劉浩,龐婕,李歡歡,強(qiáng)小嫚,張瑩瑩,宋嘉雯,2
葉面噴施硒與土壤水分耦合對(duì)番茄產(chǎn)量和品質(zhì)的影響
劉浩1,龐婕1,李歡歡1,強(qiáng)小嫚1,張瑩瑩1,宋嘉雯1,2
1中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)田灌溉研究所/農(nóng)業(yè)農(nóng)村部作物需水與調(diào)控重點(diǎn)開放實(shí)驗(yàn)室,河南新鄉(xiāng) 453002;2塔里木大學(xué)水利與建筑工程學(xué)院,新疆阿拉爾 843300
【目的】外源硒和土壤水分狀況都會(huì)影響作物生長(zhǎng)和品質(zhì)特性,探明葉面噴施硒與土壤水分狀況對(duì)產(chǎn)量和品質(zhì)的耦合調(diào)控效應(yīng),為富硒番茄栽培的科學(xué)用水管理提供理論依據(jù)?!痉椒ā吭囼?yàn)以亞硒酸鈉(Na2SeO3)為硒源,采用盆栽試驗(yàn),設(shè)置了3種葉面噴施硒濃度(S0:清水對(duì)照;S5:5 mg·L-1;S10:10 mg·L-1),每種硒噴施濃度下設(shè)置2種不同灌溉控制水平,灌水控制下限分別為田間持水量的50%(W1:干旱脅迫)和75%(W2:充分供水),研究不同土壤水分狀況下葉面噴施不同濃度硒對(duì)番茄植株硒含量、生長(zhǎng)發(fā)育指標(biāo)、產(chǎn)量和品質(zhì)的影響。【結(jié)果】不同土壤水分狀況對(duì)土壤、葉片和果實(shí)硒含量均無顯著影響(>0.05)。葉面噴施不同濃度硒對(duì)土壤硒含量也未產(chǎn)生顯著影響,但植株葉片和果實(shí)硒含量均隨外源硒噴施濃度的增大而增加,且差異達(dá)到極顯著水平(<0.01),葉面噴施硒的果實(shí)硒含量比對(duì)照增加了2—4倍。干旱脅迫顯著降低了株高和莖粗,葉面噴施硒可適度緩解干旱脅迫對(duì)株高的抑制作用,但對(duì)莖粗無顯著影響。干旱脅迫較充分供水處理的產(chǎn)量平均減少了39.5%,干旱脅迫條件下噴施硒雖可適度增加坐果數(shù),但單果質(zhì)量有降低的趨勢(shì),因而對(duì)產(chǎn)量沒有顯著影響。與充分供水相比,干旱脅迫使果實(shí)可溶性糖(SSC)、有機(jī)酸(OA)、維生素C(Vc)和可溶性固形物含量(TSS)分別顯著提高了28.7%、24.3%、18.7%和24.0%。葉面噴施硒可促進(jìn)SSC積累,但不同濃度間沒有顯著差異;與清水對(duì)照相比,除S5W2處理的OA略有減少外,其他葉面噴施硒處理均顯著增加了OA,故而S5W2處理獲得最佳糖酸比(SAR),S0W2處理的糖酸比表現(xiàn)最差。在充分供水條件下,不同葉面噴施硒濃度的TSS沒有顯著性差異;在干旱脅迫條件下,TSS隨硒噴施濃度的增大呈先增大后減小的變化規(guī)律。說明葉面噴施硒濃度由5 mg·L-1增加到10 mg·L-1不能進(jìn)一步提升果實(shí)品質(zhì)?!窘Y(jié)論】葉面噴施硒與土壤水分狀況對(duì)番茄品質(zhì)的耦合作用效果明顯,干旱脅迫條件下葉面噴施5 mg·L-1的Na2SeO3可大幅提升果實(shí)可溶性糖和可溶性固形物含量,使果實(shí)營(yíng)養(yǎng)品質(zhì)得到明顯改善;充分供水條件下葉面噴施5 mg·L-1的Na2SeO3在不降低產(chǎn)量的同時(shí),改善了果實(shí)風(fēng)味品質(zhì),可實(shí)現(xiàn)穩(wěn)產(chǎn)提質(zhì)效果。
外源硒;干旱脅迫;番茄;產(chǎn)量;品質(zhì)
【研究意義】硒是人和動(dòng)物機(jī)體所必需的微量營(yíng)養(yǎng)元素,在動(dòng)植物新陳代謝中起著重要的作用,缺硒導(dǎo)致人的克山病和大骨節(jié)病,甚至?xí)档兔庖吡Σ⒁l(fā)各種惡性腫瘤[1]。適量補(bǔ)硒可以提升機(jī)體免疫能力,改善人體抗癌抗衰老等能力[2],同時(shí)硒對(duì)鎘、砷、汞、銀等重金屬毒性起到拮抗作用[3-4]。植物是硒生態(tài)循環(huán)過程的中間環(huán)節(jié),也是人和動(dòng)物攝入硒的唯一直接來源[5]。中國(guó)約72%的地區(qū)土壤處于缺硒或低硒狀態(tài)[5],適當(dāng)補(bǔ)硒對(duì)促進(jìn)作物的生長(zhǎng)發(fā)育和提升品質(zhì)均有一定效果[6-8],但與土壤混施、拌種、種子包衣等施硒相比,葉面噴施硒在農(nóng)業(yè)生產(chǎn)中效果明顯且節(jié)約成本[7,9]。土壤水分是植物根系吸收營(yíng)養(yǎng)元素及其在機(jī)體運(yùn)轉(zhuǎn)的重要介質(zhì),也是植物維持自身生命健康的生長(zhǎng)發(fā)育、產(chǎn)量形成和品質(zhì)特性的重要環(huán)境要素[10-12]。因此,研究葉面噴施硒和土壤水分耦合作用效果對(duì)富硒農(nóng)作物生產(chǎn)具有重要理論和實(shí)踐意義?!厩叭搜芯窟M(jìn)展】番茄是一種需水量較大且對(duì)水分較為敏感的蔬菜作物,受水資源緊缺和氣候變化的影響,干旱脅迫成為田間條件下存在最廣泛的一種作物生長(zhǎng)逆境,但大多研究認(rèn)為,在果實(shí)成熟階段進(jìn)行適度干旱脅迫可實(shí)現(xiàn)產(chǎn)量降低較小的情況下,提高果實(shí)可溶性固形物、可溶性糖、糖酸比等品質(zhì)[11-14],但維生素C、類胡蘿卜素含量可能會(huì)降低,果實(shí)生長(zhǎng)階段對(duì)水分虧缺的敏感度可能主要受基因控制[14]。然而,也有研究認(rèn)為,干旱脅迫雖然提高了果實(shí)某些品質(zhì)特性,卻伴隨著產(chǎn)量顯著降低[15-16]。外源噴施適量濃度的硒具有提升作物的抗氧化能力作用[6,17-18],進(jìn)而提高了植株的抗逆性,減緩了植株的衰老,促進(jìn)了作物生長(zhǎng),緩解諸如溫度[19-20]、重金屬[4]、干旱[21]等非生物脅迫的危害,對(duì)番茄營(yíng)養(yǎng)品質(zhì)改善和產(chǎn)量提高均具有促進(jìn)作用[18],也有學(xué)者認(rèn)為施加外源硒并不會(huì)對(duì)番茄產(chǎn)量產(chǎn)生明顯影響[22],但大多研究認(rèn)為施加外源硒可以顯著提升番茄果實(shí)可溶性固形物、可溶性糖、Vc、番茄紅素等品質(zhì)指標(biāo)[6,17-18,22]。綜上所述,干旱脅迫會(huì)引起番茄不同程度的減產(chǎn),葉面噴施硒對(duì)番茄產(chǎn)量的影響效果仍存在不同觀點(diǎn),葉面噴施適宜濃度的硒或?qū)嵤└珊得{迫均可顯著提升番茄果實(shí)的品質(zhì)?!颈狙芯壳腥朦c(diǎn)】然而,噴施硒濃度與土壤水分狀況耦合對(duì)果實(shí)品質(zhì)的調(diào)控效應(yīng)研究較少,尤其是干旱脅迫下葉面噴施硒對(duì)果實(shí)品質(zhì)影響是拮抗作用還是具有協(xié)同作用尚需進(jìn)一步研究探討?!緮M解決的關(guān)鍵問題】因此,本研究通過設(shè)置不同葉面噴施硒濃度和不同土壤水分供給狀況組合試驗(yàn),探究噴施硒和土壤水分狀況耦合對(duì)溫室番茄產(chǎn)量和品質(zhì)特性的影響,闡明干旱脅迫下噴施不同濃度的硒調(diào)控番茄產(chǎn)量和品質(zhì)的作用效果,為進(jìn)一步構(gòu)建溫室栽培富硒番茄產(chǎn)品的節(jié)水提質(zhì)灌溉用水管理模式提供理論依據(jù)。
