王 丹, Rashid Harunur
長鏈烯酮在西北大西洋重建全新世氣候變化的研究進(jìn)展
王 丹, Rashid Harunur
(上海海洋大學(xué)海洋科學(xué)學(xué)院, 上海 201306)
長鏈烯酮; 海洋表層溫度; 冰融水; 烯酮%C37:4; 西北大西洋
全新世西北大西洋古氣候變化的控制因素眾多, 其中3個(gè)最主要的變化機(jī)制為: 1) 北半球65°N夏季太陽輻射的減弱是導(dǎo)致溫暖的早全新世向較冷的晚全新世氣候轉(zhuǎn)變的主要機(jī)制之一[15-17]; 2) 來自極地或陸地殘留冰蓋的淡水輸入通過改變海洋表層溫度和鹽度, 直接影響深層水的形成[18-19]。特別是有研究表明, 勞倫太德冰蓋的Agassiz湖和Ojibway湖崩塌排泄的淡水引發(fā)了10.2 ka、8.2 ka等冷事件, 并削弱了深層水的形成[20-22]; 3) 末次冰期階段, 北極鋒從原本的南部位置撤退, 使得表層洋流(冷而淡的LC和暖而咸的NAC)重組和增強(qiáng)(圖1)。因此, 研究認(rèn)為SPG強(qiáng)弱狀態(tài)的轉(zhuǎn)換取決于剩余冰蓋排放的淡水量[18-19, 23]。表層洋流的重組顯著影響了加拿大東部邊緣以及更為廣闊的北大西洋北部的SST[24]。而SST的重建有利于評(píng)估全新世以來的古氣候變化。
在世界各個(gè)大洋中, 長鏈烯酮廣泛用于重建古氣候?qū)W變化。這在北大西洋海域已有相當(dāng)多且早的應(yīng)用, 不僅是因?yàn)樵摵S虮旧淼难芯恳饬x, 也是因?yàn)檫@里具有不同的環(huán)境特征, 有利于探討長鏈烯酮的應(yīng)用差異。圖1, 表1中列出了北大西洋海域(以西側(cè)為主)烯酮的研究情況, 但圖表中并未列出所有的數(shù)據(jù), 僅列出位于30°N與80°N之間的重要數(shù)據(jù)點(diǎn), 在文中有所使用。
圖1 北大西洋區(qū)域地圖
注: LC-拉布拉多洋流; EIC-東冰島洋流; EGC-東格陵蘭洋流; IC-伊爾明厄洋流; SPG-副極地環(huán)流; WGC-東格陵蘭洋流; NAC-北大西洋流; Nfld-紐芬蘭島; 圖中圓形的顏色對(duì)應(yīng)年均SST
表1 圖1中各數(shù)據(jù)來源
圖2 烯酮不飽和度、和分別對(duì)年均和春-夏SST的回歸模型[56]
研究表明, 海洋環(huán)境中的C37:4主要出現(xiàn)在溫度較低的海水中, Sicre等[65]和Bendle等[31]在北大西洋寒冷的極地海水(Arctic waters)中曾檢測(cè)到含量較高的C37:4。Sikes等[69]也曾對(duì)大西洋、太平洋和南大洋的水體樣品進(jìn)行檢測(cè), 發(fā)現(xiàn)C37:4大多存在于鹽度、溫度都較低的水體中。Rosell-Melé等[59]最早提出%C37:4與鹽度之間的函數(shù)關(guān)系; Sicre等[65]指出北大西洋%C37:4與鹽度呈負(fù)相關(guān)(2= 0.78)。Bendle等[31]曾對(duì)%C37:4能否作為表層海水鹽度指標(biāo)進(jìn)行評(píng)估, 認(rèn)為其更適用于指示北大西洋淡水輸入。Filippove等[56]曾推測(cè), 融水輸入導(dǎo)致鹽度改變, 這可能會(huì)使藻類離開原本的耐鹽區(qū)(salt tolerance zone), 導(dǎo)致了烯酮生物合成的改變。
在格陵蘭西北岸的迪斯科灣, %C37:4的增加(最高可達(dá)28%)指示融水供應(yīng)的增強(qiáng); 其減少時(shí), 融水通量也有相應(yīng)的減少[32]。該研究區(qū)域海水鹽度較低, 主要受格陵蘭冰蓋融水的影響。相似的, %C37:4在北極的北歐海和巴倫支海區(qū)域亦可指示寒冷北極水的輸入[60]。此外, 在寒冷的拉布拉多海西北部, %C37:4還可用于指示海冰邊緣環(huán)境, 當(dāng)海冰覆蓋減少時(shí), C37:4的占比也有所降低, 與底棲有孔蟲豐度指示的海冰信號(hào)相符[33]。在鄰近的拉布拉多陸架南部, Lochte等[4]再次證明了高%C37:4(最高可達(dá)20%)指示海冰覆蓋增多, 也可能是融水輸入增強(qiáng), %C37:4的降低反映海水溫度的回升和海冰覆蓋的減少。盡管此前仍有研究者對(duì)此提出異議[69], 但%C37:4指標(biāo)仍有較為廣泛的應(yīng)用, 尤其是在受海冰影響且鹽度較低的海域[31]。
[1] Myers P G, Donnelly C, Ribergaard M H. Structure and variability of the West Greenland Current in Summer derived from 6 repeat standard sections[J]. Progress in Oceanography, 2009, 80: 93-112.
[2] Rashid H, Boyle E A. Mixed-layer deepening during Heinrich Events: A multi-planktonic foraminiferal δ18O approach[J]. Science, 2007, 318(5849): 439-441.
