張琦,段玉,蘇越,蔣琪琪,王春慶,賓羽,宋震
基于柑橘葉斑駁病毒的表達(dá)載體構(gòu)建及應(yīng)用
張琦,段玉,蘇越,蔣琪琪,王春慶,賓羽,宋震
西南大學(xué)柑桔研究所/國家柑桔工程技術(shù)研究中心,重慶 400712
【目的】構(gòu)建基于柑橘葉斑駁病毒(citrus leaf blotch virus,CLBV)的表達(dá)載體,通過系統(tǒng)表達(dá)抗菌肽提高植物抗病性,為柑橘潰瘍病、柑橘黃龍病等病害的防控提供新型技術(shù)手段?!痉椒ā炕谇捌跇?gòu)建的侵染性克隆pCY-CLBV201,在外殼蛋白基因終止子后插入亞基因組啟動(dòng)子序列及多克隆位點(diǎn),構(gòu)建病毒表達(dá)載體pCLBV202。在多克隆位點(diǎn)插入綠色熒光蛋白(green fluorescent protein)基因(),通過農(nóng)桿菌介導(dǎo)接種、熒光觀察驗(yàn)證pCLBV202-GFP表達(dá)GFP的情況??寺√煨Q的抗菌肽(cecropin B,CB)基因并構(gòu)建重組載體pCLBV202-CB,通過農(nóng)桿菌介導(dǎo)分別注射接種本氏煙和真空浸潤接種柑橘實(shí)生苗,篩選陽性植株并分別注射接種和根灌接種煙草青枯病菌及針刺離體葉片接種柑橘潰瘍病菌,同時(shí)設(shè)空載體接種植株為對照,通過癥狀觀察、發(fā)病率及病情指數(shù)評價(jià)接種植株的煙草青枯病抗性;通過柑橘葉片的病斑數(shù)量、發(fā)病率及菌落濃度評價(jià)其潰瘍病抗性?!窘Y(jié)果】pCLBV202-GFP接種煙草和尤力克檸檬后,均可以在系統(tǒng)新葉上觀察到綠色熒光,在煙草上表現(xiàn)更為明亮,說明基于CLBV的表達(dá)載體構(gòu)建成功。接種青枯病菌后,處理組(pCLBV202-CB)較對照組(pCLBV202)發(fā)病時(shí)間延遲4 d。在接種后第24天(24 dpi),處理組發(fā)病率為14.3%,對照組發(fā)病率為100%,差異顯著。處理組相對于對照組的抗性指數(shù)為-2.66,抗性評價(jià)為高抗,表明利用pCLBV202-CB系統(tǒng)表達(dá)CB增強(qiáng)了對煙草青枯病的抗性。尤力克檸檬葉片針刺接種柑橘潰瘍病菌,7 dpi時(shí),處理組病斑數(shù)為47個(gè),發(fā)病率為43.5%,對照組病斑個(gè)數(shù)為73個(gè),發(fā)病率為67.6%。菌群數(shù)變化檢測發(fā)現(xiàn),處理組菌群數(shù)小于對照組菌群數(shù),表明利用pCLBV202-CB系統(tǒng)表達(dá)CB增強(qiáng)了尤力克檸檬的潰瘍病抗性?!窘Y(jié)論】構(gòu)建了基于CLBV的病毒表達(dá)載體pCLBV202。利用pCLBV202在本氏煙和柑橘中系統(tǒng)表達(dá)CB可以提高植株對細(xì)菌性病害的抗性,這為柑橘細(xì)菌性病害的防控提供了新技術(shù)。
柑橘葉斑駁病毒;病毒表達(dá)載體;抗菌肽;抗病性
【研究意義】柑橘是一種重要的經(jīng)濟(jì)作物。近幾十年來,受全球氣候變暖等不利環(huán)境因素的影響,病蟲害尤其是黃龍病、潰瘍病對全球柑橘產(chǎn)業(yè)構(gòu)成了嚴(yán)重威脅[1-2]。抗病育種是應(yīng)對病蟲害危害的重要途徑。目前,通過轉(zhuǎn)基因技術(shù)已獲得許多抗病性顯著增強(qiáng)的柑橘轉(zhuǎn)基因材料[3],導(dǎo)入的抗病基因主要為來自昆蟲的抗菌肽基因和植物的抗病基因。抗菌肽作為天然抗生素可以直接殺死微生物[4],而天蠶素B(cecropin B,CB)是一種滅菌活性很強(qiáng)的抗菌肽,在柑橘轉(zhuǎn)基因抗病育種和病害防控中均得到了應(yīng)用[5]。但柑橘轉(zhuǎn)基因技術(shù)難度大、周期長,并受到品種種類的限制。植物病毒表達(dá)載體作為一類極具潛力的外源基因表達(dá)平臺(tái),可以快速在植物體內(nèi)表達(dá)抗病基因,有望成為一種新型的病害防控手段?!厩叭搜芯窟M(jìn)展】目前,抗菌肽基因在柑橘中的表達(dá)研究取得了一定進(jìn)展,已將其成功導(dǎo)入多個(gè)品種的柑橘植株[6-7]。劉琦琦[8]研究表明,通過轉(zhuǎn)基因表達(dá)CB的柑橘植株能顯著提高其對柑橘潰瘍病的抗病能力。果樹病毒載體如柑橘衰退病毒(citrus tristeza virus,CTV)[9]、蘋果潛隱球形病毒(apple latent spherical virus,ALSV)[10]等能侵染果樹等多年生的植物,可用于在果樹等多年生植物中系統(tǒng)表達(dá)抗病基因[11]。CTV載體在柑橘上表達(dá)外源基因具有表達(dá)量高、穩(wěn)定性強(qiáng)等優(yōu)點(diǎn)[12-13],但其會(huì)通過蚜蟲傳播,存在病毒病擴(kuò)散的風(fēng)險(xiǎn)。柑橘碎葉病毒(citrus tatter leaf virus,CTLV)已被構(gòu)建成侵染性克隆[14-15]。