試驗(yàn)于2021年3—6月在中國(guó)農(nóng)業(yè)科學(xué)院新鄉(xiāng)綜合試驗(yàn)基地(N35°9′,E113°47′,海拔74 m)的日光溫室中進(jìn)行。試驗(yàn)區(qū)氣候?qū)倥瘻貛Т箨懶约撅L(fēng)氣候,年均降雨量580 mm,年均蒸發(fā)量2 000 mm,多年平均氣溫14℃,日照時(shí)數(shù)達(dá)2 399 h,無霜期201 d。試驗(yàn)所用溫室長(zhǎng)60 m、寬8.5 m,總面積為510 m2,東西走向,坐北朝南。溫室上端覆蓋有厚度為0.2 mm的無滴聚乙烯薄膜,膜上鋪設(shè)5 cm厚的保溫棉被,側(cè)墻和后墻的墻體內(nèi)均嵌有保溫材料。試驗(yàn)在盆栽條件下進(jìn)行,盆栽用土選自田間耕層(0—20 cm)土壤,質(zhì)地為砂壤土,容重為1.45 g×cm-3,田間持水量為23%(質(zhì)量含水量),土壤堿解氮、速效磷和速效鉀含量分別為52.5、19.5和196.1 mg×kg-1,pH為8.6,EC為0.31 dS×m-1,有機(jī)質(zhì)含量為12.2 g×kg-1。
試驗(yàn)所用盆直徑為30 cm,高50 cm,每盆裝過篩后的干土質(zhì)量為46 kg,供試土壤裝入盆內(nèi)至上口約5 cm處以確保裝土容重為1.45 g×cm-3。各處理氮、磷、鉀肥料的施用量均相同,施用量分別為0.27、0.11和0.27 g×kg-1干土。裝土?xí)r將全部磷肥,以及氮肥和鉀肥總量的40%作為基肥施入,剩余60%的氮鉀肥均分為4份,分別于每穗果實(shí)開始膨大時(shí)隨水追施。試驗(yàn)所用肥料為尿素(46% N)、過磷酸鈣(14% P2O5)和硫酸鉀(50% K2O)。供試番茄品種為金棚“春發(fā)78”,于五葉一心時(shí)選長(zhǎng)勢(shì)一致的植株由苗床移栽(2021年3月10日)至盆中,每盆定植1株,坐果4穗留頂葉3片后打頂,每穗留果3—4個(gè),于5月20日第一穗果成熟開始采摘,6月20日第四穗果實(shí)全部采摘后結(jié)束試驗(yàn)。其他諸如除草、整枝、病蟲害防治等田間管理措施各處理均一致。
試驗(yàn)設(shè)計(jì)葉面噴施硒(Na2SeO3)3種濃度處理,噴施濃度分別為0(S0)、5(S5)和10 mg×L-1(S10),開花坐果期分兩次間隔20 d均勻噴施(移栽后28和48 d)于植株葉片,以葉片表面產(chǎn)生滴水為止;S0噴施清水作為對(duì)照處理。噴施硒過程中將土壤表面用防水塑料布覆蓋以防止Na2SeO3溶液滴入土壤而產(chǎn)生影響。每種硒濃度分別設(shè)計(jì)充分供水和干旱脅迫(當(dāng)土壤含水量分別達(dá)到田間持水量的75%和50%時(shí)進(jìn)行灌溉,灌水控制上限分別為田間持水量的100%和75%,分別記為W2和W1)2個(gè)水分處理,完全組合共6個(gè)處理,每個(gè)處理10盆,共60盆,根據(jù)灌水控制上下限,各處理單株灌水定額均為2.5 L。為精確控制每個(gè)處理的灌水量,各處理均單獨(dú)采用由灌水桶、小型自吸泵、壓力表、閥門、毛管和裝有流調(diào)器的滴箭所組成的滴灌系統(tǒng)供水(圖1),灌水器額定流量為2 L×h-1,工作壓力為0.12 MPa。灌水時(shí)將所需灌溉水量加入灌水桶內(nèi),啟動(dòng)自吸泵,調(diào)整工作壓力至0.12 MPa,將灌溉水通過毛管連接滴箭注入每個(gè)盆中,直至桶內(nèi)所有灌溉水用完為止。每天7:30—8:30各處理均選擇有代表性的3盆植株,采用帶有電子吊秤(精度為20 g)小型有軌行吊(圖2)稱量盆質(zhì)量并計(jì)算土壤含水量,用于控制灌溉。為防止植株徒長(zhǎng),培育健壯的番茄植株,番茄定值后統(tǒng)一灌水至田間持水量的90%,待土壤含水量降至田間持水量的55%—60%時(shí)[23],所有處理再次灌水至田間持水量的90%,之后各處理按照設(shè)計(jì)灌水控制下限進(jìn)行灌溉。
1.4.1 植株生長(zhǎng)指標(biāo) 在果實(shí)成熟采摘期末期(6月10日),每個(gè)處理選取有代表性植株3株測(cè)定株高和莖粗,株高采用精度為1 mm的直尺測(cè)量,莖粗用游標(biāo)卡尺分2個(gè)方向(夾角90°)測(cè)量,取其平均值。
1.4.2 果實(shí)產(chǎn)量 為了消除株間差異,每個(gè)處理分為3組進(jìn)行測(cè)產(chǎn),每相鄰3株為一個(gè)測(cè)產(chǎn)重復(fù),每個(gè)處理測(cè)產(chǎn)植株共9株;當(dāng)果實(shí)周身著色達(dá)90%以上后采摘,每次采摘后記錄果實(shí)數(shù)量,并用精度為0.1 g、量程為3.5 kg的電子天平稱重,計(jì)算單株果實(shí)產(chǎn)量和平均單果重。
圖1 各處理滴灌系統(tǒng)布置圖
圖2 田間試驗(yàn)圖
1.4.3 果實(shí)品質(zhì)指標(biāo) 待果實(shí)成熟采摘后,每個(gè)處理選取無畸形、病蟲害及機(jī)械損傷的鮮果9個(gè),用蒸餾水將果實(shí)清洗干凈并擦拭干,采用二分法選取一半樣品用于測(cè)定果實(shí)可溶性固形物(TSS)、可溶性糖(SSC)、有機(jī)酸(OA)和維生素C(Vc)含量等品質(zhì)指標(biāo)。TSS采用手持式糖度儀(PR-32α,ATAGO,Tokyo,Japan)測(cè)定;SSC、OA和Vc含量分別用蒽酮比色法、0.1 mol×L-1的NaOH滴定法和2,6-二氯靛酚鈉鹽滴定法測(cè)定[10],糖酸比(SAR)根據(jù)SSC和OA的比值確定。
1.4.4 土壤、葉片和果實(shí)硒含量 土壤樣品取自距番茄主莖10 cm處0—20 cm土層,每個(gè)處理設(shè)置3次重復(fù),每次重復(fù)隨機(jī)選取3個(gè)點(diǎn)采集土壤混合為一個(gè)樣品,土壤樣品經(jīng)風(fēng)干后過0.149 mm孔徑篩,采用王水回流消解ICP-MS法[24]測(cè)定土壤硒(Se)元素含量。各處理于果實(shí)成熟采摘期選取植株上層功能葉,經(jīng)蒸餾水清洗拭干后,與各處理測(cè)定品質(zhì)指標(biāo)所剩另一半果實(shí)樣品一并置于烘箱,在105℃條件下殺青30 min,然后在75℃下烘干至恒重,采用硝酸消解ICP-MS法[25]測(cè)定葉片和果實(shí)的Se元素含量,根據(jù)果實(shí)含水率將果實(shí)Se含量轉(zhuǎn)化為單位鮮果質(zhì)量的Se含量。
1.4.5 溫室內(nèi)環(huán)境氣象要素 溫室內(nèi)的氣象數(shù)據(jù)由安裝在溫室正中央的自動(dòng)氣象站監(jiān)測(cè)獲得,觀測(cè)項(xiàng)目包括輻射、氣溫、相對(duì)濕度等氣象因子,番茄生育期內(nèi)各氣象因子的月均值如表1所示。
表1 番茄生育期溫室內(nèi)月均氣象數(shù)據(jù)
用SPSS 21.0 統(tǒng)計(jì)軟件對(duì)株高、莖粗、產(chǎn)量及果實(shí)品質(zhì)指標(biāo),以及土壤、葉片、果實(shí)Se元素含量等試驗(yàn)數(shù)據(jù)進(jìn)行方差分析,采用Duncan新復(fù)極差法進(jìn)行多重比較,用Microsoft Excel 2016軟件作圖。
圖3給出了葉面噴施硒與土壤水分狀況耦合對(duì)土壤、葉片和果實(shí)硒含量的影響。從圖3-A中可以看出,各處理土壤硒含量沒有顯著差異(>0.05),土壤硒含量平均為0.12 mg×kg-1。在同一水分處理下,不同葉面噴施硒處理葉片的硒含量差異較大,葉片硒含量隨著噴施硒濃度的增大而顯著增大,與清水對(duì)照(S0)相比,S10和S5處理的葉片平均硒含量分別增加了19倍和8倍;在同一硒噴施濃度下,干旱脅迫有增加葉片硒含量的趨勢(shì),但方差分析結(jié)果顯示同一噴施濃度下不同水分處理間并無顯著性差異。由圖3-B可知,在同一水分處理下,噴施硒顯著增加了果實(shí)硒含量,且隨著噴施濃度的增大而增大,與S0相比,S10和S5處理的平均果實(shí)硒含量顯著提高了400%和227%,說明葉面噴施硒可以促進(jìn)硒元素由葉片向果實(shí)的運(yùn)轉(zhuǎn)和積累。在同一噴施硒濃度下,不同水分處理果實(shí)硒含量沒有顯著性差異,但葉面噴施硒后,干旱脅迫有提高果實(shí)硒含量的趨勢(shì)。
圖中小寫字母表示不同處理間差異達(dá)到5%顯著水平。下同
2.2.1 株高和莖粗 圖4給出了葉面噴施硒與土壤水分狀況耦合對(duì)番茄生育期末株高和莖粗的影響。從圖中可以看出,噴施清水條件下,充分供水(S0W2)較干旱脅迫(S0W1)處理的株高增加了6.0%,且差異達(dá)到顯著水平(<0.05),而在兩種硒噴施濃度條件下,不同水分處理的株高均無顯著性差異(>0.05),說明葉面噴施硒有緩解干旱脅迫而促進(jìn)植株生長(zhǎng)的趨勢(shì)。然而,對(duì)于莖粗而言,在同一土壤水分供給狀況下,硒不同噴施濃度對(duì)莖粗均無顯著影響;在硒同一噴施濃度下,不同土壤水分狀況顯著影響了莖粗,與充分供水處理(W2)相比,干旱脅迫處理(W1)的平均莖粗顯著降低了10.7%。綜上所述,葉面噴施硒和土壤水分耦合對(duì)番茄的生長(zhǎng)的影響較小,土壤干旱脅迫是抑制株高和莖粗生長(zhǎng)的主要因素。
2.2.2 產(chǎn)量及其構(gòu)成要素 葉面噴施外源硒對(duì)番茄坐果數(shù)、單果質(zhì)量及產(chǎn)量均無顯著影響(表2),但不同土壤水分供給狀況對(duì)坐果數(shù)、單果質(zhì)量和產(chǎn)量均產(chǎn)生顯著性影響,葉面噴施硒和土壤水分狀況的交互作用對(duì)坐果數(shù)產(chǎn)生顯著影響。就噴施清水而言,干旱脅迫(S0W1)較充分供水(S0W2)的坐果數(shù)降低了10.8%,且差異達(dá)到顯著水平(<0.05),可見干旱脅迫引起番茄落花落果嚴(yán)重;但在兩種噴施濃度條件下,不同水分處理的坐果數(shù)均無顯著性差異(>0.05),說明噴施硒可緩解因干旱脅迫而造成落花落果。然而,在葉面噴施硒并沒有明顯提高番茄的單果質(zhì)量,反而單果質(zhì)量隨著硒噴施濃度的增大有減小的趨勢(shì),但差異沒有達(dá)到顯著性水平。在同一噴施濃度下,干旱脅迫顯著降低了單果質(zhì)量,與W2相比,W1的單果質(zhì)量平均降低了36.2%。從表2中還可以看出,在同一土壤水分供給狀況下,除S10W2與S0W2的產(chǎn)量差異達(dá)到顯著水平外,其他對(duì)番茄產(chǎn)量均無顯著影響;干旱脅迫較充分供水處理的產(chǎn)量平均減少了39.5%。綜上所述,干旱脅迫導(dǎo)致番茄減產(chǎn)主要源于單果質(zhì)量的降低。
圖4 不同處理下番茄株高和莖粗
表2 葉面噴施硒與土壤水分耦合對(duì)番茄產(chǎn)量及其構(gòu)成要素的影響
同列小寫字母代表不同處理之間差異達(dá)5%顯著水平。ns表示無顯著差異;*和**分別表示差異達(dá)到5%和1%顯著水平
Values followed by different small letters in table are significantly different among different treatments at 5% level. ns means insignificant; * and ** mean significant at<0.05 and<0.01, respectively
2.3.1 可溶性糖、有機(jī)酸和糖酸比 圖5給出了葉面噴施硒與土壤水分耦合對(duì)番茄果實(shí)可溶性糖含量(SSC)、有機(jī)酸含量(OA)和糖酸比(SAR)的影響。由圖5-A可知,在硒同一噴施濃度下,干旱脅迫顯著提高了果實(shí)SSC,與W2相比,W1的SSC平均增加了28.7%。在同一土壤水分供給狀況下,葉面噴施硒顯著提高了果實(shí)SSC,與S0W2相比,S10W2和S5W2的SSC分別顯著增加了15.2%和22.6%,但二者之間沒有顯著性差異(>0.05);與S0W1相比,S10W1和S5W1的SSC分別顯著增加了17.2%和21.6%,但二者之間也沒有顯著性差異;說明雖然葉面噴施硒可提升果實(shí)SSC,但在任一土壤水分狀況下,噴施硒濃度由5 mg×L-1增加到10 mg·L-1并不能使SSC得到進(jìn)一步提升,反而有降低的趨勢(shì),干旱脅迫耦合葉面噴施低濃度硒(5 mg×L-1)可促進(jìn)SSC的積累。
從圖5-A還可以看出,在同一硒噴施濃度下,干旱脅迫均明顯提高了果實(shí)OA,與W2相比,W1的OA平均增加了24.3%,但未噴硒的兩個(gè)水分處理之間差異未達(dá)到顯著水平(>0.05)。在充分供水條件下,與S0W2相比,S10W2的OA顯著提高了9.6%,而OA在S5W2和S0W2之間沒有顯著性差異;在干旱脅迫條件下,與S0W1相比,S10W1和S5W1的OA分別顯著提高了19.2%和29.4%。受SSC和OA的綜合影響,葉面噴施硒與土壤水分耦合顯著影響了果實(shí)SAR,其中S5W2處理的SAR表現(xiàn)最佳,3個(gè)干旱脅迫處理次之,且3個(gè)處理的SAR沒有顯著性差異,S0W2表現(xiàn)最差。與S0W2相比,S5W2的SAR極顯著(<0.01)提高了30.9%,而S10W2的SAR僅提高了4.8%,且差異未達(dá)到顯著水平,說明充分供水耦合葉面噴施低濃度硒(5 mg×L-1)可大幅提高果實(shí)SAR,使果實(shí)風(fēng)味品質(zhì)得到提升。
