国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

聚磷酸銨與不同物料配施對濱海鹽化潮土磷素形態(tài)的影響

2022-02-15 01:19戰(zhàn)威名諸葛玉平于麗萍婁燕宏楊忠臣楊全剛
農(nóng)業(yè)工程學報 2022年21期
關鍵詞:聚磷酸銨潮土磷素

戰(zhàn)威名,諸葛玉平,厙 元,于麗萍,婁燕宏,王 會,潘 紅,楊忠臣,楊全剛

聚磷酸銨與不同物料配施對濱海鹽化潮土磷素形態(tài)的影響

戰(zhàn)威名1,2,諸葛玉平1,2,厙 元1,2,于麗萍3,婁燕宏1,2,王 會1,2,潘 紅1,2,楊忠臣1,2,楊全剛1,2※

(1. 山東農(nóng)業(yè)大學資源與環(huán)境學院,泰安 271018;2. 土肥高效利用國家工程研究中心,泰安 271018;3. 昌邑市農(nóng)業(yè)農(nóng)村發(fā)展服務中心,濰坊 261300)

為研究聚磷酸銨與生物炭、秸稈配施對濱海鹽化潮土有效磷和無機磷形態(tài)轉化特征的影響。利用室內(nèi)培養(yǎng)試驗,設置不施用聚磷酸銨(CK)、單施聚磷酸銨(OA)、聚磷酸銨配施生物炭(AB)、聚磷酸銨配施秸稈(AS)、聚磷酸銨配施生物炭及秸稈(ABS)5個處理。采用Tiessen修正后的Hedley磷素分級法研究了濱海鹽化潮土中無機磷形態(tài)隨時間的變化規(guī)律。結果表明:1)與CK相比,添加聚磷酸銨的處理有效磷含量顯著提高了2.46~4.02倍(<0.05)。培養(yǎng)末期,ABS處理有效磷含量較AB、AS分別顯著提高了15.01%和19.20%(<0.05)。2)隨培養(yǎng)時間的延長,不同處理間樹脂交換磷(Resin-P)含量變化趨勢不同,OA和AB處理呈增加趨勢,AS和ABS處理呈下降趨勢,培養(yǎng)末期AS和ABS處理Resin-P含量較OA處理分別顯著降低了39.98%和31.06%;碳酸氫鈉浸提態(tài)磷(NaHCO3-P)含量隨時間先增加后降低,在培養(yǎng)第28天達到最大值,且ABS處理最高;氫氧化鈉浸提態(tài)磷(NaOH-P)和稀鹽酸浸提態(tài)磷(D. HCl-P)含量隨培養(yǎng)時間延長總體呈增加趨勢,培養(yǎng)末期,ABS處理NaOH-P含量較OA顯著提高了54.07%(<0.05);濃鹽酸浸提態(tài)磷(C. HCl-P)和殘渣態(tài)磷(Residue-P)含量整體呈下降趨勢,AB和ABS處理Residue-P含量在培養(yǎng)末期較OA顯著增加了34.01%和26.12%(<0.05)。3)濱海鹽化潮土中磷素主要以HCl-P和Residue-P形式存在,約占88.60%~92.20%。相關分析表明,不同磷形態(tài)與土壤有效磷相關系數(shù)大小依次為D. HCl-P、Resin-P、NaOH-P、NaHCO3-P、Residue-P、C. HCl-P。綜上,培養(yǎng)期內(nèi),單施聚磷酸銨或配施生物炭、秸稈能夠增加NaOH-P和D. HCl-P含量,降低C. HCl-P和Residue-P含量。聚磷酸銨配施生物炭和秸稈(ABS)提高濱海鹽化潮土磷素有效性的效果最好,Resin-P和D. HCl-P對有效磷貢獻最大。研究結果對濱海鹽化潮土磷素有效性提升和無機磷素形態(tài)轉化研究具有重要意義。

土壤;磷素;配施;聚磷酸銨;無機磷形態(tài)

0 引 言

黃河三角洲是黃淮海平原土壤資源開發(fā)利用的重要后備基地,但有接近90%的土壤屬于濱海鹽化潮土,這嚴重制約著黃河三角洲地區(qū)的農(nóng)業(yè)生產(chǎn)和社會經(jīng)濟發(fā)展[1-2]。濱海鹽化潮土中較高的鹽分含量使土壤多種酶和微生物活性降低,阻礙磷素的轉化,導致磷素有效性降低[3-4]。磷是植物生長發(fā)育必不可少的養(yǎng)分元素,土壤中磷形態(tài)直接影響土壤磷素盈缺狀況和農(nóng)作物生產(chǎn)水平[5]。因此,明確土壤磷組分狀況、提高濱海鹽化潮土磷素養(yǎng)分有效性對黃河三角洲后備土地資源的可持續(xù)發(fā)展具有重要意義。

研究表明,生物炭、秸稈與磷肥配施能夠改良土壤性質,促進難吸收有效性低的磷素形態(tài)向易吸收有效性高的磷素形態(tài)轉化。Mahmoud等[6]對堿性土壤上磷肥與生物炭配合施用的研究發(fā)現(xiàn),隨磷肥施用量的增加鹽酸浸提態(tài)磷(HCl-P)含量逐漸降低,但其他磷素形態(tài)含量逐漸增加王建偉[7]等對施用生物炭和磷酸二氫鈉的土壤進行磷素Hedley分級后發(fā)現(xiàn),施用生物炭有利于殘渣態(tài)磷(Residue-P)向易被植物吸收的磷素形態(tài)轉化。Cao等[8]在堿性沙壤土上連續(xù)4 a的定位試驗結果表明,秸稈還田和過磷酸鈣配施增加了中等活性態(tài)磷比例,降低穩(wěn)定態(tài)磷比例,提高了土壤磷素供應能力,秸稈與過磷酸鈣配施也能夠提高設施蔬菜土壤的樹脂交換磷(Resin-P)和鹽酸浸提態(tài)磷(HCl-P)占比提高磷的有效性和磷肥的利用率[9]。