但CTLV侵染以枳及其雜種為砧木的柑橘植株后引起嫁接部位腫大及褐色壞死,導(dǎo)致樹體生長衰弱和產(chǎn)量降低[16-17]。柑橘葉斑駁病毒(citrus leaf blotch virus,CLBV自然寄主廣泛,不僅能侵染大多數(shù)柑橘品種,也可侵染獼猴桃、牡丹、桑葚等其他物種[18-20],并且在柑橘多數(shù)栽培品種中不引發(fā)明顯癥狀,無昆蟲傳播媒介,適宜于植物病毒表達(dá)載體的開發(fā)[21]。目前,國外學(xué)者確定了CLBV外殼蛋白基因亞基因組RNA啟動(dòng)子位點(diǎn)[22-23]。Vives等將CLBV的全長cDNA插入改進(jìn)后的載體中,獲得了CLBV的全長侵染性克隆,并構(gòu)建了病毒表達(dá)載體[10,24]。國內(nèi)西南大學(xué)崔甜甜[25]構(gòu)建了適用于農(nóng)桿菌介導(dǎo)的CLBV侵染性克隆?!颈狙芯壳腥朦c(diǎn)】在前期構(gòu)建獲得CLBV侵染性克隆的基礎(chǔ)上,通過在其外殼蛋白(coat protein,CP)基因終止子后插入亞基因組啟動(dòng)子序列及多克隆位點(diǎn)構(gòu)建表達(dá)載體并利用該載體在本氏煙()和柑橘中系統(tǒng)表達(dá)抗菌肽,進(jìn)而進(jìn)行抗病性評價(jià)?!緮M解決的關(guān)鍵問題】構(gòu)建基于CLBV的病毒表達(dá)載體pCLBV202,通過在煙草與柑橘中系統(tǒng)表達(dá)CB,提高植株抗病性,為柑橘細(xì)菌性病害的防控提供新方法。
試驗(yàn)于2019—2021年在西南大學(xué)柑桔研究所脫毒課題組完成。
尤力克檸檬()、本氏煙、柑橘葉斑駁病毒的侵染性克?。╬CY-CLBV201)、煙草青枯病菌()、柑橘潰瘍病菌(subsp.,)均由西南大學(xué)柑桔研究所國家柑桔苗木脫毒中心提供。
根據(jù)CLBV201侵染性克隆酶切位點(diǎn)的特性,利用Primer 5.0軟件設(shè)計(jì)擴(kuò)增亞基因組啟動(dòng)子序列的特異性引物92bpf1/92bpr1,以及用于插入載體目的片段檢測、擴(kuò)增與測序的引物(3+1)F/(3+1)R。CLBV的通用檢測引物參考段玉等[26]的CLBV1F/CLBV5R。CB基因由上海英濰捷基貿(mào)易有限公司合成。利用引物5-F/5-R和3-F/3-R分別擴(kuò)增I和I雙酶切pCY-CLBV201所獲小片段的5′端(1 904 bp)和3′端(658 bp)序列。gfpf1/gfpr1用于的擴(kuò)增,引物序列如表1所示。
表1 試驗(yàn)所用引物序列
1.3.1 pCLBV202表達(dá)載體構(gòu)建原理 采用I和I雙酶切pCY-CLBV201,將酶切下的小片段2 563 bp,自位點(diǎn)1 904處分成兩段,分別命名為5′端(1 904 bp)和3′端(658 bp)。利用引物5-F、5-R和3-F、3-R分別擴(kuò)增5′端和3′端。CLBV外殼蛋白亞基因組啟動(dòng)子序列大小92 bp,位于CLBV基因組的6 789—6 880,參照Agüero等[24]設(shè)計(jì)引物92bpf1/92bpr1。利用設(shè)計(jì)的帶同源臂的引物gfpf1/gfpr1從本實(shí)驗(yàn)室的TuMV-GFP擴(kuò)增回收基因片段。在設(shè)計(jì)引物時(shí),除了同源臂外,在的兩端添加I酶切位點(diǎn),便于目的基因的更換,具體如圖1所示。
1.3.2 CLBV201質(zhì)粒酶切 將陽性的侵染性克隆菌株pCY-CLBV201,按照TIANprep Mini Plasmid Kit試劑盒的質(zhì)粒提取步驟提取質(zhì)粒,酶切體系:pCY- CLBV201質(zhì)粒1.0 μg,10×Cutsmart Buffer 5 μl,I和I各1 μl,加入無菌水補(bǔ)足50 μl,25℃溫育30 min。酶切產(chǎn)物用0.8%的瓊脂糖凝膠電泳分離,進(jìn)行切膠回收。
1.3.3 亞基因組啟動(dòng)子序列、載體酶切片段、、片段的擴(kuò)增與重疊 PCR擴(kuò)增體系:2 μl模板,2×PrimeStar Max反應(yīng)液10 μl,上下游引物各0.2 μl,加入無菌水7.2 μl。將5個(gè)片段單獨(dú)擴(kuò)增出來,通過2次重疊PCR連接4個(gè)片段。92 bp+gfp重疊PCR:以92 bp亞啟動(dòng)子和gfp膠回收產(chǎn)物各1 μl為模板,2×PrimeStar Max反應(yīng)液10 μl,加入無菌水6 μl,94℃預(yù)變性5 min,94℃變性5 s,60℃解鏈30 s,72℃延伸90 s,10個(gè)循環(huán)后立即將反應(yīng)液置于冰上,向反應(yīng)體系中加入引物92bpf1/gfpr1各1 μL,置于PCR儀,94℃預(yù)變性5 min,94℃變性30 s,62℃解鏈30 s,72℃延伸90 s,35個(gè)循環(huán),72℃再延伸5 min,電泳驗(yàn)證后切膠回收。5′端+92 bp+gfp +3′端重疊PCR:以92 bp+gfp、5′端片段、3′端片段各1 μl,2×PrimeStar Max反應(yīng)液10 μl,加入無菌水6 μl,94℃預(yù)變性5 min,94℃變性5 s,60℃解鏈30 s,72℃延伸90 s,10個(gè)循環(huán)后立即將反應(yīng)液置于冰上,向反應(yīng)體系中加入引物5-F/3-R各1 μL,置于PCR儀,94℃預(yù)變性5 min,94℃變性30 s,62℃解鏈30 s,72℃延伸90 s,35個(gè)循環(huán),72℃再延伸5 min,電泳驗(yàn)證后切膠回收。
