賴錦,凡雪純,黎雨航,趙鑫,劉士琛,劉小平,李棟,龐小嬌,李紅斌,羅瑀峰 1)油氣資源與探測(cè)國家重點(diǎn)實(shí)驗(yàn)室(中國石油大學(xué)(北京)),北京,102249;中國石油大學(xué)(北京)地球科學(xué)學(xué)院,北京,102249;中石油浙江油田分公司勘探開發(fā)研究院,杭州,310023
內(nèi)容提要: 通過巖芯、薄片、掃描電鏡等巖石物理實(shí)驗(yàn)結(jié)合常規(guī)、成像以及核磁共振等測(cè)井資料,對(duì)蘇北盆地古近系阜寧組阜二段頁巖“七性關(guān)系”和“三品質(zhì)”進(jìn)行研究。結(jié)果表明阜二段頁巖儲(chǔ)集空間包括粒間孔、顆粒溶孔、晶間孔、有機(jī)質(zhì)孔以及微裂縫,不同孔徑孔隙含油性均較好。根據(jù)物性參數(shù)、孔隙空間建立了儲(chǔ)層品質(zhì)劃分標(biāo)準(zhǔn),由I類到Ⅳ類束縛水飽和度逐漸變大。阜二段烴源巖有機(jī)質(zhì)類型好,TOC基本都大于1%,根據(jù)自然伽馬能譜測(cè)井 K 含量和ΔlgR建立了TOC測(cè)井模型,并根據(jù)TOC大小實(shí)現(xiàn)烴源巖品質(zhì)劃分。地應(yīng)力方向主要為北東—南西向,阜二段脆性指數(shù)基本都大于40%,可壓裂性好,根據(jù)脆性指數(shù)實(shí)現(xiàn)工程品質(zhì)劃分。在“七性關(guān)系”研究基礎(chǔ)上,通過對(duì)儲(chǔ)層品質(zhì)、烴源巖品質(zhì)以及工程品質(zhì)三者疊加完成了單井“甜點(diǎn)”段優(yōu)選,甜點(diǎn)主要分布在泥脖子、七尖峰、四尖峰和上山字和中山字段,結(jié)果與試油資料相吻合。研究成果可為頁巖油測(cè)井評(píng)價(jià)和甜點(diǎn)預(yù)測(cè)提供理論指導(dǎo)和技術(shù)支撐。
頁巖油(廣義)泛指蘊(yùn)藏在富有機(jī)質(zhì)頁巖層系(包含頁巖層系中的致密碳酸鹽巖和碎屑巖夾層)中的石油資源(鄒才能等,2015;金之鈞等,2019;付金華等,2019;趙賢正等,2020)。狹義頁巖油則指滯留于頁巖層中尚未排出、相對(duì)原位存儲(chǔ)的石油(趙賢正等,2020)。頁巖油通常富集于有機(jī)質(zhì)豐富的細(xì)粒沉積巖層系內(nèi),儲(chǔ)層可為致密碎屑巖、碳酸鹽巖和泥頁巖,依靠常規(guī)開發(fā)技術(shù)難以開采,需通過壓裂改造(鄒才能等,2013;金之鈞等,2019;付金華等,2019;楊智等,2021)。近年來,隨著頁巖油勘探開發(fā)理論和工程上的突破,頁巖油在全球各個(gè)盆地獲得廣泛突破,如美國和加拿大交界處Williston盆地的巴肯頁巖(Saidian and Prasad, 2015)、渤海灣盆地滄東凹陷孔店組孔二段(鄢繼華等,2017;Guan Ming et al., 2020)、鄂爾多斯盆地延長(zhǎng)組7段細(xì)粒沉積巖(鄒才能等,2015;袁選俊等,2015;Lai Jin et al., 2016)、準(zhǔn)噶爾盆地吉木薩爾凹陷二疊系蘆草溝組(王小軍等,2019;支東明等,2019;王劍等,2020)、蘇北盆地古新統(tǒng)阜寧組阜二段(Liu Xiaoping et al., 2020)等,證實(shí)了頁巖油具有巨大的資源勘探潛力(李曉光等,2019;鄒才能等,2019;胡宗全等,2021)。
測(cè)井技術(shù)作為重要的技術(shù)手段在頁巖油理論研究與勘探開發(fā)實(shí)踐中發(fā)揮了不可替代的作用(蔣云箭等,2020;李寧等,2021)。眾多專家學(xué)者針對(duì)頁巖測(cè)井評(píng)價(jià)做了很多卓有成效的工作,在頁巖層序地層(熊紹云等,2020)、巖相(匡立春等,2015;張超等,2017)、孔隙結(jié)構(gòu)(Loucks et al., 2012)、裂縫識(shí)別(Lyu Wenya et al., 2016;呂文雅等,2021)、儲(chǔ)層參數(shù)計(jì)算(張晉言,2012)、脆性指數(shù)(Lai Jin et al., 2015)、地層壓力(鐘淑敏等,2016)和源儲(chǔ)配置關(guān)系(鐘高潤(rùn)等,2016)等精細(xì)評(píng)價(jià)與測(cè)井表征取得系列成果。然而總體而言,非常規(guī)油氣的快速興起使得現(xiàn)今測(cè)井評(píng)價(jià)技術(shù)正面臨不適應(yīng)勘探開發(fā)對(duì)象的艱難時(shí)期(李浩等,2015;劉國強(qiáng),2021;賴錦等,2021)。致密、頁巖油氣評(píng)價(jià)提出的“七性關(guān)系”(巖性、物性、電性、含油性、脆性、烴源巖特性和地應(yīng)力各向異性)和“三品質(zhì)”(烴源巖品質(zhì)、儲(chǔ)層品質(zhì)和工程品質(zhì))評(píng)價(jià)使測(cè)井評(píng)價(jià)技術(shù)面臨多重挑戰(zhàn)和全新探索(李浩等,2015;劉國強(qiáng),2021;賴錦等,2021)??碧侥繕?biāo)的轉(zhuǎn)變以及技術(shù)需求的提高對(duì)測(cè)井評(píng)價(jià)技術(shù)提出了新的要求(李寧等,2020;蔣云箭等,2020),即由原來的常規(guī)儲(chǔ)層“四性關(guān)系”研究逐漸轉(zhuǎn)向非常規(guī)油氣“七性關(guān)系”和“三品質(zhì)”評(píng)價(jià)(趙政璋等,2012;閆偉林等,2014;蔣云箭等,2020;賴錦等,2021)。
然而目前缺乏一套可推廣的針對(duì)頁巖油的“七性關(guān)系”和“三品質(zhì)”測(cè)井評(píng)價(jià)體系,本文基于以上研究現(xiàn)狀和存在的問題,以蘇北盆地古近系阜寧組阜二段典型狹義頁巖油(Zhang et al., 2014)為例,首先分別闡明其巖性、物性、電性、含油性、脆性、烴源巖特性和地應(yīng)力各向異性等七性特征,然后通過巖芯分析化驗(yàn)資料以及常規(guī)測(cè)井結(jié)合新技術(shù)測(cè)井資料實(shí)現(xiàn)頁巖“七性關(guān)系”測(cè)井表征;在此基礎(chǔ)上分別建立頁巖油“三品質(zhì)”分類標(biāo)準(zhǔn)與對(duì)應(yīng)測(cè)井評(píng)價(jià)體系。以期為頁巖油測(cè)井評(píng)價(jià)提供了新思路和新方法,并為非常規(guī)油氣測(cè)井評(píng)價(jià)體系提供理論依據(jù)與技術(shù)示范。
蘇北盆地是在白堊系基底之上形成的中新生代斷陷湖盆,行政區(qū)劃上屬于安徽和江蘇地界,并向東延伸入黃海,其面積約3.5×104km2(Qiao Xiaojuan et al., 2012;Quaye et al., 2019;李維等,2020)。蘇北盆地構(gòu)造演化可以分為3個(gè)階段:早期拉伸斷裂階段、晚期斷陷階段以及坳陷階段(Liu Chao et al., 2016)。形成現(xiàn)今的近東西向“一隆兩坳”構(gòu)造格局:鹽阜坳陷、建湖隆起、東臺(tái)坳陷(圖1)(駱衛(wèi)峰等,2018)。鉆孔揭示蘇北盆地中新生代沉積物厚度可達(dá)7000 m,發(fā)育地層包括上白堊統(tǒng)泰州組(K2t),古近系阜寧組(E1f)、戴南組(E2d)和三垛組(E2s)以及新近系鹽城組(N2y)和第四系東臺(tái)組(Qd)(Chen Liqiong, 2009;Qiao Xiaojuan et al., 2012;Liu Chao et al., 2016;李維等,2020)。
圖1 蘇北盆地構(gòu)造帶劃分圖(據(jù)Zhang et al., 2014; Liu Jingshou et al., 2018;王旭影和姜在興,2021修改)Fig. 1 Tectonic location and units of Subei Basin (modified from Zhang et al., 2014; Liu Jingshou et al., 2018;Wang Xuying and Jiang Zaixing,2021&)
阜寧組自下而上可以劃分為4段,即阜一—阜四段(E1f1—E1f4)(Qi Kun et al., 2018)。其中,阜一段和阜三段沉積以河流—三角洲相為主,其巖性主要為砂巖、粉砂巖;而阜二段和阜四段以湖泊相深灰色泥頁巖為主,是蘇北盆地廣泛發(fā)育的烴源巖層(Qi Kun et al., 2018;王旭影和姜在興, 2018;彭金寧等,2020;Liu Xiaoping et al., 2020)。近年來隨著“進(jìn)源找油”理論的革新以及水平井鉆井、體積壓裂等技術(shù)的進(jìn)步,該套烴源巖層也逐漸成為產(chǎn)油的目的層并受到廣泛關(guān)注(Cheng Qingsong et al., 2019;Liu Xiaoping et al., 2020)。目前在蘇北盆地金湖凹陷和高郵凹陷鉆遇的阜寧組(阜二段和阜四段)泥頁巖層系200余井中見油氣顯示,試油有4 口井累計(jì)產(chǎn)油在1000 t以上,顯示了優(yōu)越的頁巖油聚集條件和良好的油氣勘探前景(段宏亮等,2020;付茜等,2020)。
巖性的識(shí)別與劃分是進(jìn)行頁巖油甜點(diǎn)評(píng)價(jià)預(yù)測(cè)、探井部署的基礎(chǔ)(趙賢正等,2017)。阜二段頁巖主要形成于相對(duì)低能環(huán)境的深湖、半深湖沉積環(huán)境,且其細(xì)微的沉積環(huán)境以及沉積物來源變化也造成沉積構(gòu)造、礦物組分特征等具有明顯差異(李維等,2020;付茜等,2020)。結(jié)合現(xiàn)場(chǎng)巖芯描述、薄片鑒定和XRD分析,確定阜寧組阜二段巖性主要是灰黑色頁巖(圖2a—c)、(灰質(zhì))泥頁巖(圖2d—f;圖2g—i)、云質(zhì)或粉砂質(zhì)泥巖等(圖2j—l;圖2m—o)(Cheng Qingsong et al., 2019; Liu Xiaoping et al., 2020)。XRD全巖分析表明主要礦物組成包括石英、長(zhǎng)石、碳酸鹽顆粒和黏土礦物(伊利石和伊蒙混層)以及黃鐵礦(Liu Xiaoping et al., 2021)。