傳統(tǒng)磷肥中的磷主要以正磷酸鹽的形式存在,施用后大部分被土壤固定,移動性差,利用率低[10-12]。近年來,聚磷酸銨作為一種含有氮磷養(yǎng)分的新型化學肥料備受關注,而聚磷酸鹽較正磷酸鹽土壤中有更好的移動性,更易到達植物根系表面,提高磷肥利用率[13]。研究表明聚磷酸銨能夠提高石灰性土壤、酸性棕壤和黑土等多種土壤上有效磷的含量和土壤磷庫中活性磷的占比來增加植物對磷肥的利用[14-16]。

磷素分級對研究土壤磷素形態(tài)、土壤磷素供應狀況及評估磷流失風險具有重要作用[17]。目前廣泛采用Tiessen修正后的Hedley磷素分級方法[18],該方法將土壤磷素分為6個大類:樹脂交換磷(Resin-P)、NaHCO3提取態(tài)磷(NaHCO3-P)、NaOH提取態(tài)磷(NaOH-P)、1 mol/L HCl提取態(tài)磷(D. HCl-P)、濃鹽酸提取態(tài)磷(C. HCl-P)及殘渣態(tài)磷(Residue-P)。前人更多利用Hedley磷素分級方法研究生物炭、秸稈等改良材料與傳統(tǒng)磷肥配施對土壤磷有效性和磷形態(tài)的影響,而有關聚磷酸銨與不同物料配施對濱海鹽化潮土無機磷形態(tài)轉化的報道較少。本研究以黃河三角洲濱海鹽化潮土為研究對象,通過室內(nèi)培養(yǎng)試驗,研究聚磷酸銨配施生物炭、秸稈對濱海鹽化潮土有效磷及不同形態(tài)磷素的影響,以期為提高濱海鹽化潮土磷肥利用率和磷素形態(tài)轉化的研究提供參考。

1 材料與方法

1.1 供試土壤與材料

1.1.1 供試土壤

供試土壤于2021年11月取自山東省濱州市無棣縣“渤海糧倉”工程項目示范區(qū)(117°55′~117°57′E, 37°55′~37°56′N),土壤類型為濱海鹽化潮土,在中國土壤系統(tǒng)分類中為弱鹽淡色潮濕雛形土。土壤基本理化性質為容重1.30 g/cm3,含鹽量2.00 g/kg,pH值8.50,有機質15.19 g/kg,全氮1.07 g/kg,有效磷11.20 mg/kg,速效鉀158.21 mg/kg。

1.1.2 供試材料

聚磷酸銨(APP)為水溶性低聚磷酸銨(N-P2O5-K:17-57-0),pH值7.20;供試生物炭為小麥秸稈在無氧條件下450 ℃碳化1 h,pH值9.24,全碳539.23 g/kg,全氮11.56 g/kg,全磷0.91 g/kg,全鉀34.04 g/kg,有效磷397.20 mg/kg,過0.15 mm篩備用;供試秸稈為玉米秸稈,pH值7.56,全碳465.82 g/k,全氮13.38 g/kg,全磷1.22 g/kg,全鉀15.48 g/kg,有效磷410.40 mg/kg,粉碎后過0.42 mm篩備用。

1.2 試驗方案

試驗于2022年1月在山東農(nóng)業(yè)大學土壤生態(tài)實驗室進行。試驗共設置不添加聚磷酸銨(CK)、單施聚磷酸銨(OA)、聚磷酸銨+生物炭(AB)、聚磷酸銨+秸稈(AS)、聚磷酸銨+1/2生物炭+1/2秸稈(ABS)5個處理。試驗開始前,將風干土壤過2 mm篩,混勻裝入廣口玻璃培養(yǎng)瓶,每瓶裝200 g風干土,調節(jié)土壤水分為田間持水量60%,用厚度為127m的薄膜封口后打8個直徑約為1 mm孔,將培養(yǎng)瓶置于25 ℃恒溫避光培養(yǎng)箱中進行預培養(yǎng)7 d,采用稱重法測定土壤含水率,定期補水。預培養(yǎng)結束后,參考山東濱州市年平均施肥量(N 230.00 kg/hm2、P2O5220.00 kg/hm2、K2O 36.60 kg/hm2)及各物料有效磷含量[19],各試驗處理添加N 88.46 mg/kg(尿素N 質量分數(shù)46%)、K 11.54 mg/kg(硫酸鉀K2O質量分數(shù)52%),CK不添加磷,其余處理磷添加量為63.84 mg/kg(聚磷酸銨P2O5質量分數(shù)57%),生物炭、秸稈添加量均為10 g/kg。將肥料、改良物料與土壤充分混勻,按照預培養(yǎng)方法進行培養(yǎng),分別在培養(yǎng)0、14、28、56、84 d進行破壞性取樣(每次取3個重復)用于試驗分析。

1.3 測定指標與方法

pH值采用電位法測定(水土比2.5∶1,25 ℃);有效磷采用0.5 mol/L NaHCO3浸提—鉬銻抗比色法測定;土壤全磷采用HClO4-H2SO4消煮—鉬銻抗比色法測定;田間持水量采用環(huán)刀法測定;土壤磷素分級采用Tiessen修正后的Hedley磷素分級法進行[18],其基本步驟如下:稱取1.000 0 g風干土(過0.15 mm篩)于50 mL離心管中,依次用加入717氯型陰離子樹脂的去離子水、0.5 mol/L NaHCO3溶液、0.1 mol/L NaOH、1.0 mol/L HCl連續(xù)浸提,每種浸提劑加入后連續(xù)震蕩16 h(25 ℃,180 r/min),取出后離心10 min(0 ℃,25 000 g),所得上清液采用鉬銻抗比色法測定Resin-P、NaHCO3-P、NaOH-P和D. HCl-P共4種無機磷含量,再向樣品中加入濃鹽酸后80 ℃水浴10 min,離心后取浸提液測定C. HCl-P,將連續(xù)浸提后的土壤用H2SO4-H2O2消化后測定殘渣態(tài)磷(Residue-P)。

1.4 數(shù)據(jù)處理

試驗數(shù)據(jù)采用Microsoft Excel 2018和SPSS 26統(tǒng)計分析軟件進行數(shù)據(jù)整理和方差分析,使用Origin 2022軟件做圖,鄧肯比較法進行方差分析。

2 結果與分析

2.1 聚磷酸銨與不同物料配施對濱海鹽化潮土pH值的影響

圖1表明,在培養(yǎng)時期內(nèi),所有處理pH值隨時間的增加整體呈下降趨勢,且均低于CK。OA處理在培養(yǎng)末期(第84天)較第0天分別顯著降低了0.30(<0.05);AB、AS處理pH值,都在第56天降到最低,較第0天顯著降低了0.30和0.36(<0.05),但與培養(yǎng)末期(第84天)差異不顯著;ABS處理pH值先迅速下降后保持穩(wěn)定,在第14天pH值降到最低。

注:CK:空白;OA:單施聚磷酸銨;AB:聚磷酸銨配施生物炭;AS:聚磷酸銨配施秸稈;ABS:聚磷酸銨配施生物炭及秸稈。下同。

在培養(yǎng)末期(第84天),添加了聚磷酸銨及配施不同物料處理的pH值較CK均顯著下降(<0.05),降低了0.20~0.40。與OA處理相比,AS處理pH值降低了0.16,pH值大小依次為:CK>AB > OA>ABS > AS(圖1)。

2.2 聚磷酸銨與不同物料配施對濱海鹽化潮土有效磷含量的影響

在培養(yǎng)時期內(nèi),CK、AS處理有效磷含量無顯著變化;OA、AB和ABS處理有效磷含量呈現(xiàn)先下降后上升的趨勢,第14天最低,培養(yǎng)末期(第84天)OA、AB和ABS處理有效磷含量較第0天分別顯著增加21.36%、21.98%和15.12%(<0.05)。

從表1可以看出,與CK相比,添加了聚磷酸銨及配施不同物料處理的有效磷含量顯著高于CK(<0.05),提高了2.46~4.02倍。培養(yǎng)56 d后,與OA相比,AB、AS、ABS處理有效磷含量無顯著差異,而培養(yǎng)末期,ABS處理有效磷含量較AB、AS分別顯著提高了15.01%和19.20%(<0.05)。

表1 不同處理土壤有效磷含量

注:不同大寫字母表示同一處理不同培養(yǎng)時間差異顯著(<0.05),不同小寫字母表示相同培養(yǎng)時間不同處理之間的差異顯著(<0.05)。

Note: Different uppercase letters indicate that the difference between the same treatment and different incubation time is significant (<0.05), and different lowercase letters indicate that the difference between the same treatment and different incubation time is significant (<0.05).

2.3 聚磷酸銨與不同物料配施對濱海鹽化潮土各無機磷形態(tài)的影響

2.3.1 對樹脂交換磷的影響

如圖2所示,在培養(yǎng)期內(nèi)OA、AB處理Resin-P含量隨培養(yǎng)時間呈上升趨勢,在培養(yǎng)末期(第84天)達到最大值;AS和ABS處理Resin-P含量呈先下降后上升再下降的波動變化,在第14天Resin-P含量降到最低,但仍較CK顯著提高了1.26和1.55倍(<0.05)。

在培養(yǎng)末期(第84天),與OA相比,AS和ABS處理Resin-P含量顯著降低了39.98%和31.06%(<0.05),Resin-P含量從大到小依次為:OA>AB>ABS>AS>CK。

2.3.2 對碳酸氫鈉浸提態(tài)磷的影響

由圖3可知,在培養(yǎng)期內(nèi)NaHCO3-P的含量呈先升高后下降的趨勢,在培養(yǎng)第28天時達到最大值,OA、AB、AS和ABS分別較第0天顯著增加25.90%、30.04%、24.95%和22.71%,其中ABS處理的NaHCO3-P含量最高。

圖2 不同處理樹脂交換磷含量隨時間變化

圖3 不同處理碳酸氫鈉浸提態(tài)磷含量隨時間變化

在培養(yǎng)末期(第84天),與OA相比,AB和AS處理NaHCO3-P含量分別降低2.01%和4.64%;ABS處理中NaHCO3-P含量增加了10.32%,均無顯著變化。

2.3.3 對氫氧化鈉浸提態(tài)磷的影響

如圖4所示,在培養(yǎng)時期內(nèi),AB、AS和ABS處理NaOH-P含量隨培養(yǎng)時間呈上升趨勢,在培養(yǎng)末期(第84天)達到最大值,AB和ABS處理較第0天顯著增加61.95%和86.23%(<0.05),OA與AS處理較第0天差異不顯著。

圖4 不同處理氫氧化鈉浸提態(tài)磷含量隨時間變化

在培養(yǎng)末期(第84天),與OA相比,AB和ABS處理NaOH-P含量顯著增加了37.29%和54.07%(<0.05),NaOH-P含量從大到小依次為:ABS>AB>AS> OA>CK。

2.3.4 對稀鹽酸浸提態(tài)磷影響

在培養(yǎng)時期內(nèi),CK、OA和AB處理D. HCl-P含量隨培養(yǎng)時間呈上升趨勢,在培養(yǎng)末期(第84天)達到最大值,分別較第0天顯著增加31.28%、37.01%和21.72%;AS和ABS處理D. HCl-P含量現(xiàn)先下降后上升,在第14天降到最低,但仍較CK提高了14.46%和18.86%,差異不顯著(圖5)。

圖5 不同處理1 mol·L-1鹽酸浸提態(tài)磷含量隨時間變化

在培養(yǎng)末期(第84天),與OA相比,AB、AS和ABS處理D. HCl-P含量無顯著差異。

2.3.5 對濃鹽酸浸提態(tài)磷的影響

由圖6可知,在培養(yǎng)時期內(nèi),所有處理C. HCl-P含量呈現(xiàn)先上升后下降再上升的趨勢,在第14天達到最大值,其中ABS處理C. HCl-P含量最高,較CK顯著提高了35.74%(<0.05),在第56天時下降到最小值,其中AS處理C. HCl-P含量最低。

圖6 不同處理濃鹽酸浸提態(tài)磷含量隨時間變化

在培養(yǎng)末期(第84天),與OA相比,ABS處理C. HCl-P含量增加了6.07%,差異不顯著;AB、AS處理C. HCl-P含量降低了5.12%和7.02%,差異不顯著。

2.3.6 對殘渣態(tài)磷的影響

在培養(yǎng)時期內(nèi),各處理Residue-P含量均顯著高于CK(<0.05),所有處理在14 d內(nèi)呈升高趨勢,隨后在第28天降至最低值,此時Residue-P含量大小依次為AB>OA>ABS>AS>CK,但仍較CK提高了94.56%、86.01%、76.78%和58.28%(圖7)。