圖1 pCLBV202-GFP表達(dá)載體結(jié)構(gòu)圖
1.3.4 pCLBV202-GFP、pCLBV202-CB重組表達(dá)載體的構(gòu)建 目的片段100 ng,pCY-CLBV201酶切質(zhì)粒200 ng,5×In-Fusion HD Enzyme Premix反應(yīng)液2 μL,加入無菌水補(bǔ)足10 μl,在50℃中反應(yīng)50 min,置于冰上,再將連接產(chǎn)物轉(zhuǎn)化大腸桿菌(),將測序成功的大腸桿菌提取質(zhì)粒,電轉(zhuǎn)農(nóng)桿菌。菌液PCR體系:菌液2 μl,2×Taq Master Mix反應(yīng)液10 μl,上下游引物CLBV1F/CLBV5R各0.4 μl,無菌水7.2 μl。菌液PCR程序:94℃預(yù)變性5 min,94℃變性30s,55℃解鏈30 s,72℃延伸35 s,35個(gè)循環(huán),72℃再延伸5 min。
1.3.5 農(nóng)桿菌介導(dǎo)接種本氏煙和尤力克檸檬 農(nóng)桿菌菌液在含Rif+和Kan+的平板上劃線,28℃培養(yǎng)2 d。挑取單克隆于Rif+和Kan+的LB培養(yǎng)液中,28℃,220 r/min振蕩培養(yǎng)2 d。按照1﹕50的比例將活化后的農(nóng)桿菌菌液接種于農(nóng)桿菌擴(kuò)繁培養(yǎng)基中,相同條件下培養(yǎng)菌液至OD600=0.9—1.1。8 000 r/min離心8 min使菌液富集,用接種緩沖液懸?。?0 mmol·L-1MgCl2,10 mmol·L-1MES,200 μmol·L-1As),使其OD600為0.8—1.0,同時(shí)加入沉默抑制子P19表達(dá)克隆,使樣品OD600≈1.0,沉默抑制子OD600≈0.5,黑暗靜置2 h 備用。農(nóng)桿菌注射接種:從葉背面注射本氏煙葉片,至直徑約為1 cm。每菌株至少注射3株植物的3個(gè)葉片。農(nóng)桿菌根灌接種:用7 mL離心管沿著本氏煙的根部澆灌5 mL農(nóng)桿菌。農(nóng)桿菌真空浸潤:將清洗干凈的柑橘幼苗放入接種菌液并置于真空干燥儀中,抽真空至壓力-1.0—-0.8 kg·cm-2,保持5 min后快速釋放壓力并立即用無菌水沖洗,將植株移栽于土床中,28℃黑暗處理2 d,即可移栽于光照培養(yǎng)箱中。培養(yǎng)箱參數(shù)設(shè)置:光照時(shí)長16 h,23℃;黑暗8 h,20℃。待長出2—4片新葉后便可取樣檢測。
1.4.1 pCLBV202-CB和pCLBV202接種本氏煙 本氏煙在長出第5片針葉后進(jìn)行農(nóng)桿菌注射接種,處理組pCLBV202-CB接種9株,對照組pCLBV202接種9株,具體接種步驟詳見1.3.5。
1.4.2 煙草青枯菌活化與接種 將存于水中的青枯病菌涂布于TTC平板上,28℃培養(yǎng)48 h;挑取單克隆菌落接種于2 mL TTC培養(yǎng)基中,28℃250 r/min培養(yǎng),監(jiān)測菌液OD值,在OD值達(dá)到0.8之前停止培養(yǎng)細(xì)菌;轉(zhuǎn)移1 mL菌液至1.5 mL離心管,8 000 r/min離心2 min,去上清,集沉淀;用10 mmol·L-1的MgCl2洗滌沉淀3次,離心,最后重懸青枯病菌于10 mmol·L-1MgCl2,OD=0.001備用。在處理組和處理組18 dpi時(shí),接種煙草青枯病菌。每株進(jìn)行注射葉片接種及根灌接種農(nóng)桿菌菌液5 mL。
1.4.3 煙草青枯病病情統(tǒng)計(jì) 發(fā)病率(%)=(發(fā)病株數(shù)/調(diào)查總株數(shù))×100;病情指數(shù)(DI)=[Σ(病情級數(shù)×此級菌株數(shù))/(總級數(shù)×總株數(shù))]×100;青枯病病情分級標(biāo)準(zhǔn)參照《煙草病蟲害分級及調(diào)查方法》(GB/T 23222—2008)[27]??剐灾笖?shù)RI=ln[DI/(100-DI)]-ln[DO/(100-DO)]。其中,DI指對照組病情指數(shù);DO指處理組病情指數(shù)。RI≤0,表示高抗,用HR表示;0<RI≤1.00為抗病,用R表示;1.00<RI≤1.49為感病,用S表示,RI≥1.50為高感,用HS表示。
1.5.1 pCLBV202-CB和pCLBV202接種尤力克檸檬 在播種檸檬長至8—10 d時(shí),通過真空浸潤處理組pCLBV202-CB 30株,對照組pCLBV202 30株,方法參照1.3.5。待檸檬植株長至30 d時(shí),通過檢測篩選pCLBV202-CB、pCLBV202陽性植株。
1.5.2 潰瘍病菌離體針刺接種 取大小相近、生長狀況相似的尤力克檸檬葉片,處理組3片,對照組3片。發(fā)病率(%)=(病斑個(gè)數(shù)/接種個(gè)數(shù))×100;菌群數(shù)變化檢測的具體操作參照Duan等[28]的方法。
pCLBV202-GFP重組表達(dá)載體轉(zhuǎn)入大腸桿菌DH10B后,進(jìn)行菌液PCR檢測,結(jié)果見圖2-A,檢測片段與目標(biāo)片段大小一致。序列分析顯示,在CP基因終止子后插入了92 bp的亞基因組啟動(dòng)子序列及其控制下的完整GFP開放讀碼框,GFP開放讀碼框兩端分別包含一個(gè)I酶切位點(diǎn),證明pCLBV202-GFP重組表達(dá)載體構(gòu)建成功。使用I雙酶切pCLBV202-GFP質(zhì)粒構(gòu)建pCLBV202-CB,轉(zhuǎn)化大腸桿菌DH10B。菌液PCR檢測結(jié)果如圖2-B所示,獲得大小約為732 bp的特異條帶,符合目標(biāo)基因片段大小,經(jīng)序列分析后,確定pCLBV202-CB重組載體構(gòu)建成功。
A:pCLBV202-GFP單克隆檢測pCLBV202-GFP monoclonal detection;B:pCLBV202-CB單克隆檢測pCLBV202-CB monoclonal detection。M:2000 bp標(biāo)準(zhǔn)分子量2000 bp molecular marker;1—10:pCLBV202-GFP轉(zhuǎn)化大腸桿菌單克隆pCLBV202-GFP transformed E. coli clones;12—18:pCLBV202-CB轉(zhuǎn)化大腸桿菌單克隆pCLBV202-CB transformed E. coli clones;11、19:水對照Water control
本氏煙經(jīng)注射接種含pCLBV202-GFP重組表達(dá)載體的農(nóng)桿菌后,11 dpi時(shí),莖和根部出現(xiàn)綠色熒光,在15 dpi時(shí),系統(tǒng)新葉出現(xiàn)強(qiáng)烈的綠色熒光,表明pCLBV202-GFP在本氏煙植株中完成系統(tǒng)侵染。隨后,在花中觀察到綠色熒光,說明構(gòu)建的pCLBV202-GFP能夠在本氏煙植株中穩(wěn)定表達(dá)外源的綠色熒光蛋白(圖3-A—3-E)。
尤力克檸檬經(jīng)真空浸潤接種pCLBV202-GFP,30 dpi時(shí)通過共聚焦顯微鏡對系統(tǒng)葉進(jìn)行綠色熒光觀察。結(jié)果表明,與空載體對照相比,處理組檸檬葉片有微弱的綠色熒光顆粒。表明構(gòu)建的pCLBV202-GFP在尤力克檸檬體內(nèi)也具有表達(dá)功能,能夠表達(dá)外源的綠色熒光蛋白(圖3-F)。
處理組pCLBV202-CB和對照組pCLBV202接種煙草青枯病菌后,處理組發(fā)病時(shí)間為7 dpi,對照組發(fā)病時(shí)間為3 dpi,處理組比對照組發(fā)病晚4 d。在接種青枯病菌24 dpi后,處理組發(fā)病率為14.3%,對照組發(fā)病率為100%,處理組發(fā)病率遠(yuǎn)低于對照組發(fā)病率。處理組相對于對照組的抗性指數(shù)為-2.66,抗性評價(jià)為高抗。處理組相較于對照組,癥狀出現(xiàn)明顯減輕,具體結(jié)果如圖4所示。這表明利用pCLBV202在煙草中系統(tǒng)表達(dá)CB增強(qiáng)了對煙草青枯病的抗性。
通過RT-PCR檢測CB蛋白基因是否在尤力克檸檬系統(tǒng)葉中存在轉(zhuǎn)錄,篩選陽性植株進(jìn)行抗性評價(jià)。結(jié)果如圖5所示,共獲得了4株pCLBV202-CB陽性尤力克檸檬植株。
本氏煙N. benthamianaA:注射葉背面The reverse side of injection leaf (7 dpi);B:莖稈橫切面Cross-section of stalk (11 dpi);C:根莖Rhizome (11dpi);D:系統(tǒng)葉systemic leaves (15 dpi);E:花蕾Buds (18 dpi)。尤力克檸檬C. limon F:系統(tǒng)葉Systemic leaves (30 dpi)
A:煙草青枯病癥狀的整體圖overall picture of tobacco bacterial wilt symptoms;B:煙草青枯病分級classification of tobacco bacterial wilt;C:pCLBV202-CB組煙草青枯病癥狀tobacco bacterial wilt symptoms in pCLBV202-CB group;D:pCLBV202組煙草青枯病癥狀tobacco bacterial wilt symptoms in pCLBV202 group;E:pCLBV202-CB組注射葉injected leaf of pCLBV202-CB group;F:pCLBV202組注射葉injected leaf of pCLBV202 group
M:2000 bp標(biāo)準(zhǔn)分子量2000 bp molecular marker;1—12:pCLBV202-CB接種樣品pCLBV202-CB inoculated samples;13:陰性對照Negative control;14:陽性對照Positive control;15:水對照Water control
觀察記錄接種柑橘潰瘍病菌的尤力克檸檬葉片,在7 dpi時(shí)處理組和對照組均發(fā)?。▓D6)。處理組病斑數(shù)為47個(gè),發(fā)病率為43.5%;對照組病斑個(gè)數(shù)為73個(gè),發(fā)病率為67.6%。
圖6 pCLBV202-CB對柑橘潰瘍病的防治效果
潰瘍菌斑研磨稀釋后進(jìn)行細(xì)菌的回補(bǔ)培養(yǎng),結(jié)果如圖7所示,處理組潰瘍病菌在稀釋51倍便停止生長;對照組的潰瘍病菌稀釋54倍停止生長。因此,處理組中潰瘍病菌菌群數(shù)少于對照組潰瘍病菌菌群數(shù)。
上述結(jié)果表明,利用pCLBV202-CB處理后的尤力克檸檬較對照的柑橘潰瘍病抗性增強(qiáng)。
1、2、3、4、5、6:潰瘍病菌的稀釋倍數(shù)分別為51、52、53、54、55、56倍Dilution gradients of Xcc were 51, 52, 53, 54, 55, 56 times, respectively
柑橘產(chǎn)業(yè)是我國南方許多地區(qū)鄉(xiāng)村振興的支柱產(chǎn)業(yè),但柑橘病害尤其是黃龍病、潰瘍病嚴(yán)重影響了該產(chǎn)業(yè)的健康發(fā)展[28]。通過轉(zhuǎn)基因技術(shù)將抗菌肽基因轉(zhuǎn)入柑橘中可以增強(qiáng)柑橘對細(xì)菌病害的抗病性,但柑橘轉(zhuǎn)基因周期長、操作繁瑣并且存在較高的技術(shù)難度和一定的品種限制。本研究基于前期構(gòu)建的侵染性克隆pCY-CLBV201,通過在其外殼蛋白基因終止子后插入92 bp亞基因組啟動(dòng)子序列及克隆位點(diǎn),構(gòu)建了病毒表達(dá)載體pCLBV202??咕腸ecropin B通過靜電作用抑制細(xì)菌細(xì)胞呼吸,細(xì)菌最后死亡或者停止生長,從而有效降低細(xì)菌病害的危害與傳播。李乃堅(jiān)等[29]將天蠶抗菌肽B基因?qū)霟煵萜贩N‘Nc82’‘Col76’和‘K326’并獲得了抗性后代,其抗青枯病能力與受體品種相比有較大幅度的提高。本研究利用該載體在本氏煙中表達(dá)抗菌肽CB,顯著降低了煙草青枯病的發(fā)病率以及癥狀嚴(yán)重程度,提高了植物對煙草青枯病的抗性,這與李乃堅(jiān)等[29]的結(jié)果一致;在尤力克檸檬植株體內(nèi)表達(dá)CB也可顯著降低柑橘潰瘍病菌的病斑數(shù)和菌群數(shù)量,提高檸檬的柑橘潰瘍病抗性,這與之前關(guān)于轉(zhuǎn)基因抗菌肽的研究結(jié)果一致[30-32],這些結(jié)果均證明病毒表達(dá)載體在植物中系統(tǒng)的表達(dá)CB與轉(zhuǎn)基因植物具有同樣的抗細(xì)菌病害能力。
由于果樹是多年生植物,因此構(gòu)建能在果樹植株內(nèi)長期、穩(wěn)定表達(dá)外源基因的病毒表達(dá)載體具有積極意義。目前已獲得的果樹病毒載體中,CTV載體的穩(wěn)定性最好,這可能與長線型病毒屬中所特有的HSP70同源蛋白和較低的重組率有關(guān)[33]。但CTV可以通過蚜蟲傳播[34],存在一定的病毒擴(kuò)散風(fēng)險(xiǎn)。CLBV能夠侵染大多數(shù)柑橘栽培品種,不引起明顯的癥狀,且無昆蟲傳播媒介,從而適宜用于載體改造。已有研究表明基于CLBV的表達(dá)載體可以在柑橘中穩(wěn)定表達(dá)GFP達(dá)7年之久,穩(wěn)定性良好。插入的外源基因最終會(huì)丟失,不存在生物安全問題。因而,利用本研究構(gòu)建的表達(dá)載體表達(dá)CB或其他更加高效的抗菌肽可使柑橘獲得較持久的細(xì)菌性病害抗性,減輕病害防控壓力。CLBV寄主廣泛,可以侵染獼猴桃、桑樹、牡丹等多種植物,因此,基于CLBV的表達(dá)載體也可能適用于更多的寄主,應(yīng)用前景良好。另外,本研究所獲載體也可用于反向遺傳學(xué)研究,通過pCLBV202過表達(dá)外源基因,可快速對其功能進(jìn)行研究,對于快速篩選抗性基因?qū)ふ腋玫牟『Ψ揽赝緩骄哂蟹e極意義。目前,利用pCLBV202在柑橘中表達(dá)外源基因的表達(dá)量仍不夠高,后續(xù)可通過篩選高滴度病毒、優(yōu)選外源基因插入位點(diǎn)等研究繼續(xù)優(yōu)化,從而提高其外源抗性基因的表達(dá)量,這對提升柑橘抗性以及病害防控效果極其重要。
構(gòu)建了基于CLBV的病毒表達(dá)載體pCLBV202。利用pCLBV202在本氏煙、柑橘中系統(tǒng)表達(dá)抗菌肽可顯著提高植株的細(xì)菌性病害抗性,為柑橘病害防控提供了新思路。
[1] 陳祝安, 曹光照, 許益?zhèn)? 黃基榮, 葛嵐屏. 柑桔害蟲病原真菌資源的考察和生測. 微生物學(xué)通報(bào), 1985(5): 194-198.
CHEN Z A, CAO G Z, XU Y W, HUANG J R, GE L P. Investigation and bioassay of citrus pest pathogenic fungi resources. Microbiology China, 1985(5): 194-198. (in Chinese)
[2] BROWN K. Florida fights to stop citrus canker. Science, 2001, 292(5525): 2275-2276.
[3] 宋二玲. 三個(gè)病原物誘導(dǎo)啟動(dòng)子在轉(zhuǎn)基因柑橘中受潰瘍病菌和創(chuàng)傷誘導(dǎo)的表達(dá)分析[D]. 重慶: 西南大學(xué), 2013.
SONG E L. Canker bacterium- and wound-response characteristics of three pathogen-induced promoters in transgenic citrus[D]. Chongqing: Southwest University, 2013. (in Chinese)
[4] NARDO A D, VITIELLO A, GALLO R L. Cutting edge: Mast cell antimicrobial activity is mediated by expression of cathelicidin antimicrobial peptide. Journal of Immunology, 2003, 170(5): 2274-2278.
[5] ZASLOFF M. Antimicrobial peptides of multicellular organisms. Nature, 2002, 415(6870): 389-395.
[6] 鄭啟發(fā), 陳大成, 黃自然, 胡桂兵. 人工合成柞蠶抗菌肽D基因轉(zhuǎn)化沙田柚. 華南農(nóng)業(yè)大學(xué)學(xué)報(bào), 1999, 20(1): 103-106. ZHENG Q F, CHEN D C, HUANG Z R, HU G B. Transformation of the Shatian pummelo () with the synthetic oak silkworm antibacterial peptide D gene. Journal of South China Agricultural University, 1999, 20(1): 103-106. (in Chinese)
[7] 陳善春, 張進(jìn)仁, 黃自然, 高峰, 陳鳳珍, 隆有慶. 根癌農(nóng)桿菌介導(dǎo)柞蠶抗菌肽D基因轉(zhuǎn)化柑桔的研究. 中國農(nóng)業(yè)科學(xué), 1997, 30(3): 7-13.
CHEN S C, ZHANG J R, HUANG Z R, GAO F, CHEN F Z, LONG Y Q. Studies on-mediated antibacterial peptide D gene transfer in citrus. Scientia Agricultura Sinica, 1997, 30(3): 7-13. (in Chinese)
[8] 劉琦琦. 轉(zhuǎn)cecropin B基因柑橘對潰瘍病抗性的研究[D]. 重慶: 西南大學(xué), 2014.
LIU Q Q.resistance of transgenic plants with cecropin B gene to citrus canker caused bypv.[D]. Chongqing: Southwest University, 2014. (in Chinese)
[9] SATYANARAYANA T, GOWDA S, BOYKO V P, ALBIACH- MARTI M R, MAWASSI M, NAVAS-CASTILLO J, KARASEV A V, DOLJA V, HILF M E, LEWANDOWSKI D J, MORENO P, BAR-JOSEPH M, GARNSEY S M, DAWSON W O. An engineered closterovirus RNA replicon and analysis of heterologous terminal sequences for replication. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(13): 7433-7438.
[10] VIVES M C, MARTíN S, AMBRóS S, RENOVELL á, NAVARRO L, PINA J, MORENO P, GUERRI J. Development of a full-genome cDNA clone of citrus leaf blotch virus and infection of citrus plants. Molecular Plant Pathology, 2008, 9(6): 787-797.
[11] OHIRA K, NAMBA S, ROZANOV M, KUSUMI T, TSUCHIZAKI T. Complete sequence of an infectious full-length cDNA clone of citrus tatter leaf capillovirus: comparative sequence analysis of capillovirus genomes. Journal of General Virology, 1995, 76(9): 2305-2309.
[12] GOWDA S, SATYANARAYANA T, ROBERTSON C J, GARNSEY S M, DAWSON W O. Infection of citrus plants with virions generated inplants agroinfiltrated with a binary vector based citrus tristeza virus//Proceedings of the Sixteenth Conference of the International Organization of Citrus Virologist. Riverside: IOCV, 2005: 23-33.
[13] SáNCHEZ F, MARTINEZ-HERRERA D, AGUILAR I, PONZ F. Infectivity of turnip mosaic potyvirus cDNA clones and transcripts on the systemic hostand local lesion hosts. Virus Research, 1998, 55(2): 207-219.
[14] 周彥. 果樹病毒載體研究進(jìn)展. 中國農(nóng)業(yè)科學(xué), 2014, 47(6): 1119-1127.
ZHOU Y. Progresses in study of virus-based vectors of fruit trees. Scientia Agricultura Sinica, 2014, 47(6): 1119-1127. (in Chinese)
[15] GALIAKPAROV N, TANNE E, SELA I, GAFNY R. Infectious RNA transcripts from grapevine virus A cDNA clone. Virus Genes, 1999, 19(3): 235-242.
[16] VELA L B, SKARIA M. Seven isolates of citrus tatter leaf virus induce varying levels of xylem tissue abnormalities in two citrange rootstocks//Proceedings of the Fifteenth Conference of the International Organization of Citrus Virologists. Riverside: IOCV, 2002: 371-372.
[17] MIYAKAWA T, MATSUI C. A bud-union abnormality of Satsuma mandarin onrootstock in Japan//Proceedings of the Seventh Conference of the International Organization of Citrus Virologists. Riverside: IOCV, 1976: 125-131.
[18] CAO M J, YU Y Q, TIAN X, YANG F Y, LI R H, ZHOU C Y. First report of citrus leaf blotch virus in lemon in China. Plant Disease, 2017, 101(8): 1561.
[19] CHAVAN R R, BLOUIN A G, COHEN D, PEARSON M N. Characterization of the complete genome of a novel citrivirus infecting. Archives of Virology, 2013, 158(8): 1679-1686.
[20] XUAN Z Y, XIE J X, YU H D, ZHANG S, LI R H, CAO M J. Mulberry () is a new natural host of citrus leaf blotch virus in China. Plant Disease, 2021, 105(3): 716.
[21] VIVES M C, GALIPIENSO L, NAVARRO L, MORENO P, GUERRIL J. The nucleotide sequence and genomic organization of citrus leaf blotch virus: candidate type species for a new virus genus. Virology, 2001, 287(1): 225-233.
[22] AGüERO J, VIVES M C, VELáZQUEZ K, RUIZ-RUIZ S, JUáREZ J, NAVARRO L, MORENO P, GUERRI J. Citrus leaf blotch virus invades meristematic regions inand citrus. Molecular plant pathology, 2013, 14(6): 610-616.
[23] RENOVELLá, GAGO S, RUIZ-RUIZ S, VELáZQUEZ K, NAVARRO L, MORENO P, VIVES M C, GUERRI J. Mapping the subgenomic RNA promoter of the citrus leaf blotch virus coat protein gene by-mediated inoculation. Virology, 2010, 406(2): 360-369.
[24] AGüERO J, RUIZ-RUIZ S, VIVES M C, VELáZQUEZ K, NAVARRO L, Pe?a L, MORENO P, GUERRI J. Development of viral vectors based on citrus leaf blotch virus to express foreign proteins or analyze gene function in citrus plants. Molecular plant-microbe interactions, 2012, 25(10): 1326-1337.
[25] 崔甜甜. 柑橘黃化脈明病毒和柑橘葉斑駁病毒的侵染性克隆構(gòu)建[D]. 重慶: 西南大學(xué), 2018.
CUI T T. Construction of infectious cDNA clones of citrus yellow vein clearing virus and citrus leaf blotch virus[D]. Chongqing: Southwest University, 2018. (in Chinese)
[26] 段玉, 許建建, 馬志敏, 賓羽, 周常勇, 宋震. 柑橘葉斑駁病毒的逆轉(zhuǎn)錄重組酶聚合酶擴(kuò)增檢測. 中國農(nóng)業(yè)科學(xué), 2021, 54(9): 1904-1912.
DUAN Y, XU J J, MA Z M, BIN Y, ZHOU C Y, SONG Z. Detection of citrus leaf blotch virus by reverse transcription-recombinase polymerase amplification (RT-RPA). Scientia Agricultura Sinica, 2021, 54(9): 1904-1912. (in Chinese)
[27] 任廣偉, 孔凡玉, 王鳳龍. 煙草病蟲害分級及調(diào)查方法: GB/T 23222—2008[S]. (2008-12-31) [2022-07-04].
REN G W, KONG F Y, WANG F L. Grade and investigation method of tobacco diseases and insect pests: GB/T 23222—2008[S]. (2008- 12-31) [2022-07-04]. (in Chinese)
[28] DUAN S, JIA H G, PANG Z Q, TEPER D, WHITE F, JONES J, ZHOU C Y, WANG N. Functional characterization of the citrus canker susceptibility gene. Molecular plant pathology, 2018, 19(8): 1908-1916.
[29] 李乃堅(jiān), 袁四清, 蒲漢麗, 周會(huì)光, 戴冕, 陳俊標(biāo), 羅戰(zhàn)勇, 崔植琳, 黃自然, 李傳瑛, 陳鳳珍. 抗菌肽B基因轉(zhuǎn)化煙草及轉(zhuǎn)基因植株抗青枯病的鑒定. 農(nóng)業(yè)生物技術(shù)學(xué)報(bào), 1998, 6(2): 178-184.
LI N J, YUAN S Q, PU H L, ZHOU H G, DAI M, CHEN J B, LUO Z Y, CUI Z L, HUANG Z L, LI C Y, CHEN F Z. Transfer of cecropin B gene into tobacco plant and confer the bacterial wilt resistance. journal of agricultural biotechnology, 1998, 6(2): 178-184. (in Chinese)
[30] 黎觀紅, 洪智敏, 賈永杰, 瞿明仁. 抗菌肽的抗菌作用及其機(jī)制. 動(dòng)物營養(yǎng)學(xué)報(bào), 2011, 23(4): 546-555.
LI G H, HONG Z M, JIA Y J, QU M R. Activities and mechanisms of action of antimicrobial peptides. Chinese Journal of Animal Nutrition, 2011, 23(4): 546-555. (in Chinese)
[31] 王志興, 賈士榮. 抗菌肽分泌型載體的構(gòu)建及轉(zhuǎn)基因馬鈴薯中蛋白的胞外分泌. 農(nóng)業(yè)生物技術(shù)學(xué)報(bào), 1996, 4(3): 277-286.
WANG Z X, JIA S R. Construction of vectors harboring a barley-amylase signal sequence and a cecropin B or shiva A gene that resulted in the extracellular protein secretion in potato transgenic plants. journal of agricultural biotechnology, 1996, 4(3): 277-286. (in Chinese)
[32] 賈士榮, 屈賢銘, 馮蘭香, 唐惕, 唐益熊, 劉坤, 趙艷麗, 白永延, 蔡敏鶯. 轉(zhuǎn)抗菌肽基因提高馬鈴薯對青枯病的抗性. 中國農(nóng)業(yè)科學(xué), 1998, 31(3): 5-12.
JIA S R, QU X M, FENG L X, TANG T, TANG Y X, LIU K, ZHAO Y L, BAI Y Y, CAI M Y. Development of potato clones with enhanced resistance to bacterial wilt by introducing antibacterial peptide gene. Scientia Agricultura Sinica, 1998, 31(3): 5-12. (in Chinese)
[33] Kurth E G, Peremyslov V V, Prokhnevsky A I, Kasschau K D, Miller M, Carrington J C, Dolja V V. Virus-derived gene expression and RNA interference vector for grapevine. Journal of Virology, 2012, 86(11): 6002-6009.
[34] Zhou Y, Zhou C Y, Song Z, Liu K H, Yang F Y. Characterization of citrus tristeza virus isolates by indicators and molecular biology methods. Agricultural Sciences in China, 2007, 6(5): 573-579.
Construction and application of expression vector based on Citrus leaf blotch virus
ZHANG Qi, DUAN Yu, SU Yue, JIANG QiQi, WANG ChunQing, BIN Yu, SONG Zhen
Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing 400712
【Objective】The objective of this study is to construct an expression vector based on citrus leaf blotch virus (CLBV) and systematically express antimicrobial peptides to improve plant disease resistance, which will provide a new technical means for the prevention and control of citrus canker, citrus Huanglongbing (HLB) and other diseases.【Method】The subgenomic promoter sequence and multiple cloning sites were inserted after the terminator of the coat protein gene of CLBV to construct the viral expression vector pCLBV202 based on the previously constructed infectious clone pCY-CLBV201. Then green fluorescent proteingene () was inserted into the multiple cloning sites, and the expression of GFP was verified by-mediated inoculation and fluorescence observation. the cecropin B (CB) gene ofwas cloned and the recombinant vector pCLBV202-CB was constructed.and citrus seedlings were inoculated by pCLBV202-CB using-mediated injection and vacuum infiltration, respectively. Positive plants were screened and subjected to inoculation ofby injection and root irrigation orsubsp.() by pricking the detached leaves. At the same time, the plants inoculated with the empty vector were set as the control. The resistance to tobacco bacterial wilt of the inoculated plants was evaluated by symptom observation, incidence rate and disease index. The citrus resistance to canker was evaluated by the detriment, incidence rate and colony concentration on leaves. 【Result】After inoculated by pCLBV202-GFP, green fluorescence could be observed on the systemic leaves of theand, which was brighter in, indicating that the expression vector based on CLBV was successfully constructed. After inoculation of, the onset time of treatment group (pCLBV202-CB) was delayed by 4 days compared with the control group (pCLBV202). On the 24th day past inoculation (24 dpi), the incidence rate of the treatment group was 14.3%, and that of the control group was 100%. Compared with the control group, the resistance index of the treatment group was -2.66, and the resistance evaluation was high, indicating that the expression of CB by pCLBV202-CB enhanced the resistance to tobacco bacterial wilt. Whenleaves was inoculated by, the number of detriment in the treatment group at 7 dpi was 47, and the incidence rate was 43.5%, while that of the control group was 73, and 67.6%. The detection of colony concentration changes ofshowed that the number ofin the treatment group was less than that in the control group, indicating that the expression of CB by pCLBV202-CB enhanced the resistance to citrus canker.【Conclusion】The CLBV-based viral expression vector pCLBV202 was constructed. Using pCLBV202 to systematically express CB inand citrus can improve the resistance of plants to bacterial diseases, which provided a new technology for the prevention and control of citrus bacterial diseases.
citrus leaf blotch virus (CLBV);viral expression vector;antimicrobial peptide;disease resistance
10.3864/j.issn.0578-1752.2022.22.006
2022-07-04;
2022-07-16
國家重點(diǎn)研發(fā)計(jì)劃(2021YFD1400800)、重慶市自然科學(xué)基金(CSTB2022NSCQ-MSX0752)
張琦,E-mail:18839773525@163.com。段玉,E-mail:982432080@qq.com。張琦和段玉為同等貢獻(xiàn)作者。通信作者宋震,E-mail:songzhen@cric.cn
(責(zé)任編輯 岳梅)