2.3.2 維生素C含量 在同一土壤水分供給狀況下,不同硒濃度噴施處理間維生素C(Vc)含量差異不顯著(圖6-A);但在同一葉面噴施硒濃度下,土壤水分供給狀況顯著影響了Vc含量,與充分供水處理(W2)相比,干旱脅迫處理(W1)的果實(shí)Vc含量平均增加了18.7%。
圖5 葉面噴施硒與土壤水分耦合對(duì)番茄可溶性糖、有機(jī)酸(A)和糖酸比(B)的影響
圖6 葉面噴施硒與土壤水分耦合對(duì)番茄維生素C(A)和可溶性固形物(B)的影響
2.3.3 可溶性固形物含量 由圖6-B可知,葉面噴施硒和土壤水分狀況均顯著影響了果實(shí)可溶性固形物含量(TSS),在同一硒噴施濃度下,干旱脅迫顯著增加了果實(shí)TSS,與W2相比,W1的TSS平均增加了24.0%,其中S0W1較S0W2的TSS僅提高了14.9%,而S5W1較S5W2的TSS提高了35.5%,S10W1較S10W2的TSS提高了21.6%,說明干旱脅迫耦合葉面噴施硒可大幅提升TSS。在充分供水和干旱脅迫兩種供水方式下,果實(shí)TSS對(duì)不同硒噴施濃度的響應(yīng)規(guī)律不一致:在充分供水條件下,TSS隨著葉面噴施硒濃度的增大而增大,但差異未達(dá)到顯著水平;在干旱脅迫條件下,TSS隨葉面噴施外源硒濃度的增大呈現(xiàn)先增大后減小的變化規(guī)律,且三者之間的差異均達(dá)到顯著水平。縱觀所有處理,葉面噴施5 mg×L-1硒的干旱脅迫處理(S5W1)表現(xiàn)最佳,葉面噴施10 mg×L-1硒的干旱脅迫處理(S10W1)表現(xiàn)次之,二者差異達(dá)到顯著水平,且二者的TSS均顯著高于其他處理,而充分供水的對(duì)照處理(S0W2)表現(xiàn)最差,與S0W2相比,S10W1和S5W1的TSS分別提高了30.1%和39.7%。
因每次噴施硒都將土壤表面覆蓋,各處理土壤硒含量沒有顯著差異(圖3-A),土壤硒含量較低(均值為0.12 mg×kg-1),說明本試驗(yàn)區(qū)屬于硒潛在不足土壤[26],需要進(jìn)行適度補(bǔ)硒處理以滿足作物生長(zhǎng)對(duì)硒元素的需求。然而,相比中耕時(shí)土壤施用或者拌種、種子包衣處理,葉面噴硒可促進(jìn)生物活性物質(zhì)的積累[27],在農(nóng)業(yè)生產(chǎn)中效果明顯且節(jié)約成本[7,9]。本研究結(jié)果顯示,葉片硒含量隨著硒噴施濃度的增大而大幅增大,促進(jìn)了硒元素由葉片向果實(shí)的運(yùn)轉(zhuǎn)和積累,進(jìn)而使兩種外源硒噴施濃度(5和10 mg·L-1)果實(shí)硒含量與噴清水對(duì)照相比均得到大幅增加(2.3倍和4.0倍)(圖3-B),這與ZHU等[6]和DIMA等[27]在番茄上研究結(jié)果一致。雖然噴施硒提高了果實(shí)硒含量,但在本試驗(yàn)條件下的兩種外源硒噴施濃度(5和10 mg×L-1)的平均果實(shí)硒含量分別僅有45.3和69.3 μg×kg-1FW,依據(jù)本研究充分供水處理的平均單果質(zhì)量150 g計(jì)算(表2),S5和S10平均每個(gè)番茄果實(shí)的硒含量分別為6.8和10.6 μg,遠(yuǎn)低于成年人健康飲食每日攝硒量[28],而且楊會(huì)芳等[29]報(bào)道葉面噴施適宜濃度的硒可使番茄果實(shí)有機(jī)硒轉(zhuǎn)化率達(dá)到90%以上,因此,每天食用適量富硒番茄不僅不會(huì)對(duì)飲食健康造成危害,還能合理補(bǔ)充人體所需微量元素硒。
氣象環(huán)境因素對(duì)溫室番茄生長(zhǎng)發(fā)育有重要影響,有研究表明,番茄生長(zhǎng)發(fā)育的適宜溫度為20—30℃,上限是33—35℃,當(dāng)溫度超度35℃時(shí),植株的生長(zhǎng)發(fā)育會(huì)受到嚴(yán)重影響[30-31]。本研究供試番茄進(jìn)入開花坐果期后溫度均處于適宜的范圍內(nèi)(表1)。另外,本試驗(yàn)溫室內(nèi)的空氣飽和差(VPD)隨著番茄生育進(jìn)程的推進(jìn)有逐漸增大的趨勢(shì),在結(jié)果期和采摘期達(dá)到最大(表1),有研究表明,VPD的增大有利于番茄產(chǎn)量的形成[32],說明本試驗(yàn)溫室內(nèi)氣象環(huán)境參數(shù)與番茄生長(zhǎng)發(fā)育的需求具有較好的協(xié)調(diào)一致性。
除氣象因素外,土壤水分也是影響設(shè)施作物生長(zhǎng)發(fā)育的重要環(huán)境因素,而且灌溉是設(shè)施作物補(bǔ)充土壤水分的唯一方式,過度水分虧缺和過量灌溉均會(huì)抑制設(shè)施作物產(chǎn)量的形成[10-12],施加硒可促進(jìn)作物生長(zhǎng)發(fā)育[18,33]。本研究發(fā)現(xiàn),不同土壤水分供應(yīng)顯著影響了番茄產(chǎn)量,在充分供水條件下,適度噴施硒(5 mg×L-1)對(duì)番茄植株生長(zhǎng)發(fā)育、坐果數(shù)和單果質(zhì)量均沒有顯著影響,因而對(duì)產(chǎn)量也沒有產(chǎn)生顯著性影響,這與PEZZAROSSA等[22]和楊會(huì)芳等[29]對(duì)番茄施硒的研究結(jié)果一致,但過量噴施外源硒有減產(chǎn)的趨勢(shì)(表2)。也有研究表明噴施硒可以顯著提高番茄產(chǎn)量,如李樂[33]研究發(fā)現(xiàn),在基質(zhì)栽培條件下葉面噴施5.0 μmol·L-1的硒酸鈉(Na2SeO4)可以促進(jìn)植株生長(zhǎng)和提高產(chǎn)量;RADY等[18]研究表明,葉面噴施40 mmol·L-1的Na2SeO4可提高盆栽番茄植株的光合效能和經(jīng)濟(jì)產(chǎn)量,這些研究與本試驗(yàn)以亞硒酸鈉(Na2SeO3)作為硒源葉面噴施番茄的研究結(jié)果不一致,這可能是因?yàn)榉褜?duì)不同外源硒類型的硒元素吸收利用和響應(yīng)不同所致[34-35],抑或因不同地區(qū)土壤硒的盈余狀況與不同品種對(duì)硒的富集能力強(qiáng)弱差異性引起[26,36]。因此,今后研究需針對(duì)不同缺硒土壤或硒源種類,明晰不同外源硒噴施濃度對(duì)番茄產(chǎn)量形成過程的調(diào)控機(jī)制。
以往研究表明,灌水不足會(huì)引起土壤產(chǎn)生干旱脅迫,發(fā)生諸如葉片氣孔關(guān)閉、葉片受損、質(zhì)膜損壞和光合作用下降等生理反應(yīng)[37-38],抑制葉片光合同化產(chǎn)物形成及向果實(shí)的運(yùn)轉(zhuǎn)和積累,造成落花落果,單果質(zhì)量降低,最終導(dǎo)致產(chǎn)量降低[10-11,15]。本研究發(fā)現(xiàn),干旱脅迫顯著降低了坐果數(shù)和單果重,最終造成產(chǎn)量大幅降低了39.5%(表2),這也與劉浩等[23]和LAHOZ等[16]研究結(jié)論一致。很多研究表明[18,20],葉面噴施硒具有清除活性氧自由基,提高植株抗氧化防御能力,因而緩解了干旱脅迫對(duì)植株生長(zhǎng)負(fù)面影響。本研究發(fā)現(xiàn),干旱脅迫條件下,葉面噴施硒較未噴施硒明顯提高了株高(圖4),一定程度上緩解了番茄植株生長(zhǎng)受干旱脅迫的危害,雖然噴施硒可緩解因土壤干旱脅迫而造成落花落果,增加了坐果數(shù)(表2),但由于干旱脅迫下葉面噴施硒較未噴施硒處理的單果質(zhì)量明顯下降,因而干旱脅迫下葉面噴施硒并沒有使產(chǎn)量得到明顯提升(表2)。
土壤水分狀況調(diào)節(jié)著土壤養(yǎng)分的轉(zhuǎn)化和植物根系對(duì)養(yǎng)分的吸收,因此土壤水分與果實(shí)品質(zhì)有直接關(guān)系[11]。本研究結(jié)果顯示,干旱脅迫顯著提高了番茄果實(shí)可溶性糖、有機(jī)酸和維生素C含量(圖5-A和圖6-A)。在干旱脅迫條件下,韌皮部汁液向果實(shí)的運(yùn)輸受阻,汁液中的溶質(zhì)濃度增加,使通過木質(zhì)部向果實(shí)輸送的水量減小[15,39],降低了果實(shí)的含水量[12],而果實(shí)中糖、酸及其他物質(zhì)幾乎不受影響[15,40],最終使果實(shí)中植株?duì)I養(yǎng)素濃度增大,故而干旱脅迫顯著提高了果實(shí)可溶性糖、有機(jī)酸和維生素C含量。另外,干旱脅迫促進(jìn)了未成熟果實(shí)中淀粉的積累[15],并促進(jìn)了成熟果實(shí)中淀粉向己糖的轉(zhuǎn)運(yùn),從而增加了果實(shí)中的糖含量。同時(shí),筆者之前的研究發(fā)現(xiàn),干旱脅迫降低了植株葉面積指數(shù),果實(shí)受光照的時(shí)間和強(qiáng)度增加,有利于糖和維生素C等的積累[12]。本研究顯示,葉面噴施硒顯著提高了果實(shí)可溶性糖含量(圖5-A)。一般而言,果實(shí)成熟期的生長(zhǎng)主要取決于光合能力和光合同化產(chǎn)物在不同植物組織間的分布[41],葉面噴施硒通過提升抗氧化能力以緩解干旱脅迫[18,20],從而促進(jìn)了光合產(chǎn)物以蔗糖形式轉(zhuǎn)移到生殖器官果實(shí)中,有利于果實(shí)可溶性糖含量的積累。綜上,干旱脅迫與葉面噴施硒對(duì)可溶性糖的積累可起到協(xié)同提升作用。本研究同時(shí)發(fā)現(xiàn),葉面噴施外源硒并沒有提高維生素C含量,這可能是由于本試驗(yàn)在盆栽條件下進(jìn)行,與傳統(tǒng)小區(qū)種植模式相比,番茄植株間距離較大,葉片對(duì)果實(shí)的遮擋相對(duì)較弱,果實(shí)接受的光照時(shí)間和強(qiáng)度增加,光照對(duì)果實(shí)維生素C的合成影響掩蓋了外源硒的調(diào)控作用,這還有待于進(jìn)一步試驗(yàn)驗(yàn)證。
番茄果實(shí)的風(fēng)味品質(zhì)主要取決于果實(shí)中糖和酸的含量,可以用糖酸比進(jìn)行評(píng)價(jià)[11]。本研究發(fā)現(xiàn),土壤水分狀況與葉面噴施硒耦合顯著影響了果實(shí)糖酸比,這是因?yàn)椴徽摮浞止┧€是干旱脅迫,葉面噴施硒均顯著提高了番茄果實(shí)的可溶性糖含量,但不同土壤水分供給狀況下葉面噴施硒對(duì)有機(jī)酸的影響不一致(圖5-A)。在充分供水條件下,葉面噴施低濃度硒(5 mg·L-1)未增加有機(jī)酸含量,而干旱脅迫大幅提升了有機(jī)酸含量,因而使得充分供水條件下噴施低濃度硒獲得最佳的糖酸比(圖5-B)。
可溶性固形物作為番茄果實(shí)的一項(xiàng)重要品質(zhì)指標(biāo),反映了果實(shí)溶液中溶解固體的比例,可作為番茄果實(shí)綜合品質(zhì)的評(píng)價(jià)指標(biāo)[11-12]。一般而言,可溶性固形物包含了果肉中65%的糖、13%的酸和12%的其他次要成分(包括酚、氨基酸、可溶性果膠、維生素C和礦物質(zhì)等)[42-43],因而可溶性糖和有機(jī)酸是影響可溶性固形物的主要成分。本研究發(fā)現(xiàn),可溶性糖和有機(jī)酸總量占可溶性固形物含量的60%,且干旱脅迫和葉面噴施外源硒均明顯提高了可溶性糖和有機(jī)酸含量(圖5-A),因而干旱脅迫和葉面噴施硒協(xié)同提升了可溶性固形物含量,但硒濃度由5 mg×L-1增加到10 mg×L-1并未顯著提高可溶性固形物含量,因而干旱脅迫條件下噴施低濃度硒(5 mg×L-1)獲得最佳的可溶性固形物含量(圖6-B)。
綜上所述,葉面噴施5 mg×L-1的亞硒酸鈉在不降低番茄產(chǎn)量、提高果實(shí)硒含量的基礎(chǔ)上,改善了果實(shí)品質(zhì)。然而,亞硒酸鈉的用量卻很小,根據(jù)本研究在開花坐果期分2次葉面噴施5 mg×L-1的亞硒酸鈉核算,設(shè)施番茄亞硒酸鈉的噴施總用量?jī)H90 g×hm-2(單價(jià)6.5元/g),投入約600元/hm2,卻能顯著改善了番茄果實(shí)品質(zhì),且食用后可補(bǔ)充人體所需微量元素硒,進(jìn)而提升商品的經(jīng)濟(jì)價(jià)值,具有一定的推廣應(yīng)用前景。本研究從番茄產(chǎn)量和品質(zhì)角度,闡明了葉面噴施硒與土壤水分狀況耦合作用效果,但限于一季試驗(yàn),其結(jié)果的穩(wěn)定性還需進(jìn)一步研究驗(yàn)證。
葉面噴施硒對(duì)于提高溫室番茄果實(shí)硒含量和改善果實(shí)品質(zhì)均具有重要作用。開花坐果期葉面噴施5 mg·L-1的亞硒酸鈉,可在一定程度上緩解植株受干旱脅迫所造成的傷害,提高了坐果數(shù),但對(duì)番茄產(chǎn)量未產(chǎn)生明顯影響。葉面噴施硒與土壤水分狀況對(duì)果實(shí)品質(zhì)的耦合作用效果明顯,在充分供水條件下,開花坐果期葉面噴施5 mg·L-1的亞硒酸鈉,可使果實(shí)糖酸比顯著提高30.9%,大幅提升了果實(shí)的風(fēng)味品質(zhì),可實(shí)現(xiàn)穩(wěn)產(chǎn)提質(zhì)的協(xié)同提升;干旱脅迫耦合葉面噴施5 mg·L-1的亞硒酸鈉促進(jìn)了果實(shí)可溶性糖和可溶性固形物的累積,使果實(shí)營(yíng)養(yǎng)品質(zhì)得到大幅提升,但付出了產(chǎn)量驟減的代價(jià)。
[1] 湯超華, 趙青余, 張凱, 李爽, 秦玉昌, 張軍民. 富硒農(nóng)產(chǎn)品研究開發(fā)助力我國(guó)營(yíng)養(yǎng)型農(nóng)業(yè)發(fā)展. 中國(guó)農(nóng)業(yè)科學(xué), 2019, 52(18): 3122-3133. doi:10.3864/j.issn.0578-1752.2019.18.005.
TANG C H, ZHAO Q Y, ZHANG K, LI S, QIN Y C, ZHANG J M. Promoting the development of nutritionally-guided agriculture in research and development of selenium-enriched agri-products in China. Scientia Agricultura Sinica, 2019, 52(18): 3122-3133. doi:10. 3864/j.issn.0578-1752.2019.18.005. (in Chinese)
[2] RAYMAN M P. Selenium in cancer prevention: a review of the evidence and mechanism of action. The Proceedings of the Nutrition Society, 2005, 64(4): 527-542. doi:10.1079/pns2005467.
[3] SHANKER K, MISHRA S, SRIVASTAVA S, SRIVASTAVA R, DAAS S, PRAKASH S, SRIVASTAVA M M. Effect of selenite and selenate on plant uptake and translocation of mercury by tomato (). Plant and Soil, 1996, 183(2): 233-238. doi:10.1007/BF00011438.
[4] JARZY?SKA G, FALANDYSZ J. Selenium and 17 other largely essential and toxic metals in muscle and organ meats of Red Deer ()—Consequences to human health. Environment International, 2011, 37(5): 882-888. doi:10.1016/j.envint.2011.02.017.
[5] 穆婷婷, 杜慧玲, 張福耀, 景小蘭, 郭琦, 李志華, 劉璋, 田崗. 外源硒對(duì)谷子生理特性、硒含量及其產(chǎn)量和品質(zhì)的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2017, 50(1): 51-63. doi:10.3864/j.issn.0578-1752.2017. 01.005.
MU T T, DU H L, ZHANG F Y, JING X L, GUO Q, LI Z H, LIU Z, TIAN G. Effects of exogenous selenium on the physiological activity, grain selenium content, yield and quality of foxtail millet. Scientia Agricultura Sinica, 2017, 50(1): 51-63. doi:10.3864/j.issn.0578-1752. 2017.01.005. (in Chinese)
[6] ZHU Z, CHEN Y L, ZHANG X J, LI M. Effect of foliar treatment of sodium selenate on postharvest decay and quality of tomato fruits. Scientia Horticulturae, 2016, 198: 304-310. doi:10.1016/j.scienta. 2015.12.002.
[7] NARVáEZ-ORTIZ W, BECVORT-AZCURRA A, FUENTES-LARA L, BENAVIDES-MENDOZA A, VALENZUELA-GARCíA J, GONZáLEZ-FUENTES J. Mineral composition and antioxidant status of tomato with application of selenium. Agronomy, 2018, 8(9): 185. doi:10.3390/agronomy8090185.
[8] MOHTASHAMI R, MOVAHHEDI DEHNAVI M, BALOUCHI H, FARAJI H. Improving yield, oil content and water productivity of dryland canola by supplementary irrigation and selenium spraying. Agricultural Water Management, 2020, 232: 106046. doi:10.1016/j. agwat.2020.106046.
[9] LI H F, MCGRATH S P, ZHAO F J. Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. The New Phytologist, 2008, 178(1): 92-102. doi:10.1111/j.1469-8137.2007. 02343.x.
[10] LIU H, DUAN A W, LI F S, SUN J S, WANG Y C, SUN C T. Drip irrigation scheduling for tomato grown in solar greenhouse based on pan evaporation in North China plain. Journal of Integrative Agriculture, 2013, 12(3): 520-531. doi:10.1016/S2095-3119(13) 60253-1.
[11] LIU H, LI H H, NING H F, ZHANG X X, LI S, PANG J, WANG G S, SUN J S. Optimizing irrigation frequency and amount to balance yield, fruit quality and water use efficiency of greenhouse tomato. Agricultural Water Management, 2019, 226: 105787. doi:10.1016/j. agwat.2019.105787.
[12] LI H H, LIU H, GONG X W, LI S, PANG J, CHEN Z F, SUN J S. Optimizing irrigation and nitrogen management strategy to trade off yield, crop water productivity, nitrogen use efficiency and fruit quality of greenhouse grown tomato. Agricultural Water Management, 2021, 245: 106570. doi:10.1016/j.agwat.2020.106570.