[3] Salgueiro E, Voelker A H L, Martin P A, et al. δ18O and Mg/Ca Thermometry in planktonic foraminifera: A multiproxy approach toward tracing coastal upwelling dynamics[J]. Paleoceanography and Paleoclimatology, 2020, 35: e2019PA003726.
[4] Lochte A A, Schneider R, Kienast M, et al. Surface and subsurface Labrador Shelf water mass conditions during the last 6000 years[J]. Climate of the Past, 2020, 16: 1127-1143.
[5] 葉孝賢, RASHID Harunur. 北大西洋 45°N 區(qū)氧同位素3期以來上層水體性質(zhì)的變化[J]. 海洋地質(zhì)與第四紀(jì)地質(zhì), 2021, 41(3): 114-123.
Ye Xiaoxian, RashidHarunur. Changes of the upper water column at the 45°N North Atlantic since marine isotope stage 3[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 114-123.
[6] Krawczyk D W, Witjowski A, Lioyd J, et al. Late-Holocene diatom derived seasonal variability in hydrological conditions off Disko Bay, West Green-land[J]. Quaternary Science Reviews, 2013, 67: 93-104.
[7] Mock T, Otillar R P, Strauss J, et al. Evolutionary genomics of the cold-adapted diatom[J]. Nature, 2017, 541: 536-540.
[8] Ouellet-Bernier M M, de Vernal A, Hillaire- Marcel C, et al. Paleoceanographic changes in the Disko Bugt area, West Greenland, during the Holocene[J]. The Holocene, 2014, 24(11): 1573-1583.
[9] Schouten S, Hopmans E C, Sinningghe Damste J S. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review[J]. Organic Geochemistry, 2013, 54: 19-61.
[10] Seki O, Bendle J A, Harada N, et al. Assessment and calibration of TEX86paleothermometry in the Sea of Okhotsk and sub-polar North Pacific region: Implications for paleoceanography[J]. Progress in Oceanography, 2014, 126: 254-266.
[11] Martrat B, Grimalt J O, Shackleton N J, et al. Four climate cycles of recurring deep and surface water destabilizations on the Iberian margin[J]. Science, 2004, 317: 502-507.
[12] Naffs B D A, Hefter J, Acton G, et al. Strengthening of North American dust sources during the late Pliocene (2.7 Ma)[J]. Earth and Planetary Science Letters, 2012, 317/318: 8-19.
[13] Rodrigues T, Alonso-García M, Hodell D A, et al. A 1-Ma record of sea surface temperature and extreme cooling events in the North Atlantic: A perspective from the Iberian Margin[J]. Quaternary Science Reviews, 2017, 172: 118-130.
[14] Li D W, Zhao M X, Tian J. Low-high latitude interaction forcing on the evolution of the 400 kyr cycle in East Asian winter monsoon records during the last 2.8 Myr[J]. Quaternary Science Reviews, 2017, 172: 72-82.
[15] Sachs J P. Cooling of northwest Atlantic slope waters during the Holocene[J]. Geophysical Research Letters, 2007, 34: L03609.
[16] Jiang H, Muscheler R, Bj?rck S, et al. Solar forcing of Holocene summer sea-surface temperatures in the northern North Atlantic[J]. Geology, 2015, 43(3): 203-206.
[17] Orme L C, Miettinen A, Seidenkrantz M S, et al. Mid to late-Holocene sea-surface temperature variability off north-eastern Newfoundland and its linkage to the North Atlantic Oscillation[J]. The Holocene, 2021, 31(1): 3-15.
[18] Thornalley D J R, Elderfield H, McCave N. Holocene oscillations in temperature and salinity of the surface subpolar North Atlantic[J]. Nature, 2009, 457: 711-714.
[19] Van Nieuwenhove N, Pearce C, Faurschou Knudsen M, et al. Meltwater and seasonality influence on Subpolar Gyre circulation during the Holocene[J]. Palaeogeography, Palaeoclimatology, Palaeoe-cology, 2018, 502: 104-108.
[20] Barber D C, Dyke A, Hillaire-Marcel C, et al. Forcing of the cold event of 8 200 years ago by catastrophic drainage of Laurentide lakes[J]. Nature, 1999, 400: 344-348.
[21] Lewis L, Ditchfield P, Pal J N, et al. Grain size distribution analysis of sediments containing Younger Toba tephra from Ghoghara, Middle Son valley, India[J]. Quaternary International, 2012, 258: 180-190.
[22] Rashid H, Piper D J W, Mansfield C, et al. Signature of the Gold Cove event (10.2 ka) in the Labrador Sea[J]. Quaternary International, 2014, 352: 212-221.
[23] Rashid H, MacKillop K, Sherwin J, et al. Slope instability on a shallow contourite-dominated continen-tal margin, southeastern Grand Banks, eastern Cana-da[J]. Marine Geology, 2017, 393: 203-215.
[24] Moffa‐Sánchez P, Moreno-Chamarro E, Reynolds D J, et al. Variability in the northern North Atlantic and Arctic Oceans across the last two millennia: A review[J]. Paleoceanography and Paleoclimatology, 2019, 34: 1399-1436.
[25] Moros M, Emeis K, Risebrobakken B, et al. Sea surface temperatures and ice rafting in the Holocene North Atlantic: Climate influences on northern Europe and Greenland[J]. Quaternary Science Reviews, 2004, 23: 2113-2126.
[26] Sicre M A, Weckstr?m K, Seidenkrantz M S, et al. Labrador current variability over the last 2000 years[J]. Earth and Planetary Science Letters, 2014, 400: 26-32.
[28] Keigwin L D, Sachs J P, Rosenthal Y. A 1600- year history of the Labrador Current off Nova Scotia[J]. Climate Dynamics, 2003, 21: 53-62.
[29] Rashid H, Marche B, Vermooten M, et al. Comment on “Asynchronous variation in the East Asian winter monsoon during the Holocene” by Xiaojian Zhang, Liya Jin, and Na Li[J]. Journal of Geophysical Research: Atmospheres, 2016, 121: 1611-1614.
[30] Halfar J, Adey W H, Kronz A, et al. Arctic sea- ice decline archived by multicentury annual-resolution record from crustose coralline algal proxy[J]. PNAS, 2013, 110(49): 19737-19741.
[31] Bendle J, Rosell-Melé A, Ziveri P. Variability of unusual distributions of alkenones in the surface waters of the Nordic seas[J]. Paleoceanography, 2005, 20: PA2001.
[32] Moros M, Lloyd J M, Perner K, et al. Surface and sub-surface multi-proxy reconstruction of middle to late Holocene palaeoceanographic changes in Disko Bugt, West Greenland[J]. Quaternary Science Reviews, 2016, 132: 146-160.
[33] Lochte A A, Repschlager J, Seidenkrantz M, et al. Holocene water mass changes in the Labrador Current[J]. The Holocene, 2019, 29(4): 676-690.
[34] 邢磊, 楊欣欣, 肖睿. 長鏈烯酮的組合特征及其對(duì)鹽度和母源種屬指示意義的研究進(jìn)展[J]. 中國海洋大學(xué)學(xué)報(bào)(自然科學(xué)版), 2019, 49(10): 79-87.
Xing Lei, Yang Xinxin, Xiao Rui. Progress of cpm-positions and indications of long-chain alkenones[J]. Periodical of Ocean University of China, 2019, 49(10): 79-87.
[35] He Y X, Zhao C, Wang Z, et al. Late Holocene coupled moisture and temperature changes on the northern Tibetan Plateau[J]. Quaternary Science Reviews, 2013, 80: 47-57.
[36] Liu W G, Liu Z H, Fu M Y, et al. Distribution of the C37tetra-unsaturated alkenone in Lake Qinghai, China: A potential lake salinity indicator[J]. Geochimica et Cos-mochimica Acta, 2008, 72(3): 988-997.
[37] Longo W M, Theroux S, Giblin A E, et al. Temperature calibration and phylogenetically distinct distributions for freshwater alkenones: Evidence from northern Alaskan lakes[J]. Geochimica et Cosmochimica Acta, 2016, 180: 177-196.
[38] Araie H, Nakamura H, Toney J L, et al. Novel alkenone-producing strains of genus Isochrysis (Haptophyta) isolated from Canadian saline lakes show temperature sensitivity of alkenones and alkenoates[J]. Organic Geochemistry, 2018, 121: 89-103.
[39] Volkman J K, Eglinton G, Corner E D S, et al. Long-chain alkenes and alkenones in the marine coccolithophorid[J]. Phtochemistry, 1980, 19: 2619-2622.
[40] Volkman J K, Barrett S M, Blackburn S I, et al. Alkenones in: Implication for studies of paleoclimate[J]. Geochimica et Cos-mochimica Acta, 1995, 59(3): 513-520.
[41] Marlowe I T, Green J C, Neal A C, et al. Long chain (-C37-C39) alkenones in the Prymnesiophycea. Distribution of alkenones and other lipids and their taxonomic significance[J]. British Phycological Journal, 1984, 19: 203-216.
[42] Brassell S C, Eglinton G, Marlowe I T, et al. Molecular stratigraphy: a new tool for climatic assessment[J]. Nature, 1986, 320: 129-133.
[43] Prahl F G, Wakeham S G. Calibration of unsaturation patterns in long-chain ketone compositons for palaeotemperature assessment[J]. Nature, 1987, 330: 367-369.
[44] Prahl F G, Muehlhausen L A, Zahnle D L. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions[J]. Geochimica et Cosmochimica Acta, 1988, 52(9): 2303-2310.
[45] Lee K E, Lee S, Park Y, et al. Alkenone production in the East Sea/Japan Sea[J]. Continental Shelf Research, 2014, 74: 1-10.
[46] Harada N, Sato M, Sakamoto T. Freshwater impacts recorded in tetraunsaturated alkenones and alkenone sea surface temperatures from the Okhotsk Sea across millennial-scale cycles[J]. Paleoceanography, 2008, 23: PA3201.
[51] Volkman J K. Ecological and environmental factors affecting alkenone distributions in seawater and sediments[J]. Geochemistry Geophysics Geosystems, 2000, 1: 2000GC000061.
[53] Prahl F G, Pilakaln C H, Sparrow M A. Seasonal record for alkenones in sedimentary particles from the Gulf of Maine[J]. Deep-Sea Research Ⅰ, 2001, 48: 515-528.
[56] Filippova, A, Kienast M, Frank M, et al. Alkenone paleothermometry in the North Atlantic: A review and synthesis of surface sediment data and calibrations[J]. Geochemistry Geophysics Geosystems, 2016, 17: 1370-1382.
[57] Conte M H, Eglinton G, Madueira L A S. Long-chain alkenones and alkyl alkenoates as paleotemperature indicators: Their production, flux and early sediment diagenesis in the eastern North Atlantic[J]. Advances in Organic Geochemistry, 1992, 19: 287-298.
[58] Cabedo-Sanz P, Belt S T, Jennings A E, et al. Variability in drift ice export from the Arctic Ocean to the North Icelandic Shelf over the last 8 000 years: A multi-proxy evaluation[J]. Quaternary Science Reviews, 2016, 146: 99-115.
[59] Rosell-Melé A. Interhemispheric appraisal of the value of alkenone indices as temperature and salinity proxies in high latitude locations[J]. Paleoceanography, 1998, 13(6): 694-703.
[60] ??cka M, Cao M, Rosell-Melé A, et al. Postglacial paleoceanography of the western Barents Sea: Implications for alkenone-based sea surface temperatures and primary productivity[J]. Quaternary Science Reviews, 2019, 224: 105973.
[61] Prahl F G, Wolfe G V, Sparrow M A. Physiological impacts on alkenone paleothermometry[J]. Paleoceanography, 2003, 18(2): 1025.
[63] Conte M H, Weber J C, King L L, et al. The alkenone temperature signal in western North Atlantic surface waters[J]. Geochimica et Cosmochimica Acta, 2001, 65(23): 4275-4287.
[64] Mao L, Piper D J W, Saint-Ange F, et al. Provenance of sediment in the Labrador Current: A record of hinterland glaciation over the past 125 ka[J]. Journal of Quaternary Science, 2014, 29(7): 650-660.
[65] Sicre M A, Bard E, Ezat U, et al. Alkenone distributions in the North Atlantic and Nordic sea surface waters[J]. Geochemistry Geophysics Geosystems, 2002, 3(2): 10.1029/2001GC000159.
[67] Leduc G, Schneider R, Kim J H, et al. Holocene and Eemian sea surface temperature trends as revealed by alkenone and Mg/Ca paleothermometry[J]. Quaternary Science Reviews, 2010, 29: 989-1004.
[68] Seki O, Kawamura K, Ikehara M, et al. Variation of alkenone sea surface temperature in the Sea of Okhotsk over the last 85 kyrs[J]. Organic Geochemistry, 2004, 35: 347-354.
[69] Sikes E L, Sicre M A. Relationship of the tetra- unsaturated C37alkenone to salinity and temperature to salinity and temperature: Implications for paleoproxy applications[J]. Geochemistry Geophysics Geosystems, 2002, 3(11): 1-11.
[70] Gould J, Kienast M, Dwod M, et al. An open- ocean assessment of alkenone δD as a paleo-salinity proxy [J]. Geochimica et Cosmochimica Acta, 2019, 246: 478-497.
[71] Weiss G M, Schouten S, Sinninghe Damsté J S, et al. Constraining the application of hydrogen isotopic composition of alkenones as a salinity proxy using marine surface sediments[J]. Geochimica et Cosmochimica Acta, 2019, 250: 34-48.
Progress in using the long-chain alkenones to reconstruct the Holocene climate changes in northwest Atlantic Ocean
WANG Dan, Rashid Harunur
(College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China)
long-chain alkenones; sea surface temperature; meltwater; alkenone %C37:4; northwest Atlantic Ocean
Dec. 28, 2020
P736.4
A
1000-3096(2022)1-0181-11
10.11759/hykx20201228005
2020-12-28;
2021-01-29
國家自然科學(xué)基金項(xiàng)目(41776064, 41976056)
[National Natural Science Foundation of China, Nos. 41776064; 41976056]
王丹(1996—), 女, 江蘇鹽城人, 碩士研究生, 從事古海洋學(xué)研究, 電話: 15061952053, E-mail: 943795544@qq.com; RASHID Harunur(1969—),通信作者, 男, 教授, 博導(dǎo), 從事海洋地質(zhì)、古海洋學(xué)、低溫地球化學(xué)研究, E-mail: Harunurbhola@gmail.com
(本文編輯: 趙衛(wèi)紅)