圖7 不同處理殘渣態(tài)磷含量隨時間變化

在培養(yǎng)第84天,與OA相比,AB和ABS處理Residue-P含量顯著增加了34.01%和26.12%(<0.05);AS處理Residue-P含量增加了3.39%,差異不顯著。

2.4 聚磷酸銨與不同物料配施對濱海鹽化潮土無機磷形態(tài)分配比例的影響

分析圖8可知,濱海鹽化潮土中磷素主要以HCl-P和Residue-P形式存在,約占88.60%~92.20%,而Resin-P、NaHCO3-P和NaOH-P僅占7.80%~11.40%。在培養(yǎng)末期(第84天),與CK相比,施用聚磷酸銨后Resin-P占比顯著增加50.72%~70.22%(<0.05),C. HCl-P占比下降了9.25%~29.44%。與OA相比,AB、AS和ABS處理Resin-P分別顯著下降26.37%、39.58%和38.93%(<0.05),NaHCO3-P、D. HCl-P和C. HCl-P占比無顯著差異,其中AB和ABS處理Residue-P占比較OA顯著提高23.82%和22.42%(<0.05)。

圖8 不同處理下濱海鹽化潮土磷形態(tài)分配特征

Fig 8 Distribution characteristics of phosphorus forms in coastal saline soil under different treatments

2.5 pH值、有效磷及無機磷形態(tài)間相關性分析

表2為培養(yǎng)期內(nèi)pH值、有效磷及無機磷各形態(tài)間的相關關系,可以看出土壤pH值與土壤有效磷、Resin-P、NaHCO3-P、NaOH-P、D. HCl-P、Residue-P呈極顯著負相關(<0.01);土壤有效磷含量與各種磷形態(tài)都顯著正相關,各形態(tài)磷與土壤有效磷的相關系數(shù)大小為D. HCl-P>Resin-P>NaOH-P>NaHCO3-P>Residue-P> C. HCl-P,其中有效磷與D. HCl-P相關性最大,相關系數(shù)為0.790;除C. HCl-P外,其他無機磷形態(tài)之間均為極顯著正相關,其中D. HCl-P與Resin-P和NaOH-P相關系數(shù)分別為0.641和0.590。

表2 pH值、有效磷及磷組分間相關關系

注:**代表在0.01水平上顯著相關;*代表在0.05水平上顯著相關。

Note: ** represents a significant correlation at 0.01 level. * representatives have significant correlation at 0.05 level.

3 討 論

3.1 聚磷酸銨與不同物料配施對濱海鹽化潮土有效磷含量的影響

生物炭與秸稈作為改良物料與磷肥配施后對土壤有效磷的影響不盡相同。Cui等[20]認為稻草生物炭配施磷酸二氫鉀能夠提高中土壤中磷的有效性;而在蘇打鹽堿土和褐土上將生物炭與磷酸二氫鉀配施后,由于生物炭對磷肥的吸附/沉淀作用降低了土壤磷素有效性[21-22]。Xie等[23]通過小麥秸稈還田試驗得出秸稈還田能夠有效增加土壤有效磷含量;而Damon等[24]認為,含磷量較低的秸稈還田后會刺激微生物從土壤溶液中吸收磷。本研究中添加聚磷酸銨的處理均能顯著提高濱海鹽化潮土的有效磷含量,且在整個培養(yǎng)期間聚磷酸銨配施生物炭及秸稈的處理(ABS)有效磷含量始終高于其他處理,可能的原因在于聚磷酸銨能夠在土壤中緩慢水解轉化成正磷酸鹽,同時聚磷酸離子能夠絡合土壤中Ca2+、Al3+、Fe3+等離子,形成穩(wěn)定可溶性物質,降低了因形成磷酸鈣、磷酸鋁和磷酸鐵沉淀對磷酸離子的固定,而多聚磷酸鹽與磷酸銨根競爭吸附絡合位點,降低土壤對正磷酸鹽的吸附,使得土壤有效磷含量增加[25-26],且生物炭和秸稈共同施用更有利于改善土壤的結構、增加土壤養(yǎng)分和提高微生物活性,研究證明生物炭與秸稈配施可提高鹽化潮土的陽離子交換量、總孔隙度、有機質和養(yǎng)分含量,增加耐鹽細菌豐度,降低土壤pH值、電導率、堿化度和容重[27]。已有研究表明,土壤pH值為中性或堿性時,聚磷酸鹽水解速率較慢,三聚磷酸鹽在壤土中水解需要8 d,焦磷酸鹽在培養(yǎng)16 d后僅有10%水解。本研究發(fā)現(xiàn),各處理在培養(yǎng)28 d內(nèi)有效磷含量無顯著變化(<0.05),可能由于聚磷酸銨主要由焦磷酸鹽和多聚磷酸鹽組成,土壤pH值越高,聚磷酸鹽水解越慢[28-30]。

3.2 聚磷酸銨與不同物料配施對濱海鹽化潮土無機磷形態(tài)變化的影響

土壤磷組分是衡量土壤供磷潛力和供磷活力的重要指標,反應土壤磷素的可利用潛力[31]。土壤無機磷可分為活性態(tài)磷(Resin-P、NaHCO3-P)、中等活性態(tài)磷(NaOH-P)和穩(wěn)定態(tài)磷(HCl-P、Residue-P)。Resin-P是與土壤溶液處于平衡狀態(tài)的土壤固相無機磷,占土壤活性磷的絕大部分。本研究表明,單獨施用聚酸銨的處理(OA)和聚磷酸銨配施生物炭的處理(AB)Resin-P含量隨培養(yǎng)時間的增加而逐漸升高,但配施生物炭后Resin-P含量低于單獨施用聚磷酸銨的處理,這可能是由于聚磷酸銨的水解增加了土壤交換態(tài)磷含量,而生物炭豐富的孔隙結構吸附了部分交換態(tài)磷導致的[32];添加秸稈的處理(AS、ABS)Resin-P含量呈先降低后升高再降低的趨勢,這可能是因為在秸稈腐解過程中,土壤微生物利用秸稈中的碳源物質大量繁殖,從土壤和土壤溶液中吸收可交換態(tài)無機磷從而對Resin-P含量產(chǎn)生影響[33]。NaHCO3-P主要為吸附在土壤表面的活性磷和微生物量磷。本研究中NaHCO3-P含量隨培養(yǎng)時間先升高后降低,可能是由于聚磷酸銨的水解后一部分被植物吸收利用,剩余的磷很快會被土壤固定,而本試驗為培養(yǎng)試驗未種植植物,NaHCO3-P達到一定值時未被植物吸收而向中等活性態(tài)磷或穩(wěn)定態(tài)磷轉化。NaOH-P主要為與土壤中鐵、鋁化合物結合的無機磷,通過特殊轉化可供植物吸收利用。D. HCl-P是與鈣結合的原生礦物態(tài)磷,可通過解吸、風化等作用間接被植物利用。本研發(fā)現(xiàn)各處理NaOH-P與D. HCl-P含量隨時間增加而增加,且有生物炭添加的處理NaOH-P含量高于單獨施用聚磷酸銨的處理,這可能由于生物炭和秸稈對土壤pH值起到調節(jié)作用,正磷酸離子被土壤中含鐵、鋁和鈣的固相或膠體吸附,與正磷酸離子發(fā)生沉淀反應形成溶解度較低的磷酸鹽,這與前人[22]研究結果相似。此外有研究表明,直接從作物殘體釋放到土壤中的磷會在土壤中發(fā)生吸附和沉淀反應,這也說明添加秸稈會增加土壤中NaOH-P與D. HCl-P含量[34]。C. HCl-P與Residue-P為不能被植物吸收利用的穩(wěn)定態(tài)磷,在培養(yǎng)期間含量不斷降低,通過磷組分間的相關關系可以看出Residue-P與活性態(tài)磷呈極顯著正相關(<0.01),說明殘渣態(tài)磷能夠向活性態(tài)磷轉化,以提高土壤潛在供磷能力[35]。

3.3 聚磷酸銨與不同物料配施對濱海鹽化潮土無機磷形態(tài)及比例的影響

無機磷組分在土壤全磷中占比高達75%~85%,其有效性也不盡相同,進而導致土壤在供磷能力水平上的差異。已有研究表明施用磷肥使黑土中Resin-P、NaHCO3-P和NaOH-P占比增加,而D. HCl-P、C. HCl-P和Residue-P占比降低[36],這與本試驗研究結果相似,這表明施用磷肥可提高土壤活性態(tài)磷在全磷中的占比。唐夢天[37]的試驗數(shù)據(jù)表明,在酸性土壤上施用生物炭和磷肥能夠提高NaOH-P、HCl-P、Residue-P比例。本研究發(fā)現(xiàn)施用生物炭和秸稈后Resin-P占比低于單獨施用聚磷酸銨,而NaOH-P和Residue-P占比增加,這可能是由于生物炭和秸稈與聚磷酸銨的交互作用降低了中等活性態(tài)磷和穩(wěn)定態(tài)磷向活性態(tài)磷轉化速度,增強其持續(xù)供磷能力。

土壤中各種無機磷組分處于動態(tài)平衡過程中,其分布狀況和相互轉化方向能夠引起土壤中有效磷含量的波動,且有效磷與不同形態(tài)磷之間的相關系數(shù)越大,該形態(tài)磷的有效性越高。本研究表明土壤有效磷與不同無機磷形態(tài)呈顯著正相關,且與D. HCl-P的相關系數(shù)最大,Resin-P次之,這可能與濱海鹽化潮土具有較高的pH值,導致磷與土壤中鈣化合形成不易溶解的鹽基性磷酸鹽有關,這也是HCl-P占無機磷庫的絕大部分的主要原因,其中D. HCl-P可被植物根系分泌的有機酸溶解后做為濱海鹽化潮土中最有效的磷源。除C. HCl-P外,Residue-P與其他形態(tài)磷都呈顯著相關性,這表明在土壤磷虧缺時,可以通過活化殘渣態(tài)磷來提高磷素有效性。

4 結 論

1)在室內(nèi)恒溫培養(yǎng)條件下,聚磷酸銨與不同物料配施使濱海鹽化潮土中土壤pH值顯著降低、有效磷含量顯著提高。與不施用聚磷酸銨的處理相比,施用聚磷酸銨后pH值下降了0.2~0.4,有效磷則提高了2.46~4.02倍。聚磷酸銨配施生物炭及秸稈的處理較聚磷酸銨配施生物炭、聚磷酸銨配施秸稈的處理有效磷含量分別顯著提高了15.01%和19.20%(<0.05)。

2)在培養(yǎng)期內(nèi),與不施用聚磷酸銨的處理比較,施用聚磷酸銨能顯著增加6種無機態(tài)磷含量,但未改變碳酸氫鈉浸提態(tài)磷和濃鹽酸浸提態(tài)磷含量隨時間的變化趨勢。只添加聚磷酸銨及聚磷酸銨配施生物炭的處理更有利于提高樹脂交換磷和稀鹽酸浸提態(tài)磷含量;聚磷酸銨配施生物炭、秸稈更有利于提高氫氧化鈉浸提態(tài)磷含量;殘渣態(tài)磷含量呈下降趨勢,只添加聚磷酸銨及聚磷酸銨配施秸稈的殘渣態(tài)磷含量下降幅度高于有生物炭添加的處理。

3)濱海鹽化潮土中無機磷主要以稀鹽酸浸提態(tài)磷、濃鹽酸浸提態(tài)磷和殘渣態(tài)磷形式存在,約占88.60%~92.20%,而能被植物吸收利用的磷如樹脂交換磷,碳酸氫鈉浸提態(tài)磷,氫氧化鈉浸提態(tài)磷占比較低,約占7.80%~11.40%。稀鹽酸浸提態(tài)磷和樹脂交換磷在濱海鹽化潮土中與有效磷相關性高于其他磷素形態(tài),是最有效的磷源。除濃鹽酸浸提態(tài)磷外,不同磷形態(tài)之間呈極顯著相關(<0.01)。

[1] 王瑞燕,孔沈彬,許璐,等. 黃河三角洲不同地表覆被類型和微地貌的土壤鹽分空間分布[J]. 農(nóng)業(yè)工程學報,2020,36(19):132-141.

Wang Ruiyan, Kong Shenbin, Xu Lu, et al. Spatial distribution of soil salinity under different surface land cover types and micro-topography in the Yellow River Delta [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(19): 132-141. (in Chinese with English abstract)

[2] Guo B, Yang F, Fan Y, et al. Dynamic monitoring of soil salinization in Yellow River Delta utilizing MSAVI–SI feature space models with Landsat images[J]. Environmental Earth Sciences, 2019, 78(10): 1-10.

[3] Dong X, Li M, Lin Q, et al. Soil Na+concentration controls salt-affected soil organic matter components in Hetao region China[J]. Journal of Soils and Sediments, 2019, 19(3): 1120-1190.

[4] 高珊,楊勁松,姚榮江,等. 調控措施對濱海鹽漬土磷素形態(tài)及作物磷素吸收的影響[J]. 土壤,2020,52(4):691-698.

Gao Shan, Yang Jinsong, Yao Rongjiang, et al. Effects of different management on phosphorus fractions in coastal saline soil and phosphorus absorption and utilization by crops[J]. Soil, 2020, 52(4): 691-698. (in Chinese with English abstract)

[5] Zhu J, Li M, Whelan M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review[J]. Science of the Total Environment, 2018, 612: 522-537.

[6] Mahmoud E, Ibrahim M, Abd El-Rahman L, et al. Effects of biochar and phosphorus fertilizers on phosphorus fractions, wheat yield and microbial biomass carbon in Vertic Torrifluvents[J]. Communications in Soil Science and Plant Analysis, 2019, 50(3): 362-372.

[7] 王建偉. 生物質炭和磷添加對油茶林土壤團聚體及磷組分轉化和有效性的影響[D]. 南昌:江西農(nóng)業(yè)大學,2020.

Wang Jianwei. Effects of Biochar and Phosphorus Addition on Soil Aggregates and Phosphorus Component Conversion and Availability inForest[D]. Nanchang: Jiangxi Agricultural University, 2020. (in Chinese with English abstract)

[8] Cao N, Zhi M, Zhao W, et al. Straw retention combined with phosphorus fertilizer promotes soil phosphorus availability by enhancing soil P-related enzymes and the abundance of phoC and phoD genes[J]. Soil and Tillage Research, 2022, 220: 106390.

[9] 劉慧,王業(yè)迪,袁博文,等. 秸稈配施化肥對設施內(nèi)土壤磷素組分和番茄產(chǎn)量的影響[J]. 東北農(nóng)業(yè)科學,2021,61(6):1-9.

Liu Hui, Wang Yedi, Yuan Bowen, et al. Effect of straw combined with fertilizer on soil phosphorus component and tomato yield in the facility[J]. Journal of Northeast Agricultural Sciences, 2021, 61(6): 1-9. (in Chinese with English abstract)

[10] 亢龍飛,褚貴新. 聚磷酸銨肥料生產(chǎn)工藝及其關鍵性狀表征[J]. 磷肥與復肥,2018,33(9):13-18.

Kang Longfei, Chu Guixin. Manufacturing process of APP fertilizer and its key properties characterization[J]. Phosphate and Compound Fertilizer, 2018, 33(9): 13-18. (in Chinese with English abstract)

[11] Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review [J]. Plant and Soil, 2001, 237(2): 173-195. (in Chinese with English abstract)

[12] Richardson A E, Barea J M, Mcneill M, et al. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms[J]. Plant and soil, 2009, 321(1): 305-339.

[13] 劉續(xù),湯建偉,劉詠,等. 水溶性農(nóng)用聚磷酸銨的研究與應用進展[J]. 無機鹽工業(yè), 2020, 52(12):7-11.

Liu Xu, Tang Jianwei, Liu yong, et al. Research and application progress of water-soluble agricultural ammonium polyphosphate[J]. Inorganic Chemicals Industry, 2020, 52(12): 7-11. (in Chinese with English abstract)

[14] 高艷菊,亢龍飛,褚貴新. 不同聚合度和聚合率的聚磷酸磷肥對石灰性土壤磷與微量元素有效性的影響[J]. 植物營養(yǎng)與肥料學報,2018,24(5):1294-1302.

Gao Yanju, Kang Longfei, Chu Xingui. Polymerization degree and rate of polyphosphate fertilizer affected the availability of phosphorus, Fe, Mn and Zn in calcareous soil. Journal of Plant Nutrition and Fertilizers[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(5): 1294-1302. (in Chinese with English abstract)

[15] 楊依彬,余柚樸,鄧蘭生,等. 磚紅壤上淋施不同聚合度的聚磷酸銨對玉米苗期生長及養(yǎng)分累積的影響[J]. 安徽農(nóng)業(yè)科學,2019,47(13):146-148.

Yang Yibing, Yu Youpu, Deng Lansheng, et al. Effects of different annnonium polyphosphate on growth and nutrient accumulation of corn on latosols[J]. Anhui Agricultural Sciences, 2019, 47(13): 146-148. (in Chinese with English abstract)

[16] 王靜. 不同施磷策略對磷在土壤中移動、轉化及磷肥利用率的影響[D]. 石河子:石河子大學,2016.

Wang Jing. Effects of Phosphate Fertilizer Application Strategies on Soil P Mobility, Transformation and P Use Efficiency on Calcareous Soil[D]. Shihezi: Shihezi University, 2016. (in Chinese with English abstract)

[17] Penn C J, Camberato J. Acritical review on soil chemical processes that control how soil pH affects phosphorus availability to plants[J]. Agriculture, 2019, 9(6): 120.

[18] Tiessen H, Moir J O. Characterization of available P by sequential extraction[J]. Soil Sampling and Methods of Analysis, 1993, 7: 5-229.

[19] 李健敏. 山東省耕地施肥狀況分析及最佳施肥參數(shù)研究[D]. 泰安:山東農(nóng)業(yè)大學, 2018.

Li Jianmin. Analysis of Fertilization Status and Optimum Parameters of Cultivated Land in Shandong Province[D]. Tai’an: Shandong Agricultural University, 2018. (in Chinese with English abstract)

[20] Cui H J, Wang M K, Fu M L, et al. Enhancing phosphorus availability in phosphorus-fertilized zones by reducing phosphate adsorbed on ferrihydrite using rice straw-derived biochar[J]. Journal of Soils and Sediments, 2011, 11(7): 1135-1141.

[21] Xu G, Zhang Y, Sun J, et al. Negative interactive effects between biochar and phosphorus fertilization on phosphorus availability and plant yield in saline sodic soil[J]. Science of the Total Environment, 2016, 568: 910-915.

[22] 王寧. 生物炭對土壤磷吸附解吸及磷形態(tài)轉化的影響[D]. 太原:山西大學,2017.

Wang Ning. Influence of Biochar on P Sorption, Desorption and Its Transformation in Soil[D]. Taiyuan: Shanxi University, 2017. (in Chinese with English abstract)

[23] Xie W, Wu L, Zhang Y, et al. Effects of straw application on coastal saline topsoil salinity and wheat yield trend[J]. Soil and Tillage Research, 2017, 169: 1-6.

[24] Damon P M, Boeden B, Rose T, et al. Crop residue contributions to phosphorus pools in agricultural soils: A review[J]. Soil Biology and Biochemistry, 2014, 74: 127-137.

[25] 傅瑞斌,徐紹霞,張海波,等. 聚磷酸銨在輕度鹽堿地玉米種植上的肥效[J]. 磷肥與復肥,2018,33(7):37-38.

Fu Ruibin, Xu Shaoxia, Zhang Haibo, et al. Fertilizer effect of ammonium polyphosphate on maize in light saline-alkali soil[J]. Phosphate & Compound Fertilizer, 2018, 33(7): 37-38. (in Chinese with English abstract)

[26] Gao Y, Wang X, Shah J A, et al. Polyphosphate fertilizers increased maize (L) P, Fe, Zn, and Mn uptake by decreasing P fixation and mobilizing microelements in calcareous soil[J]. Journal of Soils and Sediments, 2020, 20(1): 1-11.

[27] 柴曉彤. 微生物菌劑對鹽漬化土壤改良研究[D]. 上海:上海交通大學,2016.

Chai Xiaotong. Study on Melioration Of Soil Sailnization With Microbial Agent[D]. Shanghai: Shanghai Jiao Tong University, 2016. (in Chinese with English abstract)

[28] Mcbeah T M, Lombi E, Mclaughlin M J, et al. Polyphosphate‐fertilizer solution stability with time, temperature, and pH[J]. Journal of Plant Nutrition and Soil Science, 2007, 170(3): 387-391.

[29] Torres-Dorante L O, Claassen N, Steingobe B, et al. Fertilizer‐use efficiency of different inorganic polyphosphate sources: Effects on soil P availability and plant P acquisition during early growth of corn[J]. Journal of Plant Nutrition and Soil Science, 2006, 169(4): 509-515.

[30] Wang B, Lv Z, Yu M, et al. One-Pot synthesis and hydrolysis behavior of highly water-soluble ammonium polyphosphate[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(39): 13037-13049.

[31] 劉凱,劉佳,陳曉芬,等. 長期施用磷肥水稻土微生物量磷的季節(jié)變化特征與差異[J]. 中國農(nóng)業(yè)科學,2020,53(7):1411-1418.

Liu Kai, Liu Jia, Chen Xiaofen, et al. Seasonal variation and differences of microbial biomass phosphorus in paddy soils under long-term application of phosphorus fertilizer[J]. Scientia Agricultura Sinica, 2020, 53(7): 1411-1418. (in Chinese with English abstract)

[32] 李仁英,吳洪生,黃利東,等. 不同來源生物炭對土壤磷吸附解吸的影響[J]. 土壤通報, 2017, 48(6):1398-1403.

Li Renying, Wu Hongsheng, Huang Lidong, et al. Effect of biochars of different sources on adsorption and desorption of phosphorus. in soil[J]. Chinese Journal of Soil Science, 2017, 48(6): 1398- 1403. (in Chinese with English abstract)

[33] 張素瑜,楊習文,李向東,等. 土壤水分對玉米秸稈還田腐解率、土壤肥力及小麥籽粒蛋白質產(chǎn)量的影響[J]. 麥類作物學報,2019,39(2):186-193.

Zhang Suyu, Yang Xiwen, Li Xiangdong, et al. Influence of soil moisture on decomposition of maize stalk soil fertility and grain protein yield in winter wheat[J]. Journal of Triticeae Crops, 2019, 39(2): 186-193. (in Chinese with English abstract)

[34] 戴志剛,魯劍巍,李小坤,等. 不同作物還田秸稈的養(yǎng)分釋放特征試驗[J]. 農(nóng)業(yè)工程學報,2010,26(6):272-276.

Dai Zhigang, Lu Jianwei, Li Xiaokun, et al. Nutrient release characteristic of different crop straws manure [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(6): 272-276. (in Chinese with English abstract)

[35] 田倉,虞軼俊,吳龍龍,等. 不同灌溉和施肥模式對稻田磷形態(tài)轉化和有效性的影響[J]. 農(nóng)業(yè)工程學報,2021,37(24):112-122.

Tian Cang, Yu Yijun, Wu Longlong, et al. Effects of various irrigation and fertilization schedules on the transformation and availability of phosphorus in paddy fields[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(24): 112-122. (in Chinese with English abstract)

[36] 杜婷婷. 玉米秸稈還田配施磷肥對土壤磷組分及產(chǎn)量的影響[D]. 哈爾濱:東北農(nóng)業(yè)大學,2020.

Du Tingting. Effects of Corn Straw Returning Combined with Phosphate Fertilizer on Soil Phosphorus Fractions and Yield[D]. Harbin: Northeast Agricultural University: 2020. (in Chinese with English abstract)

[37] 唐夢天. 生物炭和磷對紅壤化學特性及大豆生長的影響[D]. 廣州:華南農(nóng)業(yè)大學,2019.

Tang Mengtian. Effects of Biochar and Phosphorus on Chemical Properties of Red Soil and Soybean Growth[D]. Guangzhou: South. China Agricultural University, 2019. (in Chinese with English abstract)

Effects of combined application of ammonium polyphosphate and different materials on phosphorus forms in coastal saline soil

Zhan Weiming1,2, Zhuge Yuping1,2, She Yuan1,2, Yu Liping3, Lou Yanhong1,2, Wang Hui1,2, Pan Hong1,2, Yang Zhongchen1,2, Yang Quangang1,2※

(1.,271018,;2.,271018,;3.,261300,)

Phosphorus has been one of the most limiting factors in the nonrenewable natural resource to the food security in modern agriculture. The availability of phosphorus is reducedin coastal saline soil, due to the influence of pH value and salt. Biochar can be expected to serve as a coastal saline soil amendment for better soil properties. However, a new slow-release fertilizer, ammonium polyphosphate cannot be easy to be fixed in the soil. Therefore, this study aims to clarify the effects of ammonium polyphosphate combined with biochar and straw on the transformation characteristics of available phosphorus and inorganic phosphorus in the coastal saline soil. An indoor culture experiment was conducted. Five treatments were set as the blank (CK), ammonium polyphosphate (OA), ammonium polyphosphate with biochar (AB), ammonium polyphosphate with straw (AS), and ammonium polyphosphate with biochar and straw (ABS). The improved Hedley phosphorus grading method with a 100-mesh sieve was used to grind the soil in the different culture periods. A total of six inorganic phosphorus and forms content were obtained after continuous extraction, such as resin-exchanged phosphorus (Resin-P), NaHCO3-extracted phosphorus (NaHCO3-P), NaOH-extracted phosphorus (NaOH-P), 1mol/LHCl-extracted phosphorus (D. HCl-P), concentrated hydrochloric acid-extracted phosphorus (C. HCl-P), and residual phosphorus (Residue-P). The correlation was analyzed between the pH, available phosphorus, and inorganic phosphorus forms. The results showed that: 1) The available phosphorus content of ammonium polyphosphate treatment significantly increased by 2.46-4.02 times (<0.05), compared with the CK, during the incubation period. The ABS treatment significantly increased by 15.01% and 19.20% at the end of culture, compared with the AB and AS (<0.05). 2) There were different trends in the content of Resin-P under different treatments with the prolongation of culture time. The OA and AB treatments showed an increasing trend, whereas, the AS and ABS treatments showed a decreasing trend. At the end of the culture, the content of Resin-P in the AS and ABS treatments was significantly lower than that in the OA treatment by 39.98% and 31.06%, respectively. The content of NaHCO3-P increased first and then decreased with time, reaching the maximum on the 28th day of culture. The maximum was found in the ABS treatment. The content of NaOH-P and D. HCl-P increased with the prolongation of culture time. The content of NaOH-P in the ABS treatment was significantly higher than that in the OA by 54.07% (<0.05) at the end of the culture. The contents of C. HCl-P and Residue-P decreased as a whole. The contents of Residue-P in the AB and ABS treatments significantly increased by 34.01% and 26.12%, compared with the OA (<0.05). 3) Phosphorus in the coastal saline soil mainly existed in the form of HCl-P and Residue-P, accounting for 88.60%-92.20%. Correlation analysis showed that the correlation coefficients between different phosphorus forms and soil-available phosphorus were in the order of D. HCl-P> Resin-P> NaOH-P> NaHCO3-P> Residue-P>C. HCl-P. Except for the C. HCl-P, there was a significant positive correlation between other inorganic phosphorus forms. In summary, the ammonium polyphosphate combined with the biochar and straw (ABS) is superior to improve the effectiveness of phosphorus literacy in the coastal saline soil, while, the Resin-P and D. HCl-P contributed the most to the available phosphorus. This finding can provide an important theoretical reference for the phosphorus availability andutilization rate in coastal saline soil.

soils; phosphorus; combine; ammonium polyphosphate; form of inorganic phosphorus

10.11975/j.issn.1002-6819.2022.21.015

S201.5

A

1002-6819(2022)-21-0119-08

戰(zhàn)威名,諸葛玉平,厙元,等. 聚磷酸銨與不同物料配施對濱海鹽化潮土磷素形態(tài)的影響[J]. 農(nóng)業(yè)工程學報,2022,38(21):119-126.doi:10.11975/j.issn.1002-6819.2022.21.015 http://www.tcsae.org

Zhan Weiming, Zhuge Yuping, She Yuan, et al. Effects of combined application of ammonium polyphosphate and different materials on phosphorus forms in coastal saline soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(21): 119-126. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.21.015 http://www.tcsae.org

2022-09-27

2022-10-21

國家重點研發(fā)計劃(2021YFD1900900);山東省重點研發(fā)計劃(重大科技創(chuàng)新工程)項目(2021CXGC010804)

戰(zhàn)威名,研究方向為濱海鹽漬土改良與養(yǎng)分高效利用。Email:zhanweiim@163.com

楊全剛,博士,副教授,研究方向為土壤質量提升、重金屬污染土壤治理、高分子材料研制。Email:sttzzy@sdau.edu.cn

猜你喜歡
聚磷酸銨潮土磷素
磷素添加對土壤水分一維垂直入滲特性的影響
工業(yè)磷酸一銨制備高聚合度聚磷酸銨的工藝優(yōu)化
磷肥轉型新方向——聚磷酸銨
不同土壤類型小麥測土配方施肥對當季土壤供氮的影響
聚磷酸銨對聚乳酸/麥秸稈復合材料阻燃和力學性能的影響
木粉及聚磷酸銨對PE-HD木塑復合材料阻燃和力學性能的影響
作物高效利用土壤磷素的研究進展
長期施鉀和秸稈還田對河北潮土區(qū)作物產(chǎn)量和土壤鉀素狀況的影響
磷素營養(yǎng)對大豆磷素吸收及產(chǎn)量的影響
典型潮土N2O排放的DNDC模型田間驗證研究
蒙山县| 荔波县| 阿克苏市| 新宁县| 万载县| 苏尼特左旗| 瓦房店市| 大竹县| 北宁市| 松滋市| 河东区| 新安县| 宜君县| 和林格尔县| 钟山县| 泸水县| 哈巴河县| 广昌县| 新干县| 永福县| 巧家县| 定日县| 耒阳市| 惠安县| 正蓝旗| 镇原县| 克拉玛依市| 高台县| 曲靖市| 东兰县| 靖安县| 鸡泽县| 荔浦县| 保德县| 个旧市| 丹东市| 沈丘县| 汨罗市| 团风县| 平舆县| 诸城市|