[13] WANG F, KANG S Z, DU T S, LI F S, QIU R J. Determination of comprehensive quality index for tomato and its response to different irrigation treatments. Agricultural Water Management, 2011, 98(8): 1228-1238. doi:10.1016/j.agwat.2011.03.004.
[14] RIPOLL J, URBAN L, BRUNEL B, BERTIN N. Water deficit effects on tomato quality depend on fruit developmental stage and genotype. Journal of Plant Physiology, 2016, 190: 26-35. doi:10.1016/j.jplph. 2015.10.006.
[15] MITCHELL J P, SHENNAN C, GRATTAN S R, MAY D M. Tomato fruit yields and quality under water deficit and salinity. Journal of the American Society for Horticultural Science, 1991, 116(2): 215-221. doi:10.21273/jashs.116.2.215.
[16] LAHOZ I, PéREZ-DE-CASTRO A, VALCáRCEL M, MACUA J I, BELTRáN J, ROSELLó S, CEBOLLA-CORNEJO J. Effect of water deficit on the agronomical performance and quality of processing tomato. Scientia Horticulturae, 2016, 200: 55-65. doi:10.1016/j. scienta.2015.12.051.
[17] ANDREJIOVá A, HEGED?SOVá A, MEZEYOVá I. Effect of genotype and selenium biofortification on content of important bioactive substances in tomato (mill.) fruits. Agriculture & Food, 2016, 4(1): 8-18.
[18] RADY M M, BELAL H E E, GADALLAH F M, SEMIDA W M. Selenium application in two methods promotes drought tolerance inplant by inducing the antioxidant defense system. Scientia Horticulturae, 2020, 266: 109290. doi:10.1016/j. scienta.2020.109290.
[19] CHU J Z, YAO X Q, ZHANG Z N. Responses of wheat seedlings to exogenous selenium supply under cold stress. Biological Trace Element Research, 2010, 136(3): 355-363. doi:10.1007/s12011-009- 8542-3.
[20] DJANAGUIRAMAN M, PRASAD P V V, SEPPANEN M. Selenium protectsleaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiology and Biochemistry, 2010, 48(12): 999-1007. doi:10.1016/j. plaphy.2010.09.009.
[21] HASANUZZAMAN M, FUJITA M. Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biological Trace Element Research, 2011, 143(3): 1758-1776. doi:10.1007/s12011-011-8998-9.
[22] PEZZAROSSA B, ROSELLINI I, BORGHESI E, TONUTTI P, MALORGIO F. Effects of Se-enrichment on yield, fruit composition and ripening of tomato () plants grown in hydroponics. Scientia Horticulturae, 2014, 165: 106-110. doi:10.1016/ j.scienta.2013.10.029.
[23] 劉浩, 段愛旺, 孫景生, 梁媛媛. 溫室滴灌條件下土壤水分虧缺對(duì)番茄產(chǎn)量及其形成過程的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2009, 20(11): 2699-2704.
LIU H, DUAN A W, SUN J S, LIANG Y Y. Effects of soil moisture regime on greenhouse tomato yield and its formation under drip irrigation. Chinese Journal of Applied Ecology, 2009, 20(11): 2699-2704. (in Chinese)
[24] 中華人民共和國(guó)農(nóng)業(yè)部. 土壤質(zhì)量重金屬測(cè)定王水回流消解原子吸收法: NY/T 1613—2008. 北京: 中國(guó)標(biāo)準(zhǔn)出版社, 2008.
Ministry of Agriculture of the People’s Republic of China. Soil quality-Analysis of soil heavy metals-atomic absorption spectrometry with aqua regia digestion: NY/T 1613—2008. Beijing:Standards Press of China, 2008. (in Chinese)
[25] 中華人民共和國(guó)國(guó)家衛(wèi)生和計(jì)劃生育委員會(huì). 食品中多元素的測(cè)定: GB 5009. 268—2016. 北京: 中國(guó)標(biāo)準(zhǔn)出版社, 2016.
National Health and Family Planning Commission of the People's Republic of China. Determination of multiple elements in food: GB 5009. 268—2016. Beijing: Standards Press of China, 2016. (in Chinese)
[26] 蔡立梅, 王碩, 溫漢輝, 羅杰, 蔣慧豪, 何明皇, 穆桂珍, 王秋爽, 王涵植. 土壤硒富集空間分布特征及影響因素研究. 農(nóng)業(yè)工程學(xué)報(bào), 2019, 35(10): 83-90. doi:10.11975/j.issn.1002-6819.2019.10.011.
CAI L M, WANG S, WEN H H, LUO J, JIANG H H, HE M H, MU G Z, WANG Q S, WANG H Z. Enrichment spatial distribution characteristics of soil selenium and its influencing factors. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(10): 83-90. doi:10.11975/j.issn.1002-6819.2019.10.011. (in Chinese)
[27] DIMA S O, NEAM?U C, DESLIU-AVRAM M, GHIUREA M, CAPRA L, RADU E, STOICA R, FARAON V A, ZAMFIROPOL- CRISTEA V, CONSTANTINESCU-ARUXANDEI D, OANCEA F. Plant biostimulant effects of baker's yeast vinasse and selenium on tomatoes through foliar fertilization. Agronomy, 2020, 10(1): 133. doi:10.3390/agronomy10010133.
[28] 中華人民共和國(guó)國(guó)家衛(wèi)生和計(jì)劃生育委員會(huì). 中國(guó)居民膳食營(yíng)養(yǎng)素參考攝入量第3部分:微量元素(WS/T 578.3—2017). 北京: 中國(guó)標(biāo)準(zhǔn)出版社, 2017.
National Health and Family Planning Commission of the People's Republic of China. Reference Intake of Dietary Nutrients for Chinese Residents, part 3, trace elements (WS/T 578.3—2017). Beijing: Standards Press of China, 2017. (in Chinese)
[29] 楊會(huì)芳, 梁新安, 常介田, 秦娜. 葉面噴施硒肥對(duì)不同蔬菜硒富集及產(chǎn)量的影響. 北方園藝, 2014(11): 158-161.
YANG H F, LIANG X A, CHANG J T, QIN N. Effects of foliar spraying of selenium fertilizer on selenium enrichment of different vegetables and yield. Northern Horticulture, 2014(11): 158-161. (in Chinese)
[30] 張潔, 李天來, 徐晶. 晝間亞高溫對(duì)日光溫室番茄生長(zhǎng)發(fā)育、產(chǎn)量及品質(zhì)的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2005, 16(6): 1051-1055.
ZHANG J, LI T L, XU J. Effects of daytime sub-high temperature on greenhouse tomato growth, development, yield and quality. Chinese Journal of Applied Ecology, 2005, 16(6): 1051-1055. (in Chinese)
[31] 趙玉萍, 鄒志榮, 白鵬威, 任雷, 李鵬飛. 不同溫度對(duì)溫室番茄生長(zhǎng)發(fā)育及產(chǎn)量的影響. 西北農(nóng)業(yè)學(xué)報(bào), 2010, 19(2): 133-137. doi:10.3969/j.issn.1004-1389.2010.02.027.
ZHAO Y P, ZOU Z R, BAI P W, REN L, LI P F. Effect of different temperature on the growth and yield of tomato in greenhouse. Acta Agriculturae Boreali-Occidentalis Sinica, 2010, 19(2): 133-137. doi:10.3969/j.issn.1004-1389.2010.02.027. (in Chinese)
[32] ROSALES M A, CERVILLA L M, SáNCHEZ-RODRíGUEZ E, RUBIO-WILHELMI M D M, BLASCO B, RíOS J J, SORIANO T, CASTILLA N, ROMERO L, RUIZ J M. The effect of environmental conditions on nutritional quality of cherry tomato fruits: evaluation of two experimental Mediterranean greenhouses. Journal of the Science of Food and Agriculture, 2011, 91(1): 152-162. doi:10.1002/jsfa.4166.
[33] 李樂. 外源硒對(duì)番茄生物效應(yīng)和硒累積的影響[D]. 銀川: 寧夏大學(xué), 2020.
LI L. Effects of exogenous selenium on tomato biological effects and selenium accumulation[D]. Yinchuan: Ningxia University, 2020. (in Chinese)
[34] 余瓊, 張翔, 司賢宗, 索炎炎, 李亮, 毛家偉. 硒在農(nóng)作物方面的研究進(jìn)展. 山西農(nóng)業(yè)科學(xué), 2018, 46(12): 2122-2126. doi:10.3969/j. issn.1002-2481.2018.12.40.
YU Q, ZHANG X, SI X Z, SUO Y Y, LI L, MAO J W. Research progress of selenium in crops. Journal of Shanxi Agricultural Sciences, 2018, 46(12): 2122-2126. doi:10.3969/j.issn.1002-2481.2018.12.40. (in Chinese)
[35] PUCCINELLI M, MALORGIO F, PEZZAROSSA B. Selenium enrichment of horticultural crops. Molecules (Basel, Switzerland), 2017, 22(6): 933. doi:10.3390/molecules22060933.
[36] 李瑜. 安康富硒土壤中不同農(nóng)作物富硒能力比較研究. 陜西農(nóng)業(yè)科學(xué), 2015, 61(11): 13-14, 46. doi:10.3969/j.issn.0488-5368.2015.11. 003.
LI Y. Comparative of selenium enrichment ability on different crops in selenium-rich soil in Ankang. Shaanxi Journal of Agricultural Sciences, 2015, 61(11): 13-14, 46. doi:10.3969/j.issn.0488-5368.2015. 11.003. (in Chinese)
[37] TALBI S, ROMERO-PUERTAS M C, HERNáNDEZ A, TERRóN L, FERCHICHI A, SANDALIO L M. Drought tolerance in a Saharian plant Oudneya: role of antioxidant defences. Environmental and Experimental Botany, 2015, 111: 114-126. doi:10.1016/j.envexpbot. 2014.11.004.
[38] TOPCU S, KIRDA C, DASGAN Y, KAMAN H, CETIN M, YAZICI A, BACON M A. Yield response and N-fertiliser recovery of tomato grown under deficit irrigation. European Journal of Agronomy, 2007, 26(1): 64-70. doi:10.1016/j.eja.2006.08.004.
[39] GUICHARD S, BERTIN N, LEONARDI C, GARY C. Tomato fruit quality in relation to water and carbon fluxes. Agronomie, 2001, 21(4): 385-392. doi:10.1051/agro: 2001131.
[40] CHEN J L, KANG S Z, DU T S, QIU R J, GUO P, CHEN R Q. Quantitative response of greenhouse tomato yield and quality to water deficit at different growth stages. Agricultural Water Management, 2013, 129: 152-162. doi:10.1016/j.agwat.2013.07.011.
[41] RODRIGUEZ-ORTEGA W M, MARTINEZ V, RIVERO R M, CAMARA-ZAPATA J M, MESTRE T, GARCIA-SANCHEZ F. Use of a smart irrigation system to study the effects of irrigation management on the agronomic and physiological responses of tomato plants grown under different temperatures regimes. Agricultural Water Management, 2017, 183: 158-168. doi:10.1016/j.agwat.2016.07.014.
[42] KADER A A. Flavor quality of fruits and vegetables. Journal of the Science of Food and Agriculture, 2008, 88(11): 1863-1868. doi:10. 1002/jsfa.3293.
[43] CHEN J L, KANG S Z, DU T S, GUO P, QIU R J, CHEN R Q, GU F. Modeling relations of tomato yield and fruit quality with water deficit at different growth stages under greenhouse condition. Agricultural Water Management, 2014, 146: 131-148. doi:10.1016/j.agwat.2014.07. 026.
Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato
LIU Hao1, PANG Jie1, LI HuanHuan1, QIANG XiaoMan1, ZHANG YingYing1, SONG JiaWen1, 2
1Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Xinxiang 453002, Henan;2College of Water Conservancy and Architecture Engineering, Tarim University, Alaer 843300, Xinjiang
【Objective】Both exogenous selenium and soil moisture can affect crop growth and quality properties. It is very important to clarify the influences of exogenous selenium coupled with soil moisture on the tomato yield and quality, which maybe provide a theoretical basis on the water use for production of selenium-enriched tomato.【Method】Three foliar-spraying selenium concentrations, such as 0 (S0), 5 (S5) and 10 mg·L-1(S10), were considered with sodium selenite (Na2SeO3) as the selenium source by using pot experiment in this paper. Each selenium concentration was associated with two irrigation levels, which were scheduled to irrigate the crop as soon as the soil water moisture decreased to 50% (W1) and 75% (W2) of the field capacity, respectively. The effects of the different treatments on the selenium content, plant growth, yield and quality of tomato were studied.【Result】The different soil moistures had no significant impact on the selenium contents in soil, leaf and fruit (>0.05). Although the different selenium concentrations had no marked influence on the soil selenium content for each irrigation level, the increasing selenium concentration led to an significant (<0.01) increase in selenium content of leaves and fruits. Compared with S0over the two irrigation levels, selenium-treated fruits increased the average selenium content with 2-4 fold. Drought stress significantly reduced plant height and stem diameter. The foliar-spraying seleniummoderately alleviated the inhibition effect on plant height when crop suffered drought stress, whlie no significant effect was found on stem diameter. The drought stress gave a significant reduction in yield by 39.5% compared with the sufficient soil water applied. The foliar-spraying selenium had an increase in fruit number, but tended to decrease fruit weight under the drought stress conditions, thus no noticeable difference in yield was investigated between different foliar-spraying selenium. Compared with the sufficient soil water applied, the drought stress gave a significant increase in soluble sugar (SSC), organic acid (OA), vitamin C, and total soluble solid content (TSS) by 28.7%, 24.3%, 18.7%, and 24.0%, respectively. The foliar-spraying selenium improved SSC, whereas there was no noticeable difference in SSC between different selenium concentrations when the soil moisture was the same. Foliar-spraying selenium significantly increased OA except for S5W2treatment compared with the control, thus S5W2had the highest sugar-acid ratio (SAR), while the lowest SAR was observed in S0W2treatment. There was no marked effect of foliar-spraying selenium on TSS under sufficient soil water applied conditions, however, the TSS was increased firstly and then decreased with selenium concentration increasing under drought stress, indicating that a further increase in selenium concentration from 5 mg·L-1did not give a noticeable increase in fruit quality. 【Conclusion】The coupling effect of foliar-spraying selenium and soil moisture on tomato quality was obvious. The sprayingsodium selenite at 5 mg·L-1significantly increased SSC and TSS and thereby improved nutritional quality of fruit when the plant suffered drought stress, but promoted flavor quality of fruits with no yield decreasing and thereby achieved stable yield and high quality when the soil moisture applied was sufficient.
exogenous selenium; drought stress; tomato; yield; quality
10.3864/j.issn.0578-1752.2022.22.009
2021-09-22;
2022-10-29
國(guó)家自然科學(xué)基金(51779259)
劉浩,Tel:0373-3393384;E-mail:liuhao03@caas.cn
(責(zé)任編輯 李云霞)