氦氣孔隙度以及脈沖滲透率分析表明阜二段頁巖油儲(chǔ)層孔隙度介于0.18%~7.82%,平均僅2.14%,滲透率平均0.13×10-3μm2,分布在0.000002至 11.73×10-3μm2之間(Liu Xiaoping et al., 2020)(圖3a)。核磁共振T2譜分布基本表現(xiàn)為單峰狀,部分T2譜存在拖尾現(xiàn)象(圖3b)。說明其孔喉體系以細(xì)小的相對(duì)連續(xù)的孔隙空間為主,較少大孔徑粒間孔等(圖3b)。
Loucks 等(2009,2012)研究指出頁巖油孔隙空間基本為納米級(jí),且其孔隙類型包括粒間孔、粒內(nèi)孔、有機(jī)質(zhì)孔和微裂縫(Liu Xiaoping et al., 2021)。除微裂縫外,因此基于光學(xué)顯微鏡的鑄體薄片難以探測(cè)到頁巖油儲(chǔ)層中的不同孔隙類型(圖2),掃描電鏡在形貌及連通性等探測(cè)方面作用凸顯(Zhang Pengfei et al., 2018)。掃描電鏡觀察表明阜二段納米級(jí)孔隙廣泛發(fā)育,包含(1)無機(jī)成因孔隙,如顆粒(石英、長(zhǎng)石和碳酸鹽顆粒)粒間孔(圖3c)、粒內(nèi)(長(zhǎng)石和白云石顆粒)溶孔(圖3d)、礦物(黏土礦物和白云石)晶間孔(圖3e,3f);(2)有機(jī)成因孔隙如有機(jī)質(zhì)孔(圖3g);(3)微裂縫(圖3h)(Liu Xiaoping et al., 2020)。
頁巖油微觀含油性由孔隙類型及其組合特征以及礦物潤(rùn)濕性決定(Xi Kelai et al., 2019;Zhao Xianzheng et al., 2019;Liu Xiaoping et al., 2020)。熒光薄片視域下可見阜二段頁巖全尺度孔隙均含油,礦物顆粒如長(zhǎng)石、白云石等邊緣發(fā)暗藍(lán)或亮藍(lán)色熒光(圖4a,b),長(zhǎng)石以及親油性白云石顆粒內(nèi)部溶蝕形成的粒內(nèi)孔隙暗藍(lán)或亮藍(lán)色熒光特征呈分散狀分布(圖4a,b)(Liu Xiaoping et al., 2020)。部分陸源黏土礦物內(nèi)部以及有機(jī)質(zhì)內(nèi)部也有分散藍(lán)色熒光特征(圖4c,d),此外,未被充填的微裂縫暗色熒光特征也很明顯(圖4e,f)。事實(shí)上,頁巖油儲(chǔ)層中哪怕孔徑最小的有機(jī)質(zhì)孔,由于其親油性,往往也是含油的(Loucks et al., 2009; Li Maowen et al., 2019)。
圖4 蘇北盆地阜寧組二段不同孔隙微觀含油性特征Fig. 4 Oil-bearing property of various pore spaces of the Second Member of the Paleogene Funing Formation in Subei Basin(a) 石英、白云石礦物顆粒分散分布,見生物碎屑,發(fā)育一條裂縫,Ji-19井,3828.5 m;(b)礦物顆粒邊緣分散暗藍(lán)色熒光特征,a視域熒光照片;(c) 成分主要為陸源黏土礦物(泥質(zhì)),微晶方解石,有機(jī)質(zhì)分散分布,發(fā)育微裂縫,Ji-19井,3847 m;(d) 陸源黏土發(fā)斑點(diǎn)狀藍(lán)色熒光,有機(jī)質(zhì)內(nèi)部熒光呈分散狀,c視域熒光照片;(e) 石英長(zhǎng)石等分散分布,有機(jī)物分散分布,發(fā)育一條微裂縫,Ji-19井,3833 m;(f) 有機(jī)質(zhì)熒光呈斑點(diǎn)狀,微裂縫邊緣含油,發(fā)暗藍(lán)色熒光,e視域熒光照片(a) quartz, dolomite mineral particles are scattered distributed, and containing bioclasts, there is a microfracture, the Well Ji-19, 3825.5 m; (b) the edges of particle emit blue fluorescences, the same filed view of a under ultraviolet (UV) light; (c) the composition is dominantly detrital clay (mudrocks), microcrystalline calcite, and the organic matters are scattered distributed, there is a microfracture, the Well Ji-19, 3847 m; (d) the detrital clay emit scattered blue fluorescences, and there are scattered blue fluorescences in organic matters, the same filed view of c under ultraviolet (UV) light; (e) the quartz and feldspare as well as the organic matters are scattered distributed, and there is a micro-fracture, the Well Ji-19, 3833 m; (f) there are scattered blue fluorescences in organic matters, the edges of the microfractures are fluorescent (dark blue), he same filed view of e under ultraviolet (UV) light
頁巖電測(cè)響應(yīng)表現(xiàn)出明顯的高伽馬(>60 API)、高中子(>15%)、高聲波時(shí)差(>250 μs/m)、低密度(<2.55 g/cm3)、高電阻率的特征(圖6)。含油性好的頁巖層段又表現(xiàn)出特定的響應(yīng),即相對(duì)低伽馬、高電阻率、深淺電阻率存在幅度差、核磁共振T2譜分布范圍寬,且存在一定的拖尾現(xiàn)象。而相對(duì)不含油的頁巖層段表現(xiàn)為相對(duì)高伽馬、低電阻率(深淺電阻率基本重合)、高Pe值(>5 b/e)、高密度和低聲波時(shí)差的特征(圖6)(Liu Xiaoping et al., 2020)。
評(píng)價(jià)烴源巖特性通常依賴地球化學(xué)分析測(cè)試方法,獲得其中有機(jī)質(zhì)類型、有機(jī)質(zhì)豐度和成熟度等參數(shù),其中的有機(jī)質(zhì)豐度常用總有機(jī)碳含量(TOC)來表征(楊濤濤等,2013;Zhao Xianzheng et al., 2019)。但受到分析樣品數(shù)量和成本的限制,單井縱向上連續(xù)評(píng)價(jià)TOC的工作通常難以開展,因此利用縱向分辨率高、連續(xù)性好的測(cè)井資料勢(shì)在必行(王貴文等,2002;楊濤濤等,2013)。Schmoker(1981)利用對(duì)烴源巖有機(jī)碳響應(yīng)比較靈敏的自然伽馬、密度和聲波時(shí)差等曲線建立了烴源巖定性識(shí)別方法。Passey等(1990)提出了基于聲波時(shí)差和電阻率曲線相疊合的ΔlgR方法進(jìn)行TOC測(cè)井計(jì)算(Passey et al., 1990),此后國內(nèi)外學(xué)者在此基礎(chǔ)上提出了基于不同電測(cè)響應(yīng)具有不同適應(yīng)性的TOC測(cè)井評(píng)價(jià)模型,并取得了廣泛應(yīng)用(王貴文等,2002;朱光有等,2003;Zhao Peiqiang et al., 2016;Shalaby et al., 2019;Godfray and Seetharamaiah, 2019)。
ΔlgR=lg(R/R基線)+0.02(Δt-Δt基線)
(1)
TOC=ΔlgR×10(2.297-0.1688LOM)
(2)
式(1)和(2)中,ΔlgR為聲波和電阻率曲線分異幅度,它包含了巖石屬性和烴源巖特性,R為測(cè)井(深)電阻率,Ω·m;Δt為實(shí)測(cè)聲波時(shí)差,μs/ft (1 ft=30.48 cm);R基線和Δt基線為聲波和電阻率基線對(duì)應(yīng)的電阻率(Ω·m)和聲波時(shí)差值(50 μs/ft)。LOM為熱變指數(shù),是指示有機(jī)質(zhì)成熟度的參數(shù),與鏡質(zhì)體反射率(Ro)對(duì)應(yīng)的常數(shù)。
實(shí)際操作過程中將聲波時(shí)差(線性刻度)和電阻率測(cè)井曲線(對(duì)數(shù)刻度)疊合時(shí)通常每50 μs/ft(164 μs/m)聲波時(shí)差對(duì)應(yīng)一個(gè)對(duì)數(shù)電阻率刻度(如電阻率從1~10 Ω·m),在非烴源巖段兩條曲線將重疊(基線處),而在二者分異處,即為烴源巖段,且分異幅度越大,一般指示有機(jī)質(zhì)含量越豐富。當(dāng)然實(shí)際操作過程中還需利用自然伽馬曲線等識(shí)別剔除蒸發(fā)巖、火成巖、致密層段或井壁垮塌嚴(yán)重層段(石玉江等,2012)。
考慮到ΔlgR方法要找基線,可能存在誤差,而研究表明自然伽馬能譜測(cè)井能分別得到地層中鈾元素、釷元素以及鉀元素含量,因此也可利用自然伽馬能譜測(cè)井可對(duì)烴源巖有機(jī)質(zhì)豐度進(jìn)行定量評(píng)價(jià)(陸巧煥等,2006)。本次研究發(fā)現(xiàn)其TOC含量與K元素具有良好的相關(guān)性(圖5),故本論文對(duì)于采集了自然伽馬能譜測(cè)井的井采用自然伽馬能譜測(cè)井K元素對(duì)TOC進(jìn)行定量評(píng)價(jià),而沒有采集自然伽馬能譜測(cè)井的井則采取ΔlgR方法進(jìn)行TOC測(cè)井計(jì)算。
圖5 自然伽馬能譜測(cè)井K含量與實(shí)測(cè)TOC交會(huì)圖Fig. 5 Crossplot diagram of K element of natural gamma ray spectrum and the measured TOC
頁巖油儲(chǔ)層致密,非均質(zhì)性較強(qiáng),要采取壓裂改造等才能獲得工業(yè)油流,因此巖石脆性評(píng)價(jià)對(duì)優(yōu)選壓裂增產(chǎn)層段至關(guān)重要(高輝等,2018)。針對(duì)非常規(guī)油氣儲(chǔ)集層而言,巖石脆性一般定義是其發(fā)生破裂前的瞬態(tài)變化難易程度,間接反映的是儲(chǔ)層經(jīng)壓裂改造后所形成裂縫的復(fù)雜程度,一般可通過脆性指數(shù)來定量表征(袁俊亮等,2014;孫建孟等,2015;Avanzini et al., 2016;賴錦等,2016;Iqbal et al., 2018)。通常脆性高的層段可壓裂性越好,在壓裂作業(yè)中能夠迅速形成復(fù)雜的網(wǎng)狀裂縫,有利于油氣開發(fā)(Guo Tiankui et al., 2015;賴錦等,2016;Iqbal et al., 2018;劉可禹和劉暢,2019)。脆性指數(shù)的計(jì)算方法可分為3種,一是基于巖石力學(xué)參數(shù)的泊—楊法(泊松比、楊氏模量法)(式3、式4、式5);二是基于脆性礦物(石英、長(zhǎng)石、碳酸鹽等)含量計(jì)算礦物成分比值法(式6、式7);三是地區(qū)經(jīng)驗(yàn)公式法(Jarvie et al., 2007;Lai Jin et al., 2015;賴錦等,2016;Iqbal et al., 2018;Zhao Xianzheng et al., 2019)。通常脆性礦物含量越高,將導(dǎo)致巖石力學(xué)參數(shù)中的泊松比減小而楊氏模量增大(Kumar et al., 2018),因此礦物組分法和泊松比—楊氏模量法二者緊密相連,礦物組分是巖石力學(xué)特征的物質(zhì)基礎(chǔ)與內(nèi)因,巖石力學(xué)參數(shù)則是脆性的外在表現(xiàn)形式(董寧等,2013;賴錦等,2016)。
(3)
(4)
(5)
(6)
(7)
式中,BI為脆性指數(shù),%;Qz為石英含量;Car為碳酸鹽含量;Fels為長(zhǎng)石含量;Clay為黏土總量。E為巖石的楊氏模量,GPa;ν為巖石泊松比,無量綱;下標(biāo)min和max分別代表該參數(shù)在某個(gè)地層段內(nèi)的最小值和最大值。BIE和BIν分別為通過楊氏模量和泊松比所計(jì)算的脆性指數(shù)。
本次研究采取了泊松比—楊氏模量法計(jì)算脆性指數(shù),計(jì)算結(jié)果表明,脆性指數(shù)介于20%~80%(圖6)。
地應(yīng)力是深度、巖性、孔隙壓力、結(jié)構(gòu)和構(gòu)造的綜合反映(唐振興等,2019)。各向異性為巖石固有屬性,通??梢酝ㄟ^正交偶極測(cè)井提取地層各向異性參數(shù),并結(jié)合成像測(cè)井進(jìn)行最大水平地應(yīng)力方向判別、裂縫評(píng)價(jià)、水力壓裂和射孔方案設(shè)計(jì)(趙軍等,2005;魏周拓等,2012)。其中地應(yīng)力各向異性評(píng)價(jià)在非常規(guī)油氣井網(wǎng)布置、鉆完井設(shè)計(jì)、壓裂改造、井壁穩(wěn)定性分析中起著舉足輕重的作用(趙軍等,2005;劉建偉等,2016;孟憲波等,2019)。地應(yīng)力方向可通過成像測(cè)井拾取誘導(dǎo)縫和井壁崩落方位進(jìn)行判別,二者分別指示現(xiàn)今最大和最小水平主應(yīng)力方向(Lai Jin et al., 2018;Stadtmuller et al., 2018)。此外,在三軸應(yīng)力(垂向、水平最大、水平最小應(yīng)力)不均衡的各向異性地層中,橫波傳播時(shí)將分裂成快慢橫波(橫波分裂),且橫波在最大水平主應(yīng)力方向上傳播速度最快,因此通過陣列聲波測(cè)井提取快慢橫波方位也可以進(jìn)行地應(yīng)力方位拾取(陸黃生,2012;Lai Jin et al., 2019)。Schlumberger的偶極聲波DSI和Baker Hughes的多極子聲波XMAC均可用于橫波方向的提取,同時(shí)可提供或計(jì)算①縱、橫波速度;②巖石力學(xué)參數(shù);③巖石破裂壓力、地層壓力、最大最小水平主應(yīng)力(陸黃生,2012;Lai Jin et al., 2017;Iqbal et al., 2018)。
本次研究通過DSI提取的地層各向特征表明,單井水平最大主應(yīng)力方向垂向上不斷變化,但總體優(yōu)勢(shì)方位為北東—南西方向,偶見近東西向水平最大主應(yīng)力方向(圖6)。
20世紀(jì)60年代,大慶油田基于電測(cè)井序列,針對(duì)常規(guī)油氣儲(chǔ)集層,率先提出了“四性關(guān)系”(巖性、物性、含油性和電性)為依托的地層評(píng)價(jià)方法(孫建孟等,2013)。如今得益于非常規(guī)油氣地質(zhì)理論以及壓裂改造工藝等技術(shù)的進(jìn)步,致密油氣、頁巖油氣逐漸成為勘探開發(fā)的重要目標(biāo)(付金華等,2019)。勘探目標(biāo)的轉(zhuǎn)變以及技術(shù)需求的提高對(duì)測(cè)井評(píng)價(jià)技術(shù)提出了新的要求,即由原來的“四性關(guān)系”研究逐漸轉(zhuǎn)向“七性關(guān)系”研究,因此亟需提取相關(guān)測(cè)井屬性和信息,提供測(cè)井識(shí)別精度和擴(kuò)展測(cè)井評(píng)價(jià)廣度。當(dāng)前針對(duì)非常規(guī)油氣儲(chǔ)集層,只有以大量高精度巖石物理實(shí)驗(yàn)為依托,刻度常規(guī)、成像和核磁等多尺度測(cè)井評(píng)價(jià)序列,建立全井段取芯、多序列測(cè)井的鐵柱子井,才能實(shí)現(xiàn)非常規(guī)油氣儲(chǔ)集層“七性關(guān)系”綜合評(píng)價(jià)(唐振興等,2019)。如準(zhǔn)噶爾盆地吉木薩爾凹陷蘆草溝組頁巖油吉174井(匡立春等,2015)、鄂爾多斯盆地延長(zhǎng)組長(zhǎng)7段頁巖油的城96井(冉冶等,2016)以及準(zhǔn)噶爾盆地瑪湖凹陷風(fēng)城組頁巖瑪頁1井(Wang Song et al., 2021)等。
“鐵柱子井”的巖石物理含義即是建立一口取芯和分析化驗(yàn)資料較全,同時(shí)測(cè)井采集序列也配套的標(biāo)桿井,建立測(cè)井信息與地質(zhì)信息的橋梁,明確甜點(diǎn)段在測(cè)井信息上的響應(yīng)特征,后續(xù)的新井解釋都可在“鐵柱子井”指導(dǎo)下進(jìn)行。鐵柱子井的建立可為非常規(guī)致密、頁巖油氣測(cè)井評(píng)價(jià)搭建了測(cè)井和地質(zhì)研究的橋梁,并可指導(dǎo)其他單井“七性關(guān)系”研究和“三品質(zhì)”評(píng)價(jià)工作(匡立春等,2015)。本文通過綜合研究,即實(shí)現(xiàn)了從巖性、物性、含油性、電性到脆性、烴源巖特性和地應(yīng)力各向異性的Ji-19井鐵柱子建立(圖6)。
鐵柱子研究表明電性是巖性、物性和含油性的綜合響應(yīng),阜二段最頂部的泥脖子段表現(xiàn)出典型的高伽馬、低電阻的特征,為典型泥巖層。其孔隙度較低(3%~4%),測(cè)井計(jì)算TOC(1.5%~2.5%)和脆性指數(shù)均較低(<40%),代表了巖性對(duì)其他六性的控制。而王八蓋段以及下伏的七尖峰和四尖峰段為典型云質(zhì)頁巖的低伽馬高電阻率的特征,測(cè)井計(jì)算和實(shí)測(cè)TOC均較高,實(shí)測(cè)和計(jì)算的孔隙度也較高,源巖和儲(chǔ)層疊置發(fā)育,因此其為典型的好儲(chǔ)集層和烴源巖層(圖6)。上山子、中山子和下山子段也為典型的烴源巖與儲(chǔ)集層疊置發(fā)育段,其中的高伽馬、高電阻層段為好烴源巖層,而低伽馬、中—高電阻,且深淺電阻率明顯具有分異特征的層段,則為儲(chǔ)集層發(fā)育層段,通常也對(duì)應(yīng)脆性較高層段(圖6)??傮w上,Ji-19井單井地應(yīng)力各向異性特征較強(qiáng),可以看到,水平最大主應(yīng)力方向垂向上不斷旋轉(zhuǎn)變化,但總體以近北東—南西方向?yàn)橹?圖6)。
針對(duì)非常規(guī)油氣的“三品質(zhì)”評(píng)價(jià)包括烴源巖品質(zhì)評(píng)價(jià)、儲(chǔ)層品質(zhì)評(píng)價(jià)和工程品質(zhì)評(píng)價(jià)。其中,烴源巖品質(zhì)對(duì)應(yīng)資源甜點(diǎn)區(qū)、儲(chǔ)層品質(zhì)對(duì)應(yīng)物性甜點(diǎn)區(qū),工程品質(zhì)對(duì)應(yīng)工程甜點(diǎn)區(qū)(張鵬飛等,2019)?!叭焚|(zhì)”評(píng)價(jià)是非常規(guī)油氣評(píng)價(jià)的重中之重,可以此為基礎(chǔ)優(yōu)選出致密油氣物性和工程“甜點(diǎn)”分布(閆偉林等,2014;唐振興等,2019;李曉光等,2019;付鎖堂等,2020;王小軍等,2019;匡立春等,2021)。
4.1.1烴源巖品質(zhì)
烴源巖品質(zhì)評(píng)價(jià)主要依托七性關(guān)系研究中的烴源巖特性。烴源巖品質(zhì)決定了油氣的富集程度,因此烴源巖評(píng)價(jià)是基礎(chǔ)(杜江民等,2016)。蘇北盆地阜二段烴源巖有機(jī)質(zhì)類型好,以Ⅰ型和Ⅱ型有機(jī)質(zhì)為主,有機(jī)質(zhì)豐度高,測(cè)井TOC計(jì)算可以看出阜二段TOC基本都大于1%,由此根據(jù)烴源巖分類標(biāo)準(zhǔn)將研究區(qū)阜二段烴源巖劃分為3種類型,其中好的烴源巖其TOC含量大于2%,中等烴源巖TOC含量1%~2%,差烴源巖TOC含量小于1%。
4.1.2儲(chǔ)層品質(zhì)
儲(chǔ)層品質(zhì)評(píng)價(jià)“巖性”、“物性”、“電性”和“含油性”(尹成芳等,2017)。本文選取頁巖儲(chǔ)層孔隙結(jié)構(gòu)特征作為研究區(qū)阜二段頁巖儲(chǔ)層有效性的主要影響參數(shù)進(jìn)而對(duì)頁巖儲(chǔ)層有效性進(jìn)行研究?;趲r芯、薄片、掃描電鏡分析基礎(chǔ)上,將研究區(qū)阜二段儲(chǔ)層孔隙結(jié)構(gòu)根據(jù)毛管曲線及其參數(shù)、核磁共振T2譜以及不可動(dòng)流體體積參數(shù)BVI(束縛水飽和度)將儲(chǔ)層類型劃分為四類(表1)(Liu Xiaoping et al., 2020)。同時(shí)核磁共振測(cè)井可提供核磁孔隙度、束縛水飽和度等參數(shù)(Lai Jin et al., 2020;Wang Guiwen et al., 2020),因此可用于儲(chǔ)層類型劃分。
其中,I類對(duì)應(yīng)儲(chǔ)層孔隙度>4%,滲透率大于0.02×10-3μm2,核磁孔隙度最高可達(dá)6%,存在一定的基質(zhì)孔隙,部分發(fā)育粒間孔和微裂縫,流體可動(dòng)性好,束縛水飽和度值相對(duì)較低(<75%)(表1)。
Ⅱ類對(duì)應(yīng)儲(chǔ)層孔隙度2%~4%,滲透率0.002×10-3μm2~0.02×10-3μm2,具有黏土礦物晶間孔和顆粒溶蝕孔形成的復(fù)雜孔隙結(jié)構(gòu)特征,晶間孔主要形成于自生黏土礦物中,顆粒溶蝕孔主要為長(zhǎng)石、白云石顆粒遭受溶蝕形成的不規(guī)則和鋸齒狀孔隙。核磁孔隙度可達(dá)5%以上,具有中等束縛水飽和度值(表1)。
Ⅲ類主要由有機(jī)質(zhì)孔、粒內(nèi)溶孔以及粒間孔構(gòu)成,孔隙結(jié)構(gòu)復(fù)雜,對(duì)應(yīng)儲(chǔ)層孔隙度1%~2%,滲透率0.0001×10-3μm2~0.01×10-3μm2,束縛水相對(duì)較高(表1)。
表1 蘇北盆地古近系阜二段儲(chǔ)層類型劃分表Table 1 Reservoir type classification of the Second Member of the Funing Formation in Subei Basin
Ⅳ類對(duì)應(yīng)的孔隙度<1%,滲透率<0.0001×10-3μm2,孔隙類型主要為有機(jī)質(zhì)孔,雖然有機(jī)質(zhì)孔較為
發(fā)育,但其連通性較差,導(dǎo)致該孔隙結(jié)構(gòu)類型具有較高束縛水飽和度值,難以成為有利儲(chǔ)層(表1)。
4.1.3工程品質(zhì)
工程品質(zhì)評(píng)價(jià)主要指“脆性”和“地應(yīng)力和各向異性”的評(píng)價(jià)(尹成芳等,2017)。工程品質(zhì)評(píng)價(jià)最終的目的是評(píng)價(jià)儲(chǔ)層的脆性、可壓裂性(覃豪和楊小磊,2019)。工程甜點(diǎn)區(qū)位于地應(yīng)力較低、脆性較強(qiáng)層段(高輝等,2018)。前已述及,Ji-19井最大水平主應(yīng)力方向主要為北東—南西向,而計(jì)算的脆性指數(shù)基本都大于40%,整體脆性指數(shù)較高。根據(jù)脆性指數(shù)來對(duì)頁巖工程品質(zhì)進(jìn)行分類,其中I類工程甜點(diǎn)區(qū)脆性指數(shù)>60%,Ⅱ類工程甜點(diǎn)區(qū)則脆性介于40%~60%,Ⅲ類則脆性指數(shù)小于40%層段。
頁巖油有利區(qū)既是資源甜點(diǎn)區(qū)、物性甜點(diǎn)區(qū),又是工程甜點(diǎn)區(qū)(Avanzini et al., 2016;張鵬飛等,2019)。其中頁巖油“三品質(zhì)”評(píng)價(jià)中,烴源巖品質(zhì)對(duì)應(yīng)資源甜點(diǎn)區(qū)、儲(chǔ)層品質(zhì)對(duì)應(yīng)物性甜點(diǎn)區(qū),工程品質(zhì)對(duì)應(yīng)工程甜點(diǎn)區(qū)(Zhao Xianzheng et al., 2019)。對(duì)單井頁巖油甜點(diǎn)評(píng)價(jià)而言,物性甜點(diǎn)和工程甜點(diǎn)的優(yōu)選尤為重要(付鎖堂等,2020)。在以上“七性關(guān)系”鐵柱子井建立的基礎(chǔ)上,對(duì)于研究區(qū)其他單井,即可實(shí)現(xiàn)其“三品質(zhì)”測(cè)井評(píng)價(jià)以及可依托“三品質(zhì)”特征實(shí)現(xiàn)其甜點(diǎn)發(fā)育區(qū)帶優(yōu)選(Kumar et al., 2018)。
烴源巖品質(zhì)可通過ΔlgR法和自然伽馬能譜統(tǒng)計(jì)回歸法評(píng)價(jià)TOC,從而尋找優(yōu)質(zhì)烴源巖,確定資源甜點(diǎn)區(qū)帶(張鵬飛等,2019;付金華等,2019;付鎖堂等,2020)。儲(chǔ)層品質(zhì)評(píng)價(jià)核心為宏觀物性參數(shù)和微觀孔隙結(jié)構(gòu),可依托常規(guī)孔隙度測(cè)井和核磁共振測(cè)井T2譜來確定物性甜點(diǎn)區(qū)帶(付金華等,2019;李曉光等,2019;付鎖堂等,2020)。工程品質(zhì)定量評(píng)價(jià),基于陣列聲波測(cè)井以及礦物組分比值法(元素俘獲測(cè)井)計(jì)算巖石脆性指數(shù),并依托成像和陣列聲波測(cè)井實(shí)現(xiàn)地應(yīng)力各向異性特征(包括現(xiàn)今最大水平主應(yīng)力方向)的提取,確定工程甜點(diǎn)區(qū)帶,為壓裂設(shè)計(jì)優(yōu)化提供技術(shù)支持(Iqbal et al., 2018;王小軍等,2019;付金華等,2019;李曉光等,2019;付鎖堂等,2020)。
通過自然伽馬能譜測(cè)井計(jì)算的TOC,實(shí)現(xiàn)了吉10井單井烴源巖品質(zhì)識(shí)別與劃分,可以看到,好烴源巖段主要位于泥脖子、七尖峰和四尖峰段,為頁巖油富集提供資源甜點(diǎn)(圖7)。通過測(cè)井計(jì)算孔隙度以及核磁共振T2譜特征,確定了好的儲(chǔ)集層段主要對(duì)應(yīng)特征為測(cè)井解釋孔隙度較高,同時(shí)具備較寬的核磁共振T2譜,甚至部分層段還存在拖尾現(xiàn)象。此外,高分辨率陣列感應(yīng)測(cè)井(M2R1—M2Rx系列測(cè)井)往往具備明顯的分異現(xiàn)象,即深淺電阻率具備明顯的曲線幅度差(圖7)。通過測(cè)井計(jì)算的脆性指數(shù)實(shí)現(xiàn)了工程品質(zhì)的劃分,有利的工程甜點(diǎn)發(fā)育段往往對(duì)應(yīng)脆性指數(shù)較高的層段(圖7)。
研究表明,頁巖油物性“甜點(diǎn)”和工程“甜點(diǎn)”的有效結(jié)合體通常對(duì)應(yīng)頁巖油發(fā)育層段(蔣云箭等,2020;付鎖堂等,2020)。通過儲(chǔ)層品質(zhì)和工程品質(zhì)相耦合,最終劃分出Ji 10井單井3個(gè)甜點(diǎn)(物性和工程甜點(diǎn)相疊加)發(fā)育段,主要分布在泥脖子、七尖峰、四尖峰和上山字和中山字段(圖7)。優(yōu)選出的物性和工程甜點(diǎn)段與實(shí)際試油資料吻合較好,王八蓋地層、七尖峰和四尖峰三小層合試,日產(chǎn)油12.23 m3,累產(chǎn)油123.52 m3,證實(shí)了三品質(zhì)劃分結(jié)果的準(zhǔn)確性(圖7)。因此通過在“七性關(guān)系”研究的基礎(chǔ)上,建立“三品質(zhì)”的測(cè)井識(shí)別與評(píng)價(jià)標(biāo)準(zhǔn),最終通過單井“三品質(zhì)”劃分優(yōu)選頁巖油甜點(diǎn)方法切實(shí)可行。
圖7 蘇北盆地古近系阜二段Ji 10單井“三品質(zhì)”測(cè)井評(píng)價(jià)Fig. 7 Three property division of the Well Ji-10 of the Second Member of Paleogene Funing Formation in Subei Basin
蘇北盆地古近系阜二段巖性主要是灰黑色頁巖、(灰質(zhì))泥頁巖、云質(zhì)或粉砂質(zhì)泥巖等,儲(chǔ)集空間包括粒間孔、顆粒溶孔、晶間孔、有機(jī)質(zhì)孔以及微裂縫,熒光薄片表明不同類型和不同孔徑孔隙含油性均較好。核磁共振T2譜分布基本表現(xiàn)為單峰狀,且很少出現(xiàn)拖尾現(xiàn)象。說明其孔喉體系以細(xì)小的相對(duì)連續(xù)的孔隙空間為主,較少或缺失大孔徑粒間孔等。測(cè)井曲線上頁巖表現(xiàn)為高伽馬(>60 API)、高中子(>15%)、高聲波時(shí)差(>250 μs/m)、低密度(<2.55 g/cm3)、高電阻率的特征。根據(jù)自然伽馬能譜測(cè)井和ΔlgR建立了TOC測(cè)井模型,結(jié)果表明阜二段烴源巖有機(jī)質(zhì)類型好,TOC基本都大于1%。根據(jù)泊松比—楊氏模量法計(jì)算脆性指數(shù),結(jié)果表明脆性指數(shù)介于20%~80%。陣列聲波測(cè)井提取的地應(yīng)力各向異性特征表明,單井水平最大主應(yīng)力方向垂向上不斷變化,但總體優(yōu)勢(shì)方位為北東—南西方向。最終建立了包含巖性、物性、電性、含油性、脆性、烴源巖特性和地應(yīng)力各向異性“七性關(guān)系”特征的鐵柱子井。
根據(jù)TOC大小實(shí)現(xiàn)烴源巖品質(zhì)劃分,根據(jù)脆性指數(shù)實(shí)現(xiàn)工程品質(zhì)劃分。然后根據(jù)物性參數(shù)結(jié)合核磁共振T2譜建立了儲(chǔ)層品質(zhì)劃分標(biāo)準(zhǔn)。在“七性關(guān)系”研究基礎(chǔ)上,通過對(duì)儲(chǔ)層品質(zhì)、烴源巖品質(zhì)以及工程品質(zhì)三者疊加完成了單井“甜點(diǎn)”段優(yōu)選,結(jié)果表明單井甜點(diǎn)主要分布在泥脖子、七尖峰、四尖峰和上山字和中山字段,結(jié)果與試油資料相吻合。在“七性關(guān)系”研究基礎(chǔ)上,通過建立“三品質(zhì)”的測(cè)井識(shí)別與評(píng)價(jià)標(biāo)準(zhǔn),可基于單井“三品質(zhì)”劃分優(yōu)選頁巖油甜點(diǎn)。研究結(jié)果可為頁巖油甜點(diǎn)綜合評(píng)價(jià)和預(yù)測(cè)提供理論指導(dǎo)和方法支撐。
致謝:感謝中國石油浙江油田分公司勘探開發(fā)研究院提供的資料支持,同時(shí)部分測(cè)井解釋成果為中國石油集團(tuán)測(cè)井有限公司所提供,對(duì)他們所做的工作全體作者在此表示衷心感謝!
(The literature whose publishing year followed by a “&” is in Chinese with English abstract; The literature whose publishing year followed by a “#” is in Chinese without English abstract)
段宏亮, 劉世麗, 付茜. 2020. 蘇北盆地古近系阜寧組二段富有機(jī)質(zhì)頁巖特征與沉積環(huán)境. 石油實(shí)驗(yàn)地質(zhì), 42(4): 612~617.
董寧, 許杰, 孫贊東, 路青, 周剛, 劉致水. 2013. 泥頁巖脆性地球物理預(yù)測(cè)技術(shù). 石油地球物理勘探, 48(增刊1): 69~74.
杜江民, 張小莉, 鐘高潤(rùn), 封從軍, 郭嶺, 張曉龍, 羅文行. 2016. 致密油烴源巖有機(jī)碳含量測(cè)井評(píng)價(jià)方法優(yōu)選及應(yīng)用——以鄂爾多斯盆地延長(zhǎng)組長(zhǎng)7 段烴源巖為例. 地球物理學(xué)進(jìn)展, 31(6) : 2526~2533.
付茜, 劉啟東, 劉世麗, 段宏亮. 2020. 蘇北盆地高郵凹陷古近系阜寧組二段頁巖油成藏條件分析. 石油實(shí)驗(yàn)地質(zhì), 42(4): 625~631.
付金華, 牛小兵, 淡衛(wèi)東, 馮勝斌, 梁曉偉, 辛紅剛, 尤源. 2019. 鄂爾多斯盆地中生界延長(zhǎng)組長(zhǎng)7段頁巖油地質(zhì)特征及勘探開發(fā)進(jìn)展. 中國石油勘探, 24(5): 601~614.
付鎖堂, 付金華, 牛小兵, 李士祥, 吳志宇, 周新平, 劉江艷. 2020. 慶城油田成藏條件及勘探開發(fā)關(guān)鍵技術(shù). 石油學(xué)報(bào), 41(7): 777~795.
高輝, 張曉, 何夢(mèng)卿, 徐創(chuàng)朝, 竇亮彬, 朱耿博侖, 李宇. 2018. 基于測(cè)井?dāng)?shù)據(jù)體的頁巖油儲(chǔ)層可壓裂性評(píng)價(jià)研究. 地球物理學(xué)進(jìn)展, 33(2): 603~612.
胡宗全, 鄭倫舉, 申寶劍, 陳剛, 劉忠寶. 2021. 非常規(guī)與常規(guī)統(tǒng)一的含油氣系統(tǒng)之初探. 地質(zhì)論評(píng), 67(4): 1007~1020.
蔣云箭, 劉惠民, 柴春艷, 辛忠斌. 2020. 頁巖油油氣可動(dòng)性測(cè)井響應(yīng)特征分析及應(yīng)用. 油氣地質(zhì)與采收率, 27(5): 1~9.
金之鈞, 白振瑞, 高波, 黎茂穩(wěn). 2019. 中國迎來頁巖油氣革命了嗎? 石油與天然氣地質(zhì), 40(3): 451~458.
匡立春, 王霞田, 郭旭光, 常秋生, 賈希玉. 2015. 吉木薩爾凹陷蘆草溝組致密油地質(zhì)特征與勘探實(shí)踐. 新疆石油地質(zhì), 36(6): 629~634.
匡立春, 侯連華, 楊智, 吳松濤. 2021. 陸相頁巖油儲(chǔ)層評(píng)價(jià)關(guān)鍵參數(shù)及方法. 石油學(xué)報(bào), 42(1): 1~14.
賴錦, 王貴文, 范卓穎, 陳晶, 王抒忱, 周正龍, 范旭強(qiáng). 2016. 非常規(guī)油氣儲(chǔ)層脆性指數(shù)測(cè)井評(píng)價(jià)方法研究進(jìn)展. 石油科學(xué)通報(bào), 3: 330~341.
賴錦, 王貴文, 龐小嬌, 韓宗晏, 李棟, 趙儀迪, 王松, 江程舟, 李紅斌, 黎雨航. 2021. 測(cè)井地質(zhì)學(xué)前世今生與未來——寫在《測(cè)井地質(zhì)學(xué)·第二版》出版之時(shí). 地質(zhì)論評(píng), 67(6): 1804~1828.
李浩, 劉雙蓮, 王丹丹, 譚承軍, 趙連水. 2015. 我國測(cè)井評(píng)價(jià)技術(shù)應(yīng)用中常見地質(zhì)問題分析. 地球物理學(xué)進(jìn)展, 30(2): 776~782.
李寧, 閆偉林, 武宏亮, 鄭建東, 馮周, 張兆謙, 王克文, 王敬巖. 2020. 松遼盆地古龍頁巖油測(cè)井評(píng)價(jià)技術(shù)現(xiàn)狀、問題及對(duì)策. 大慶石油地質(zhì)與開發(fā), 39(3): 117~128.
李寧, 徐彬森, 武宏亮, 馮周, 李雨生, 王克文, 劉鵬. 2021. 人工智能在測(cè)井地層評(píng)價(jià)中的應(yīng)用現(xiàn)狀及前景. 石油學(xué)報(bào), 42(4): 508~522.
李維, 朱筱敏, 段宏亮, 李鶴永, 劉世麗. 2020. 蘇北盆地高郵—金湖凹陷古近系阜寧組細(xì)粒沉積巖紋層特征與成因. 古地理學(xué)報(bào), 22(3): 469~482.
李曉光, 劉興周, 李金鵬, 田志. 2019. 遼河坳陷大民屯凹陷沙四段湖相頁巖油綜合評(píng)價(jià)及勘探實(shí)踐. 中國石油勘探, 24(5): 636~648.
劉可禹, 劉暢. 2019. “化學(xué)-沉積相”分析: 一種研究細(xì)粒沉積巖的有效方法. 石油與天然氣地質(zhì), 40(3): 491~503.
劉國強(qiáng). 2021. 非常規(guī)油氣勘探測(cè)井評(píng)價(jià)技術(shù)的挑戰(zhàn)與對(duì)策. 石油勘探與開發(fā), 48(5): 891~902.
劉建偉, 張?jiān)沏y, 曾聯(lián)波, 高秋菊, 耿雪. 2016. 非常規(guī)油藏地應(yīng)力和應(yīng)力甜點(diǎn)地球物理預(yù)測(cè)——渤南地區(qū)沙三下亞段頁巖油藏勘探實(shí)例. 石油地球物理勘探, 51(4): 792~800.
陸黃生. 2012. 測(cè)井技術(shù)在石油工程中的應(yīng)用分析與發(fā)展思考. 石油鉆探技術(shù), 40(6): 1~7.
陸巧煥, 張晉言, 李紹霞. 2006. 測(cè)井資料在生油巖評(píng)價(jià)中的應(yīng)用. 測(cè)井技術(shù), 30(1): 80~83+100.
駱衛(wèi)峰, 余文端, 馬曉東, 周韜, 劉欣. 2018. 蘇北盆地海安凹陷南部巖性油藏勘探成果及啟示. 中國石油勘探, 23(3): 56~63.
呂文雅, 曾聯(lián)波, 陳雙全, 呂鵬, 董少群, 惠晨, 李睿琦, 王浩南. 2021. 致密低滲透砂巖儲(chǔ)層多尺度天然裂縫表征方法. 地質(zhì)論評(píng), 67(2): 543~556.
孟憲波, 徐佑德, 張?jiān)混o, 商豐凱, 李靜, 孫魯寧, 鄭海東. 2019. 多場(chǎng)耦合作用下致密儲(chǔ)層地應(yīng)力場(chǎng)變化規(guī)律研究——以準(zhǔn)噶爾盆地某區(qū)為例. 地質(zhì)力學(xué)學(xué)報(bào), 25(4): 467~474.
覃豪, 楊小磊. 2019. 致密儲(chǔ)層脆性測(cè)井解釋方法研究. 測(cè)井技術(shù), 43(5): 509~514.
彭金寧, 邱岐, 王東燕, 李志明, 朱建輝, 梁世友, 武英利. 2020. 蘇北盆地古近系阜寧組致密油賦存狀態(tài)與可動(dòng)用性. 石油實(shí)驗(yàn)地質(zhì), 42(1): 53~59.
冉冶, 王貴文, 賴錦, 周正龍, 崔玉峰, 代全齊, 陳晶, 王抒忱. 2016. 利用測(cè)井交會(huì)圖法定量表征致密油儲(chǔ)層成巖相———以鄂爾多斯盆地華池地區(qū)長(zhǎng)7致密油儲(chǔ)層為例. 沉積學(xué)報(bào), 34(4): 694~706.
石玉江, 李長(zhǎng)喜, 李高仁, 李霞, 周金昱, 郭浩鵬. 2012. 特低滲透油藏源儲(chǔ)配置與富集區(qū)優(yōu)選測(cè)井評(píng)價(jià)方法. 巖性油氣藏, 24(4): 45~50.
孫建孟. 2013. 基于新“七性”關(guān)系的煤層氣、頁巖氣測(cè)井評(píng)價(jià). 測(cè)井技術(shù), 37(5): 457~465.
孫建孟, 韓志磊, 秦瑞寶, 張晉言. 2015. 致密氣儲(chǔ)層可壓裂性測(cè)井評(píng)價(jià)方法. 石油學(xué)報(bào), 36(1): 74~80.
唐振興, 趙家宏, 王天煦. 2019. 松遼盆地南部致密油“甜點(diǎn)區(qū)(段)”評(píng)價(jià)與關(guān)鍵技術(shù)應(yīng)用. 天然氣地球科學(xué), 30(8): 1114~1124.
王劍, 李二庭, 陳俊, 米巨磊, 馬聰, 雷海艷, 謝禮科. 2020. 準(zhǔn)噶爾盆地吉木薩爾凹陷二疊系蘆草溝組優(yōu)質(zhì)烴源巖特征及其生烴機(jī)制研究. 地質(zhì)論評(píng), 66(3): 755~764.
王貴文, 朱振宇, 朱廣宇. 2002. 烴源巖測(cè)井識(shí)別與評(píng)價(jià)方法研究. 石油勘探與開發(fā), 29(4): 50~52.
王小軍, 楊智峰, 郭旭光, 王霞田, 馮右倫, 黃立良. 2019. 準(zhǔn)噶爾盆地吉木薩爾凹陷頁巖油勘探實(shí)踐與展望. 新疆石油地質(zhì), 40(4): 402~413.
王旭影, 姜在興. 2018. 蘇北盆地海安凹陷古近系阜三段灘壩沉積特征. 油氣地質(zhì)與采收率, 25(5): 57~64.
王旭影, 姜在興. 2021. 蘇北盆地古近系阜三段物源特征及其形成的構(gòu)造背景分析. 地學(xué)前緣, 28(2):376~390.
魏周拓, 范宜仁, 陳雪蓮. 2012. 橫波各向異性在裂縫和應(yīng)力分析中的應(yīng)用. 地球物理學(xué)進(jìn)展, 27(1): 217~224.
熊紹云, 王鵬萬, 黃羚, 鄒辰, 賀訓(xùn)云, 李昌, 徐政語. 2020. 中、上揚(yáng)子龍馬溪組層序劃分及對(duì)頁巖儲(chǔ)層發(fā)育的控制. 地質(zhì)學(xué)報(bào), 94(11): 3471~3487.
鄢繼華, 鄧遠(yuǎn), 蒲秀剛, 周立宏, 陳世悅, 焦玉璽. 2017. 渤海灣盆地滄東凹陷孔二段細(xì)?;旌铣练e巖特征及控制因素. 石油與天然氣地質(zhì), 38(1): 98~109.
楊智, 唐振興, 李國會(huì), 賈希玉, 吳顏雄, 陳旋, 黃東, 江濤, 方向, 王嵐, 吳因業(yè), 吳松濤, 付蕾, 李嘉蕊, 李奇艷, 趙家宏, 王天煦. 2021. 陸相頁巖層系石油富集區(qū)帶優(yōu)選、甜點(diǎn)區(qū)段評(píng)價(jià)與關(guān)鍵技術(shù)應(yīng)用. 地質(zhì)學(xué)報(bào), 95(8): 2257~2272.
楊濤濤, 范國章, 呂福亮, 王彬, 吳敬武, 魯銀濤. 2013. 烴源巖測(cè)井響應(yīng)特征及識(shí)別評(píng)價(jià)方法. 天然氣地球科學(xué), 24(2): 414~422.
尹成芳, 柯式鎮(zhèn), 姜明, 康正明, 王偉東, 孫旭, 鄭樹桐. 2017. 測(cè)井新技術(shù)在陸相致密油“七性”評(píng)價(jià)中的應(yīng)用——以松遼盆地北部高臺(tái)子油層為例. 石油科學(xué)通報(bào), 01: 32~43.
閆偉林, 趙杰, 鄭建東, 董萬百, 章華兵. 2014. 松遼盆地北部扶余致密油儲(chǔ)層測(cè)井評(píng)價(jià). 大慶石油地質(zhì)與開發(fā), 33(5): 209~214.
袁選俊, 林森虎, 劉群, 姚涇利, 王嵐, 郭浩, 鄧秀芹, 成大偉. 2015. 湖盆細(xì)粒沉積特征與富有機(jī)質(zhì)頁巖分布模式——以鄂爾多斯盆地延長(zhǎng)組長(zhǎng)7油層組為例. 石油勘探與開發(fā), 42(1): 34~43.
袁俊亮, 鄧金根, 張定宇, 李大華, 閆偉, 陳朝剛, 程禮軍, 陳子劍. 2014. 頁巖氣儲(chǔ)層可壓裂性評(píng)價(jià)技術(shù). 石油學(xué)報(bào), 34(3): 523~527.
張超, 張立強(qiáng), 陳家樂, 羅紅梅, 劉書會(huì). 2017. 渤海灣盆地東營(yíng)凹陷古近系細(xì)粒沉積巖巖相類型及判別. 天然氣地球科學(xué), 28(5): 713~723.
張晉言. 2012. 頁巖油測(cè)井評(píng)價(jià)方法及其應(yīng)用. 地球物理學(xué)進(jìn)展, 27(3): 1154~1162.
張鵬飛, 盧雙舫, 李俊乾, 薛海濤, 李文鏢, 張宇, 王思遠(yuǎn), 馮文俊. 2019. 湖相頁巖油有利甜點(diǎn)區(qū)優(yōu)選方法及應(yīng)用——以渤海灣盆地東營(yíng)凹陷沙河街組為例. 石油與天然氣地質(zhì), 40(6): 1339~1350.
支東明, 唐勇, 楊智峰, 郭旭光, 鄭孟林, 萬敏, 黃立良. 2019. 準(zhǔn)噶爾盆地吉木薩爾凹陷陸相頁巖油地質(zhì)特征與聚集機(jī)理. 石油與天然氣地質(zhì), 40(3): 524~534.
趙軍, 秦偉強(qiáng), 張莉, 鄧寧. 2005. 偶極橫波各向異性特征及其在地應(yīng)力評(píng)價(jià)中的應(yīng)用. 石油學(xué)報(bào), 26(4): 54~57.
趙賢正, 蒲秀剛, 韓文中, 周立宏, 時(shí)戰(zhàn)楠, 陳世悅, 肖敦清. 2017. 細(xì)粒沉積巖性識(shí)別新方法與儲(chǔ)集層甜點(diǎn)分析: 以渤海灣盆地滄東凹陷孔店組二段為例. 石油勘探與開發(fā), 44(4): 492~502.
趙賢正, 周立宏, 蒲秀剛, 金鳳鳴, 時(shí)戰(zhàn)楠, 韓文中, 姜文亞, 韓國猛, 張偉, 汪虎, 馬建英. 2020. 湖相頁巖滯留烴形成條件與富集模式: 以渤海灣盆地黃驊坳陷古近系為例. 石油勘探與開發(fā), 47(5): 856~869.
趙政璋, 杜金虎. 2012. 致密油氣. 北京: 石油工業(yè)出版社.
鐘淑敏, 謝鵬, 劉傳平. 2016. 應(yīng)用測(cè)井資料預(yù)測(cè)致密油有利區(qū)方法研究. 測(cè)井技術(shù), 40(1): 85~90.
鐘高潤(rùn), 張小莉, 杜江民, 鄭茜, 李航, 李寧, 王鵬. 2016. 鄂爾多斯盆地延長(zhǎng)組長(zhǎng)7段致密油源儲(chǔ)配置關(guān)系測(cè)井評(píng)價(jià). 地球物理學(xué)進(jìn)展, 31(5): 2285~2291.
朱光有, 金強(qiáng), 張林曄. 2003. 用測(cè)井信息獲取烴源巖的地球化學(xué)參數(shù)研究. 測(cè)井技術(shù), 27(2): 104~109.
鄒才能, 楊智, 崔景偉, 朱如凱, 侯連華, 陶士振, 袁選俊, 吳松濤, 林森虎, 王嵐, 白斌, 姚涇利. 2013. 頁巖油形成機(jī)制、地質(zhì)特征及發(fā)展對(duì)策. 石油勘探與開發(fā), 40(1): 14~26.
鄒才能, 朱如凱, 白斌, 楊智, 侯連華, 查明, 付金華, 邵雨, 劉可禹, 曹宏, 袁選俊, 陶士振, 唐曉明, 王嵐, 李婷婷. 2015. 致密油與頁巖油內(nèi)涵、特征、潛力及挑戰(zhàn). 礦物巖石地球化學(xué)通報(bào), 34(1): 3~19.
鄒才能, 楊智, 王紅巖, 董大忠, 劉洪林, 施振生, 張斌, 孫莎莎, 劉德勛, 李貴中, 吳松濤, 龐正煉, 潘松圻, 袁懿琳. 2019. “進(jìn)源找油”: 論四川盆地非常規(guī)陸相大型頁巖油氣田. 地質(zhì)學(xué)報(bào), 93(7): 1551~1562.
Avanzini A, Balossino P, Brignoli M, Spelta E, Tarchiani C. 2016. Lithologic and geomechanical facies classification for sweet spot identification in gas shale reservoir. Interpretation, 4(3): 21~31.
Chen Liqiong. 2009. Estimation of the amount of erosion at unconformities in the last stage ofthe Eocene Sanduo period in the Subei Basin, China. Petroleum Science, 6: 383~388.
Cheng Qingsong, Zhang Min, Li Hongbo. 2019. Anomalous distribution of steranes in deep lacustrine facies low maturity source rocks and oil of Funing formation in Subei Basin. Journal of Petroleum Science and Engineering, 181: 106~190.
Dong Ning, Xu Jie, Sun Zandong, Lu Jing, Zhou Gang, Liu Zhishui. 2013&. Shale brittleness prediction by geophysical methods. Oil Geophysical Prospecting, 48(supplement 1) : 69~74.
Duan Hongliang, Liu Shili, Fu Qian. 2020&. Characteristics and sedimentary environment of organic-rich shale in the second member of Paleogene Funing Formation, Subei Basin. Petroleum Geology & Experiment, 42(4): 612~617.
Du Jiangmin, Zhang Xiaoli, Zhong Gaorun, Feng Congjun, Guo Ling, Zhang Xiaolong, Luo Wenxing. 2016&. Analysis on the optimization and application of well logs indentification methods for organic carbon content in source rocks of the tight oil——illustrated by the example of the source rocks of Chang 7 member of Yanchang Formation in Ordos Basin. Progress in Geophysics, 31(6) : 2526~2533.
Fu Jinhua, Niu Xiaobing, Dan Weidong, Feng Shengbin, Liang Xiaowei, Xin Honggang, You Yuan. 2019&. The geological characteristics and the progress on exploration and development of shale oil in Chang7 Member of Mesozoic Yanchang Formation, Ordos Basin. China Petroleum Exploration, 24(5) : 601~614.
Fu Qian, Liu Qidong, Liu Shili, Duan Hongliang. 2020&. Shale oil accumulation conditions in the second member of Paleogene Funing Formation, Gaoyou Sag, Subei Basin. Petroleum Geology & Experiment, 42(4): 625~631.
Fu Suotang, Fu Jinhua, Niu Xiaobing, Li Shixiang, Wu Zhiyu, Zhou Xinping, Liu Jiangyan. 2020&. Accumulation conditions and key exploration and development technologies in Qingcheng oilfield. Acta Petrolei Sinica, 41(7) : 777~795.
Gao Hui, Zhang Xiao, He Mengqing, Xu Chuangchao, Dou Liangbin, Zhu Gengbolun, Li Yu. 2018&. Study on evaluation of shale oil reservoir fracability based on well logging data volume. Progress in Geophysics, 33(2) : 603~612.
Guan Ming, Liu Xiaoping, Jin Zhijun, Lai Jin. 2020. The heterogeneity of pore structure in lacustrine shales: Insights frommultifractal analysis using N2adsorption and mercury intrusion. Marine and Petroleum Geology, 114: 104150.
Godfray G, Seetharamaiah J. 2019. Geochemical and well logs evaluation of the Triassic source rocks of the Mandawa basin, SE Tanzania: Implication on richness and hydrocarbon generation potential. Journal of African Earth Sciences, 153: 9~16.
Guo Tiankui, Zhang Shicheng, Ge Hongkui, Wang Xiaoqiong, Lei Xin, Xiao Bo. 2015. A new method for evaluation of fracture network formation capacity of rock. Fuel, 140: 778~787.
Hu Zongquan, Zheng Lunju, Shen Baojian, Cheng Gang, Liu Zhongbao. 2021&. Preliminary study on unconventional and conventional oil-bearing gas systems. Geological Review, 67(4): 1007~1020.
Iqbal O, Ahmad M, Kadir A. 2018. Effective evaluation of shale gas reservoirs by means of an integrated approach to petrophysics and geomechanics for the optimization of hydraulic fracturing: A case study of the Permian Roseneath and Murteree Shale Gas reservoirs, Cooper Basin, Australia. Journal of Natural Gas Science and Engineering, 58: 34~58.
Jarvie D M, Hill R J, Ruble T E. 2007. Unconventional shale-gas systems: the Mississippian Barnett Shale of north—central Texas as one model for thermogenic shale-gas assessment. AAPG Bulletin, 91: 475~499.
Jiang Yunjian, Liu Huimin, Chai Chunyan, Xin Zhongbin. 2020&. Analysis of hydrocarbon movability logging response features of shale oil and its applications. Petroleum Geology and Recovery Efficiency, 27(5): 1~9.
Jin Zhijun, Bai Zhenrui, Gao Bo, Li Maowen. 2019&. Has China ushered in the shale oil and gas revolution? Oil & Gas Geology, 40(3) : 451~458.
Kuang Lichun, Wang Xiatian, Guo Xuguang, Chang Qiusheng, Jia Xiyu. 2015&. Geological characteristics and exploration practice of tight oil of Lucaogou Formation in Jimsar sag. Xinjiang Petroleum Geology, 36(6) : 629~634.
Kuang Lichun, Hou Lianhua, Yang Zhi, Wu Songtao. 2021&. Key parameters and methods of lacustrine shale oil reservoir characterization. Acta Petrolei Sinica, 42(1) : 1~14.
Kumar S, Das S, Bastia R, Ojha K. 2018. Mineralogical and morphological characterization of Older Cambay Shale from North Cambay Basin, India: Implication for Shale Oil/Gas Development. Marine and Petroleum Geology, 97: 339~354.
Lai Jin, Li Dong, Wang Guiwen, Xiao Chengwen, Hao Xiaolong, Luo Qingyong, Lai Lingbin, Qin Ziqiang. 2019. Earth stress and reservoir quality evaluation in high and steep structure: The Lower Cretaceous in the Kuqa Depression, Tarim Basin, China. Marine and Petroleum Geology, 101: 43~54.
Lai Jin, Wang Guiwen, Fan Zhuoying, Chen Jing, Wang Shuchen, Zhou Zhenglong, Fan Xuqiang. 2016&. Research progress in brittleness index evaluation methods with logging data in unconventional oil and gas reservoirs. Petroleum Science Bulletin, 3: 330~341.
Lai, Jin, Wang Guiwen, Fan Zhuoying, Wang Ziyuan, Chen Jing, Zhou Zhenglong, Wang Song, Xiao Chengwen. 2017. Fracture detection in oil-based drilling mud using a combination of borehole image and sonic logs. Marine and Petroleum Geology, 84: 195~214.
Lai Jin, Wang Guiwen, Huang Longxing, Li Weiling, Ran Ye, Wang Di, Zhou Zhenglong, Chen Jing. 2015. Brittleness index estimation in a tight shaly sandstone reservoir using well logs. Journal of Natural Gas Science and Engineering, 27: 1536~1545.
Lai Jin, Wang Guiwen, Pang Xiaojiao, Han Zongyan, Li Dong, Zhao Yidi, Wang Song, Jiang Chengzhou, Li Hongbin, Li Yuhang. 2021&. The past, present and future of well logging geology: to celebrate the publication of second edition of “Well Logging Geology”. Geological Review, 67(6): 1804~1828.
Lai Jin, Wang Guiwen, Ran Ye, Zhou Zhenglong, Cui Yufeng. 2016. Impact of diagenesis on the reservoir quality of tight oil sandstones: The case of Upper Triassic Yanchang Formation Chang 7 oil layers in Ordos Basin, China. Journal of Petroleum Science and Engineering, 145: 54~65.
Lai Jin, Wang Guiwen, Wang Song, Cao Juntao, Li Mei, Pang Xiaojiao, Han Chuang, Fan Xuqiang, Yang Liu, He Zhibo, Qin, Ziqiang. 2018. A review on the applications of image logs in structural analysis and sedimentary characterization. Marine and Petroleum Geology, 95: 139~166.
Lai Jin, Wang Song, Zhang Chengsen, Wang Guiwen, Song Qiuqiang, Chen Xu, Yang Kefu, Yuan Changjian. 2020. Spectrum of pore types and networks in the deep Cambrian to Lower Ordovician dolostones in Tarim Basin, China. Marine and Petroleum Geology, 112: 104081.
Li Hao, Liu Shuanglian, Wang Dandan, Tan Chengjun, Zhao Lianshui. 2015&. The common problems analysis in logging evaluation technology application in China. Progress in Geophysics, 30(2) : 0776~0782.
Li Maowen, Chen Zhuoheng, Ma Xiaoxiao, Cao Tingting, Qian Menghui, Jiang Qigui, Tao Guoliang, Li Zhiming, Song Guoqi. 2019. Shale oil resource potential and oil mobility characteristics of the Eocene—Oligocene Shahejie Formation, Jiyang Super-Depression, Bohai Bay Basin of China. International Journal of Coal Geology, 204: 130~143.
Li Ning, Xu Binshen, Wu Hongliang, Feng Zhou, Li Yusheng, Wang Kewen, Liu Peng. 2021&. Application status and prospects of artificial intelligence in well logging and formation evaluation. Acta Petrolei Sinica, 42(4) : 508~522.
Li Ning, Yan Weilin, Wu Hongliang, Zheng Jiandong, Feng Zhou, Zhang Zhaoqian, Wang Kewen, Wang Jingyan. 2020&. Current situation, problems and countermeasures of the well-logging evaluation technology for Gulong shale oil. PetRoleum Geology & Oilfield Development in Daqing, 39(3) : 117~128.
Liu Chao, Xie Qingbin, Wang Guiwen, Zhang Chujun, Wang Lvli, Qi Kening. 2016. Reservoir properties and controlling factors of contact metamorphic zones of the diabase in the northern slope of the Gaoyou Sag, Subei Basin, eastern China. Journal of Natural Gas Science and Engineering, 35: 392~411.
Liu Jingshou, Ding Wenlong, DaiJunsheng, Gu Yang, Yang Haimeng, Sun Bo. 2018. Quantitative multiparameter prediction of fault-related fractures: a case study of the second member of the Funing Formation in the Jinhu Sag, Subei Basin. Petroleum Science, 15: 468~483.
Liu Jianwei, Zhang Yunyin, Zeng Lianbo, Gao Qiuju, Geng Xue. 2016&. Geophysical prediction of stress and stress desserts in unconventional reservoirs: an example in Bonan area. Oil Geophysical Prospecting, 51(4) : 792~800.
Liu Keyu, Liu Chang. 2019&. “Chemo-sedimentary facies” analysis: An effective method to study fine-grained sedimentary rocks. Oil $ Gas Geology, 40(3) : 491~503.
Liu Guoqiang. 2021&. Challenges and countermeasures of log evaluation in unconventional petroleum exploration. Petroleum Exploration and Development, 48(5): 891~902.
Liu Xiaoping, Lai Jin, Fan Xuechun, Shu Honglin, Wang Gaocheng, Ma Xiaoqiang, Liu Mengcai, Guan Ming, Luo Yufeng. 2020. Insights in the pore structure, fluid mobility and oiliness in oil shales of Paleogene Funing Formation in Subei Basin, China. Marine and Petroleum Geology, 114: 104228.
Liu Xiaoping, Jin Zhijun, Lai Jin, Fan Xuechun, Guan Ming, Shu Honglin, Wang Gaocheng, Liu Mengcai, Luo Yufeng. 2021. Fractal behaviors of NMR saturated and centrifugal T2spectra in oil shale reservoirs: The Paleogene Funing formation in Subei basin, China. Marine and Petroleum Geology, 129: 105069.
Li Wei, Zhu Xiaomin, DuanHongliang, Li Heyong, Liu Shili. 2020&. Characteristics and forming mechanism of laminae fine-grained sedimentary rock of the Paleogene Funing Formation in Gaoyou and Jinhusags, Subei Basin. Journal of Palaeogeography, 22(3): 469~482.
Li Xiaoguang, Liu Xingzhou, Li Jinpeng, Tian Zhi. 2019&. Comprehensive evaluation and exploration practice of Sha 4 lacustrine shale oil in Damintun sag, Liaohe depression. China Petroleum Exploration, 24(5): 636~648.
Loucks R G, Reed R M, Ruppel S C, Jarvie D M. 2009. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 79: 848~861.
Loucks R G, Reed R M, Ruppel S C, Hammes U. 2012. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bulletin, 96: 1071~1098.
Lu Huangsheng. 2012&. Application and development analysis of well logging information in petroleum engineering. Petroleum Drilling Techniques, 40(6) : 1~7.
Lu Qiaohuan, Zhang Jingyan, Li Shaoxia. 2006&. Application of data to oil source rock evaluation. Well Logging Technology, 30(1): 80~83+100.
Luo Weifeng, Yu Wenduan, Ma Xiaodong, Zhou Tao, Liu Xin. 2018&. Exploration achievement of lithological oil reservoirs in the south of Haian depression, the Subei Basin and its enlightenment. China Petroleum Exploration, 23(3) : 56~63.
Lyu Wenya, Zeng Lianbo, Liu Zhongqun, Liu Guoping, Zu Kewei. 2016. Fracture responses of conventional logs in tight-oil sandstones: a case study of the Upper Triassic Yanchang Formation in southwest Ordos Basin, China. AAPG Bulletin, 100 (9): 1399~1417.
Lü Wenya, Zeng Lianbo, Chen Shuangquan, Lü Peng, Dong Shaoqun, Hui Chen, Li Ruiqi, Wang Haonan. 2021&. Characterization methods of multi-scale natural fractures in tight and low permeability sandstone reservoirs. Geological Review, 67(2): 543~556.
Meng Xianbo, Xu Youde, Zhang Yuejing, Shang Fengkai, Li Jing, Sun Luning, Zheng Haidong. 2019&. Study on the variation law of crustal stress field in tight reservoir under multi field coupling. Journal of Geomechanics, 25(4) : 467~474.
Passey Q R, Creaney S, Kulla J B, Moretti F J, Stroud J D. 1990. A practical model for organic richness from porosity and resistivity logs. AAPG Bulletin, 74(12): 1777~1794.
Peng Jinning, Qiu Qi, Wang Dongyan, Li Zhiming, Zhu Jianhui, Liang Shiyou, Wu Yingli. 2020&. Occurrence and recoverability of tight oil in Paleogene Funing Formation, Subei Basin. Petroleum Geology & Experiment, 42(1): 53~59.
Qiao Xiaojuan, Li Guoming, Li Ming, Wang Zhiming. 2012. CO2storage capacity assessment of deep salineaquifers in the Subei Basin, East China. International Journal of Greenhouse Gas Control, 11: 52~63.
Qi Kun, Zhao Xiaoming, Liu Li, Su Yiqing, Wang Hua, Tan Chengpeng, Sun Yiting. 2018. Hierarchy and subsurface correlation of muddy baffles in lacustrine delta fronts: a case study in the X Oilfield, Subei Basin, China. Petroleum Science, 15: 451~467.
Quaye J A, Jiang Zaixing, Zhou Xuewen. 2019. Bioturbation influence on reservoir rock quality: A case study of Well Bian-5 from the second member Paleocene Funing Formation in the Jinhu sag, Subei basin, China. Journal of Petroleum Science and Engineering, 172: 1165~1173.
Ran Ye, Wang Guiwen, Lai Jin, Zhou Zhenglong, Cui Yufeng, Dai Quanqi, Chen Jing, Wang Shuchen. 2016&. Quantitative characterization of diagenetic facies of tight sandstone oil reservoir by using logging crossplot: A case study on Chang 7 tight sandstone oil reservoir in Huachi area, Ordos Basin. Acta Sedimentologica Sinica, 34(4) : 694~706.
Saidian M, Prasad M. 2015. Effect of mineralogy on nuclear magnetic resonance surface relaxivity: A case study of Middle Bakken and Three Forks formations. Fuel, 161: 197~206.
Schmoker J W. 1981. Determination of organic-matter content of AppalachianDevonian shales from gamma ray logs. AAPG Bulletin, 65: 1285~1298.
Shalaby M R, Jumat N, Lai D, Malik O. 2019. Integrated TOC prediction and source rock characterization using machine learning, well logs and geochemical analysis: Case study from the Jurassic source rocks in Shams Field, NW Desert, Egypt. Journal of Petroleum Science and Engineering, 176: 369~380.
Shi Yujiang, Li Changxi, Li Gaoren, Li Xia, Zhou Jinyu, Guo Haopeng. 2012&. Well logging evaluation method for hydrocarbon source rock—reservoir collocation and oil enrichment area optimization of low permeability reservoirs. Lithologic Reservoirs, 24(4) : 45~50.
Stadtmuller M, Lis-Sledziona A, Sota-Valim M. 2018. Petrophysical and geomechanical analysis of the Lower Paleozoic shale formation, North Poland. Interpretation, 6(3): SH91~SH106.
Sun Jianmeng. 2013&. Coalbed Methane and shale gas evaluation based on new seven related logging goals. Well Logging Technology, 37(5) : 457~465.
Sun Jianmeng, Han Zhilei, Qin Ruibao, Zhang Jinyan. 2015&. Log evaluation method of fracturing performance in tight gas reservoir. Acta Petrolei Sinica, 36(1) : 74~80.
Tan Hao, Yang Xiaolei. 2019&. Log interpretation methods for measuring the brittleness of tight reservoir. Well Logging Technology, 25(4): 467~474.
Tang Zhenxing, Zhao Jiahong, Wang Tianxu. 2019&. Evaluation and key technology application of “sweet area” of tight oil in southern Songliao Basin. Nature Gas Geoscience, 30(8): 1114~1124.
Wang Guiwen, Lai Jin, Liu Bingchang, Fan Zhuoying, Liu Shichen, Shi Yujiang, Zhang Haitao, Chen Jing. 2020. Fluid property discrimination in dolostone reservoirs using well logs. Acta Geologica Sinica (English Edition), 94(3): 831~846.
Wang Guiwen, Zhu Zhenyu, Zhu Guangyu. 2002&. Logging identification and evaluation of Cambrian—Ordovician source rocks in syneclise of Tarim basin. Petroleum Exploration and Development, 29(4) : 20~52.
Wang Jian, Li Erting, Chen Jun, Mi Julei, Ma Cong, Lei Haiyan, Xie Like. 2020&. Characteristics and hydrocarbon generation mechanism of high-quality source rocks in Permian Lucaogou Formation, Jimsar Sag, Junggar Basin. Geological Review, 66(3): 755~764.
Wang Song, Wang Guiwen, Huang Liliang, Song Lianteng, Zhang Yilin, Li Dong, Huang Yuyue. 2021. Logging evaluation of lamina structure and reservoir quality in shale oil reservoir of Fengcheng Formation in Mahu Sag, China. Marine and Petroleum Geology, 133: 105299.
Wang Xiaojun, Yang Zhifeng, Guo Xuguang, Wang Xiatian, Feng Youlun, Huang Liliang. 2019&. Practices and prospects of shale oil exploration in Jimsar Sag of Junggar Basin. Xinjiang Petroleum Geology, 40(4) : 402~413.
Wang Xuying, Jiang Zaixing. 2018&. Sedimentary characteristics of beach-bar in the 3rd member of Paleogene Funing Formation in Hai’an Sag, North Jiangsu Basin. Petroleum Geology and Recovery Efficiency, 25(5): 57~64.
Wang Xuying, Jiang Zaixing. 2021&. Provenance characteristics and tectonic setting analysis of the 3rd Member of the Paleogene Funing Formation, Subei Basin. Earth Science Frontiers, 28(2):376~390.
Wei Zhoutuo, Fan Yiren, Chen Xuelian. 2012&. Application of shear wave anisotropy in fractures and in-situ stress analysis. Progress in Geophysics, 27(1): 217~224.
Xi Kelai, Cao Yingchang, Liu Keyu, Jahren J, Zhu Rukai, Yuan Guanghui, Hellevang H. 2019. Authigenic minerals related to wettability and their impacts on oil accumulation in tight sandstone reservoirs: An example from the Lower Cretaceous Quantou Formation in the southern Songliao Basin, China. Journal of Asian Earth Sciences, 178: 173~192.
Xiong Shaoyun, Wang Pengwan, Huang Ling, Zou Chen, He Xunyun, Li Chang, Xu Zhenyu. 2020&. Sequence division of the Longmaxi Formation and their control on shale reservoir development in Middle—Upper Yangtze. Acta Geologica Sinica, 94(11): 3471~3487.
Yan Jihua, Deng Yuan, Pu Xiugang, Zhou Lihong, Chen Shiyue, Jiao Yuxi. 2017&. Characteristics and controlling factors of fine-grained mixed sedimentary rocks from the 2nd Member of Kongdian Formation in the Cangdong Sag, Bohai Bay Basin. Oil & Geology, 38(1): 98~109.
Yang Zhi, Tang Zhenxing, Li Guohui, Jia Xiyu, Wu Yanxiong, Chen Xuan, Huang Dong, Jiang Tao, Fang Xiang, Wang Lan, Wu Yinye, Wu Songtao, Fu Lei, Li Jiarui, Li Qiyan, