d的散葉生菜為對(duì)象進(jìn)行株間除草試驗(yàn),試驗(yàn)前5 d采用滴灌管澆水,土壤濕潤(rùn)層5~8 cm。4行種植模式,壟寬140 cm,壟高13 cm,行距26~28 cm,株距27~30 cm,經(jīng)測(cè)定生菜平均直徑在16 cm左右。試驗(yàn)區(qū)域長(zhǎng)10 m,出發(fā)準(zhǔn)備區(qū)域長(zhǎng)2 m,除草后停車(chē)區(qū)域2 m,試驗(yàn)區(qū)域 6 m。試驗(yàn)中雜草為自然生馬齒莧、牛筋草、薺菜等,密度為80~100株/m2,雜草直徑在0.5~2 cm之間,根深在3 cm以?xún)?nèi)。
除草裝置掛載于作業(yè)平臺(tái)后方,遙控控制作業(yè)平臺(tái)行駛。2臺(tái)株間除草機(jī)構(gòu)間隔對(duì)2行生菜進(jìn)行株間除草試驗(yàn),如圖10所示。
基于Box-Behnken Design 響應(yīng)面分析法[29],選用三因素三水平的組合試驗(yàn)方案,以除草裝置前進(jìn)速度、推程段凸輪轉(zhuǎn)速、除草鏟入土深度作為試驗(yàn)因素,選取除草率R、傷苗率R為試驗(yàn)指標(biāo)[7,10-14,30],由于溫室作業(yè)平臺(tái)依賴(lài)蓄電池供電,功耗問(wèn)題是重要考慮因素,因此將除草單體功耗R也作為試驗(yàn)指標(biāo),作業(yè)功耗通過(guò)直接讀取株間除草電機(jī)驅(qū)動(dòng)器回傳的母線電壓和電流值計(jì)算。驗(yàn)證各作業(yè)參數(shù)對(duì)株間除草裝置性能指標(biāo)的影響,同時(shí)獲得試驗(yàn)因素的最佳水平組合,各試驗(yàn)指標(biāo)計(jì)算公式為
式中N為株間除草后未被除去的雜草數(shù)量(雜草根部完全斷裂、雜草整體被掩埋或雜草根部被全部掀出地表視為除草成功);N為除草前雜草總數(shù);N為除草后傷苗數(shù)(除草鏟碰傷生菜葉片即視為傷苗);N為除草前 生菜總數(shù);1為試驗(yàn)開(kāi)始時(shí)刻;2為試驗(yàn)結(jié)束時(shí)刻;為電機(jī)母線電壓,V;為電機(jī)母線電流,A;采樣頻率為30 Hz。
響應(yīng)面優(yōu)化的前提應(yīng)包含各因素最佳的試驗(yàn)條 件[31],擺動(dòng)式除草裝置前進(jìn)速度在1 m/s下傷苗率保持在較低水平[16-17],因此取0.3~0.8 m/s。為保證除草鏟迅速打開(kāi)避苗,推程段凸輪轉(zhuǎn)速應(yīng)盡可能高,取200~ 300 r/min。除草鏟入土深度進(jìn)行單因素預(yù)試驗(yàn),取5~ 20 mm時(shí)除草效果較好。基于上述分析,設(shè)計(jì)各因素與水平,如表2所示,共進(jìn)行17 組試驗(yàn),每組試驗(yàn)均為單行生菜,試驗(yàn)過(guò)程中僅統(tǒng)計(jì)株間(以生菜為中心,寬幅160 mm的區(qū)域)除草數(shù)據(jù),每組進(jìn)行3次重復(fù)取平均值,為了保證試驗(yàn)的準(zhǔn)確性,每次試驗(yàn)選擇苗草分布規(guī)律相近的生菜行進(jìn)行試驗(yàn),試驗(yàn)數(shù)據(jù)如表3所示。整個(gè)試驗(yàn)過(guò)程中記錄的除草單體除草伺服電機(jī)最大瞬時(shí)功率為272 W,對(duì)應(yīng)凸輪轉(zhuǎn)速為300 r/min。
表2 試驗(yàn)因素與水平
表3 試驗(yàn)方案結(jié)果
根據(jù)試驗(yàn)過(guò)程中監(jiān)測(cè)的電機(jī)峰值功率計(jì)算凸輪軸輸出峰值扭矩:
式中為伺服電機(jī)功率,kW;為工作轉(zhuǎn)速,r/min。
忽略電機(jī)減速器傳動(dòng)過(guò)程中的功率損耗,凸輪軸輸出功率與電機(jī)功率相同,將數(shù)據(jù)帶入公式(17),計(jì)算得=8.66 N·m,略大于仿真結(jié)果。分析原因主要為實(shí)際土壤切削阻力大于仿真設(shè)計(jì)阻力,但未超出電機(jī)額定功率,整個(gè)除草過(guò)程中電機(jī)工作正常。
應(yīng)用Design-Expert 8.0.6 軟件對(duì)表3試驗(yàn)結(jié)果進(jìn)行回歸分析,篩選出較為顯著的因素,得到各因素對(duì)除草率R、傷苗率R和除草單體平均功耗R影響的二次多項(xiàng)式回歸模型(編碼方程),如式(18)所示,并檢驗(yàn)其顯著性,結(jié)果如表4所示。
式中分別代表推程段凸輪轉(zhuǎn)速、除草鏟入土深度、除草裝置前進(jìn)速度的水平值。
由表4可知,3個(gè)回歸模型均極顯著(<0.01),失擬項(xiàng)均大于0.05,說(shuō)明回歸模型的擬合程度高,能夠正確反映出除草裝置試驗(yàn)指標(biāo)與3個(gè)因素的關(guān)系。
對(duì)表4 中值分析可知,試驗(yàn)因素對(duì)除草率影響從大到小依次為入土深度、除草裝置前進(jìn)速度、推程段凸輪轉(zhuǎn)速;試驗(yàn)因素對(duì)傷苗率影響從大到小依次為除草裝置前進(jìn)速度、入土深度、推程段凸輪轉(zhuǎn)速。試驗(yàn)因素對(duì)除草單體避苗功耗影響從大到小依次為入土深度、推程段凸輪轉(zhuǎn)速、除草裝置前進(jìn)速度。為了進(jìn)一步研究試驗(yàn)因素及各因素交互作用對(duì)試驗(yàn)指標(biāo)的影響,運(yùn)用響應(yīng)面分析法,固定一個(gè)試驗(yàn)因素為中間值水平,考察另外2個(gè)因素的交互作用和最佳參數(shù)范圍,響應(yīng)曲面如圖11所示。
表4 試驗(yàn)因素對(duì)除草率、傷苗率、株間除草單體功耗的顯著性檢驗(yàn)
注:分別為推程段凸輪轉(zhuǎn)速、除草鏟入土深度、除草裝置前進(jìn)速度的水平值,R為除草率、R為傷苗率,R為株間除草單體功耗。
Note:,andare the level values of the cam speed of the rise travel, the stabbing depth of the weeding shovel and the forward speed of the weeding device respectively;Ris the weeding rate;Ris the seedling injury rate;Ris the power consumption of theintra-row weeding unit.
除草率R的響應(yīng)曲面呈凸曲面,從響應(yīng)面的顏色變化趨勢(shì)及陡峭程度可以判別入土深度對(duì)R的影響程度相比前進(jìn)速度更顯著。當(dāng)保持入土深度不變時(shí),R隨著行前進(jìn)速度的增加先增大后減小,前進(jìn)速度的最優(yōu)范圍為0.54~0.6 m/s;當(dāng)保持前進(jìn)速度不變時(shí),R隨著入土深度的增加先增大后減小,最優(yōu)的入土深度在14.5~17 mm范圍內(nèi)。當(dāng)入土深度大于17 mm時(shí),部分雜草根系長(zhǎng)度小于入土深度,受除草鏟形狀尺寸和入土角度限制,雜草不易被破壞和翻出表土,導(dǎo)致除草效果變差。
傷苗率R的響應(yīng)曲面呈凹曲面,固定一個(gè)試驗(yàn)因素時(shí),另一因素均存在使得R最低的最佳參數(shù)范圍。當(dāng)保持推程段凸輪轉(zhuǎn)速不變時(shí),前進(jìn)速度的最優(yōu)范圍為0.57~0.64 m/s;當(dāng)保持前進(jìn)速度不變時(shí),推程段凸輪轉(zhuǎn)速的最優(yōu)范圍為250~264 r/min。當(dāng)車(chē)速增加時(shí),除草鏟避苗動(dòng)作變得頻繁,對(duì)土壤的沖擊力度提高,土壤阻力增大,除草鏟在開(kāi)合避苗過(guò)程中易出現(xiàn)卡頓狀況,且車(chē)速增加對(duì)圖像識(shí)別和機(jī)構(gòu)反應(yīng)的靈敏度的要求也越高,均導(dǎo)致傷苗率提高,與目前大多數(shù)研究相吻合[13]。同時(shí)通過(guò)試驗(yàn)數(shù)據(jù)可知,在高速作業(yè)狀態(tài)(前進(jìn)速度大于 0.6 m/s)時(shí),受其他因素誤差影響,根據(jù)理論值計(jì)算凸輪各工作段旋轉(zhuǎn)角速度的意義不大,應(yīng)盡可能的提高凸輪轉(zhuǎn)速以防止傷苗。
從株間除草單體避苗功耗R的響應(yīng)面可看出入土深度對(duì)R影響更顯著,當(dāng)保持前進(jìn)速度不變時(shí),R隨著行入土深度的增加一直增加。當(dāng)保持入土深度不變時(shí),R隨著行前進(jìn)速度的增加先減小后增大,分析原因?yàn)樵诔跏记斑M(jìn)速度增加時(shí),除草鏟受拉力作用,絕對(duì)速度增加,張開(kāi)阻力減小,凸輪驅(qū)動(dòng)電機(jī)輸出功率降低,前進(jìn)速度的最優(yōu)范圍為0.52~0.58 m/s。
應(yīng)用Design-Expert 8.0.6軟件對(duì)3個(gè)回歸模型進(jìn)行分析并進(jìn)行優(yōu)化求解,低傷苗率是首要考慮因素,設(shè)置約束條件:
通過(guò)設(shè)置優(yōu)化參數(shù),獲得多組最優(yōu)參數(shù)組合,考慮生菜實(shí)際株間除草低損傷作業(yè)要求,確定最佳參數(shù)組合為:推程段凸輪轉(zhuǎn)速242 r/min,除草鏟入土深度12.8 mm,除草裝置前進(jìn)速度0.56 m/s,對(duì)應(yīng)的仿真株間除草率為94.8%,傷苗率為2.71%,株間除草單體避苗功耗為51.1 W。對(duì)優(yōu)化結(jié)果進(jìn)行實(shí)地試驗(yàn)驗(yàn)證,進(jìn)行3次試驗(yàn),試驗(yàn)結(jié)果如表5所示,除草效果如圖12所示。
表5 試驗(yàn)結(jié)果
試驗(yàn)驗(yàn)證與仿真結(jié)果基本一致,參數(shù)優(yōu)化后,在保證除草效果前提下,除草單體功耗相對(duì)其他試驗(yàn)組處于較低水平。同時(shí)由圖12可知,除草鏟覆蓋區(qū)域的雜草基本被清除,未被成功清除的雜草主要集中在作物保護(hù)區(qū)域內(nèi)。
根據(jù)最優(yōu)作業(yè)參數(shù)試驗(yàn)效果測(cè)算,以單壟4行生菜為例,壟間距170 cm , 整機(jī)以0.56 m/s(約2 km/h)速度進(jìn)行作業(yè),4行同時(shí)進(jìn)行株間除草,其作業(yè)效率可達(dá)0.346 hm2/h,基本滿(mǎn)足溫室生菜株間除草要求,但與國(guó)外部分株間除草設(shè)備穩(wěn)定作業(yè)車(chē)速可達(dá)0.8 m/s以上仍有差距[4]。
1)本文針對(duì)溫室散葉生菜株間除草需求設(shè)計(jì)的凸輪擺桿式除草裝置,采用機(jī)器視覺(jué),對(duì)作物進(jìn)行識(shí)別定位、確定作業(yè)保護(hù)區(qū)域,通過(guò)凸輪擺桿和扭簧回位機(jī)構(gòu)將電機(jī)的連續(xù)旋轉(zhuǎn)運(yùn)動(dòng)轉(zhuǎn)化為擺桿的往復(fù)運(yùn)動(dòng),進(jìn)而帶動(dòng)株間除草鏟開(kāi)合,進(jìn)行避苗除草,在低傷苗率的條件下可有效清除生菜株間雜草。
2)基于響應(yīng)面分析法,進(jìn)行了三因素三水平的組合試驗(yàn),使用Design-Expert 8.0.6 軟件對(duì)結(jié)果進(jìn)行數(shù)據(jù)回歸分析和顯著性檢驗(yàn),結(jié)果表明除草鏟入土深度對(duì)除草率影響最顯著(<0.01),前進(jìn)速度對(duì)傷苗率影響最顯著(<0.01),推程段凸輪轉(zhuǎn)速和除草鏟入土深度對(duì)單體平均功耗影響最顯著(<0.01)。
3)對(duì)試驗(yàn)性能指標(biāo)回歸模型進(jìn)行優(yōu)化求解,確定最佳組合為:推程段凸輪轉(zhuǎn)速為 242 r/min,除草鏟入土深度12.8 mm,除草裝置前進(jìn)速度為0.56 m/s,并進(jìn)行了試驗(yàn)驗(yàn)證,實(shí)際作業(yè)除草率為93.22,傷苗率僅為2.87%,株間除草單體避苗功耗為55.2 W,作業(yè)效率0.346 hm2/h,可為實(shí)際生產(chǎn)應(yīng)用和產(chǎn)品優(yōu)化升級(jí)提供參考。
由田間試驗(yàn)作業(yè)效果和試驗(yàn)數(shù)據(jù)分析,除草鏟的結(jié)構(gòu)尺寸及入土角度對(duì)性能指標(biāo)均有影響,增加除草鏟寬度和表面積,可增大除草覆蓋面積,但受其他作業(yè)參數(shù)的耦合影響,除草率和傷苗率難以預(yù)測(cè),需綜合考慮并優(yōu)化除草鏟結(jié)構(gòu),進(jìn)行田間試驗(yàn)驗(yàn)證,進(jìn)一步提高生菜株間除草效果。
[1] 呂威,董黎,孫宇涵,等. 淺談國(guó)內(nèi)外雜草控制方法[J]. 中國(guó)農(nóng)學(xué)通報(bào),2018,34(11):34-39.
Lu Wei, Dong Li, Sun Yuhan, et al. Weed control methods at home and abroad[J]. Chinese Agricultural Science Bulletin, 2018, 34(11): 34-39. (in Chinese with English abstract)
[2] Fountas S, Mylonas N, Malounas I, et al. Agricultural robotics for field operations[J]. Sensors, 2020, 20(9): 2672.
[3] 傅雷揚(yáng),李紹穩(wěn),張樂(lè),等. 田間除草機(jī)器人研究進(jìn)展綜述[J]. 機(jī)器人,2021,43(6):751-768.
Fu Leiyang, Li Shaowen, Zhang Le, et al. Research progress on field weeding robots: A review[J]. Robot, 2021, 43(6): 751-768. (in Chinese with English abstract)
[4] Machleb J, Peteinatos G G, Kollenda B L, et al. Sensor-based mechanical weed control: Present state and prospects[J]. Computers and Electronics in Agriculture, 2020, 176: 105638.
[5] 苗榮慧,楊華,武錦龍,等. 基于圖像分塊及重構(gòu)的菠菜重疊葉片與雜草識(shí)別[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(4):178-184.
Miao Ronghui, Yang Hua, Wu Jinlong, et al. Weed identification of overlapping spinach leaves based on image sub-blockand reconstruction[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(4): 178-184. (in Chinese with English abstract)
[6] Trygve U, Frode U, Anders B, et al. Robotic in-row weed control in vegetables[J]. Computers and Electronics in Agriculture, 2018, 154: 36-45.
[7] 陳子文,張春龍,李南,等. 智能高效株間鋤草機(jī)器人研究進(jìn)展與分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(5):1-8.
Chen Ziwen, Zhang Chunlong, Li Nan, et al. Study review and analysis of high performance intra-row weeding robot[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(5): 1-8. (in Chinese with English abstract)
[8] Kumar S P, Tewari V K, Chandel A K, et al. A fuzzy logic algorithm derived mechatronic concept prototype for crop damage avoidance during eco-friendly eradication of intra-row weeds[J]. Artificial Intelligence in Agriculture, 2020, 4: 116-126.
[9] Tillett N D, Hague T, Grundy A C, et al. Mechanical within-row weed control for transplanted crops using computer vision[J]. Biosystems Engineering, 2008, 99(2): 171-178.
[10] 黃小龍,劉衛(wèi)東,張春龍,等. 苗間鋤草機(jī)器人鋤草刀優(yōu)化設(shè)計(jì)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(6):42-46.
Huang Xiaolong, Liu Weidong, Zhang Chunlong, et al. Optimal design of rotating disc for intra-row weeding robot[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(6): 42-46. (in Chinese with English abstract)
[11] 馬锃宏,李南,王漢斌,等. 溫室株間電驅(qū)鋤草機(jī)控制系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(1):89-93.
Ma Zenghong, Li Nan, Wang Hanbin, et al. Control system for electric dive intra-row weeding[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(1): 89-93. (in Chinese with English abstract)
[12] 陳子文,李南,孫哲,等. 行星刷式株間鋤草機(jī)械手優(yōu)化與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(9):94-99.
Chen Ziwen, Li Nan, Sun Zhe, et al. Optimization and experiment of intra-row brush weeding manipulator based on planetary gear train[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(9): 94-99. (in Chinese with English abstract)
[13] 賈洪雷,李森森,王剛,等. 中耕期玉米田間避苗除草裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(7):15-22.
Jia Honglei, Li Sensen, Wang Gang, et al. Design and experiment of seedling avoidable weeding control device for intertillage maize [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(7): 15-22. (in Chinese with English abstract)
[14] 胡煉,羅錫文,嚴(yán)乙桉,等. 基于爪齒余擺運(yùn)動(dòng)的株間機(jī)械除草裝置研制與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(14):10-16.
Hu Lian, Luo Xiwen, Yan Yi'an, et al. Development and experiment of intra-row mechanical weeding device based on trochoid motion of claw tooth[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(14): 10-16. (in Chinese with English abstract)
[15] 陳樹(shù)人,張朋舉,尹東富,等. 基于LabVIEW的八爪式機(jī)械株間除草裝置控制系統(tǒng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(增刊2):234-237.
Chen Shuren, Zhang Pengju, Yin Dongfu, et al. Control system of eight claw intra-row mechanical weeding device based on LabVIEW[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(Supp.2): 234-237. (in Chinese with English abstract)
[16] Pérez-Ruíz M, Slaughter D C, Fathallah F A, et al. Co-robotic intra-row weed control system[J]. Biosystems Engineering, 2014, 126: 45-55.
[17] 周福君,王文明,李小利,等. 凸輪搖桿式擺動(dòng)型玉米株間除草裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2018,49(1):77-85.
Zhou Fujun, Wang Wenming, Li Xiaoli, et al. Design and experiment of the cam rocker swing intra-row weeding device for maize[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(1): 77-85. (in Chinese with English abstract)
[18] Wang A, Zhang W, Wei X. A review on weed detection using ground-based machine vision and image processing techniques[J]. Computers and Electronics in Agriculture, 2019, 158: 226-240.
[19] Raja R, Slaughter D C, Fennimore S A, et al. Crop signalling: A novel crop recognition technique for robotic weed control[J]. Biosystems Engineering, 2019, 187: 278-291.
[20] Elstone L, How K Y, Brodie S, et al. High speed crop and weed identification in lettuce fields for precision weeding[J]. Sensors, 2020, 20(2): 455.
[21] Islam N, Rashid M M, Wibowo S, et al. Early weed detection using image processing and machine learning techniques in an australian chilli farm[J]. Agriculture, 2021, 11(5): 387.
[22] Raja R, Nguyen T T, Slaughter D C, et al. Real-time weed-crop classification and localisation technique for robotic weed control in lettuce[J]. Biosystems Engineering, 2020, 192: 257-274.
[23] 孫俊,何小飛,譚文軍,等. 空洞卷積結(jié)合全局池化的卷積神經(jīng)網(wǎng)絡(luò)識(shí)別作物幼苗與雜草[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(11):159-165.
Sun Jun, He Xiaofei, Tan Wenjun, et al. Recognition of crop seedling and weed recognition based on dilated convolution and global pooling in CNN[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(11): 159-165. (in Chinese with English abstract)
[24] 陳子文,李偉,張文強(qiáng),等. 基于自動(dòng)Hough變換累加閾值的蔬菜作物行提取方法研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(22):314-322.
Chen Ziwen, Li Wei, Zhang Wenqiang, et al. Vegetable crop row extraction method based on accumulation threshold of Hough Transformation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(22): 314-322. (in Chinese with English abstract)
[25] 韓豹,申建英,李?lèi)偯? 3ZCF-7700型多功能中耕除草機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011, 27(1):124-129.
Han Bao, Shen Jianying, Li Yuemei. Design and experiment on 3ZCF-7700 multi-functional weeding-cultivating machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(1): 124-129. (in Chinese with English abstract)
[26] 孫哲,張春龍,馬瑤瑤,等. 擺動(dòng)式間苗機(jī)器人鋤刀優(yōu)化設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(9):70-75.
Sun Zhe, Zhang Chunlong, Ma Yaoyao, et al. Optimal design and experiment of thinning hoe for swing motion thinning robot[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(9): 70-75. (in Chinese with English abstract)
[27] Reiser D, Sehsah E S, Bumann O, et al. Development of an autonomous electric robot implement for intra-row weeding in vineyards[J]. Agriculture (Basel), 2019, 9(1): 18-30.
[28] Melander B, Lattanzi B, Pannacci E. Intelligent versus non-intelligent mechanical intra-row weed control in transplanted onion and cabbage[J]. Crop Protection, 2015, 72: 1-8.
[29] 于暢暢,徐麗明,王慶杰,等. 籬架式栽培葡萄雙邊作業(yè)株間自動(dòng)避障除草機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(5):1-9.
Yu Changchang, Xu Liming, Wang Qingjie, et al. Design and experiment of bilateral operation intra-row auto obstacle avoidance weeder for trellis cultivated grape[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(5): 1-9. (in Chinese withEnglish abstract)
[30] 韓豹,郭暢,高英玲,等. 大豆株間除草單體機(jī)構(gòu)及關(guān)鍵部件設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2020,51(6):112-121.
Han Bao, Guo Chang, Gao Yingling, et al. Design and experiment of soybean intra-row weeding monomer mechanism and key components[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(6): 112-121. (in Chinese with English abstract)
[31] 陳超鵬,全偉,吳明亮,等. 基于離散元法的油菜移栽垂直入土式成孔部件參數(shù)優(yōu)化[J]. 湖南農(nóng)業(yè)大學(xué)學(xué)報(bào):自然科學(xué)版,2019,45(4):433-439.
Chen Chaopeng, Quan Wei, Wu Mingliang, et al. Parameter optimization of vertical soil-filling hole-forming parts for rapeseed transplantation based on discrete element method[J]. Journal of Hunan Agricultural University: Natural Sciences, 2019, 45(4): 433-439. (in Chinese with English abstract)
Design and experiments of the cam swing rod intra-row weeding device for lettuce farm
Wang Shuo, Su Daobilige, Wang Zimeng, Jiang Yiyu, Zhang Lina, Tan Yu※
(100083)
An intra-row weeding is highly required for the lettuce that is transplanted in a greenhouse. However, the general weeding machine cannot fully access the greenhouse environment in recent years. Particularly, the normally soft and loose leaves are also easy to damage, due to the typically higher planting density of lettuce in the greenhouse. Therefore, the 2-3 intra-plant weeding has posed a great challenge on the large-scale lettuce production. It is also necessary to realize automatic weeding operations with low damage and low power consumption, rather than manual weeding at present. In this study, a lightweight electric weeding device was developed for the intra-row weeding in a lettuce farm using a cam swing mechanism. The rotation speed was also real-time calculated for each working section of the cam, according to the vehicle speed and the crop protection radius. A motor was then utilized to drive the reciprocating movement of the pendulum rod for the precise rotation of the cam, thereby controlling the opening and closing of a pair of weeding blades. As such, an accurate separation was realized for the seedlings and weeding between lettuce plants. Furthermore, a machine vision system was also selected to accurately locate the lettuce seedlings, further to determine the protection area of the operation, particularly for the less damage to the seedlings, while the higher coverage rate of weeding. Alternatively, the cam structure directly determined the moving trajectory of the weeding shovel. Therefore, the dynamics of cam swing was analyzed to determine the outline size of the cam, including the farthest or nearest dwell angle, and the moving angle for rising or returning travel of the cam. Then, a weeding device was simulated to validate the combined motion of the weeding shovel, in terms of virtual assembly and kinematics using Solidworks software. The simulation demonstrated the motion trajectories and the maximum speed of the tool tip. The selection of motor was also derived from the input torque and power after simulation. Finally, field experiments were carried out, where the forward speed of the weeding device, the speed of the cam in the pushing section, and the depth of weeding shovel in soil were taken as the experimental factors, whereas, the injury rate on the seedling, the weeding rate, the power consumption of intra-row weeding unit were taken as experimental indexes. The response surface method (RSM) was also adopted to carry out a combined field test of three factors and three levels, with emphasis on the interaction of various factors on the performance indicators of the operation. The results showed that the depth of the weeding shovel in the soil presented the most significant effect on the weeding rate (<0.01), while the forward speed presented the most significant effect on the damage rate to seedlings (<0.01), and the cam speed and the depth of weeding shovel presented the most significant effect on the average power consumption (<0.01). An optimal combination of operating parameters was achieved, where the cam rotation speed of 242 r/min, the soil penetration depth of 12.8 mm, and the forward speed of 0.56 m/s. In this case, all performance indicators were essentially satisfied the functional requirements of lettuce weeding, where the weeding rate achieved 93.22%, while the seedling damage rate was 2.87%, and the average power consumption of single seedling avoidance was 55.2 W. Taking the single-ridge and four-row lettuce as an example, the four rows of weeding were carried out, where the distance between two ridges was 170 cm. Correspondingly, the operating efficiency reached 0.346 hm2/h, when the whole machine was operated at a speed of 0.56 m/s (about 2 km/h). The feasible device can also effectively relieve the burden of weeding in a lettuce farm.
automatic; machine vision; lettuce; intra-row weeding; cam swing rod
10.11975/j.issn.1002-6819.2021.21.005
S224.1+5
A
1002-6819(2021)-21-0034-11
王碩,蘇道畢力格,王子蒙,等. 凸輪擺桿式生菜株間除草裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(21):34-44.doi:10.11975/j.issn.1002-6819.2021.21.005 http://www.tcsae.org
Wang Shuo, Su Daobilige, Wang Zimeng, et al. Design and experiments of the cam swing rod intra-row weeding device for lettuce farm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(21): 34-44. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.21.005 http://www.tcsae.org
2021-07-16
2021-10-19
國(guó)家重點(diǎn)研發(fā)計(jì)劃(2016YFD0700302);世界頂尖涉農(nóng)大學(xué)合作種子基金項(xiàng)目(1071-00110501)
王碩,博士生,研究方向?yàn)闄C(jī)電一體化。Email:wangshuo9707@163.com
譚彧,博士,教授,研究方向?yàn)闄C(jī)電一體化。Email:tanyu@cau.edu.cn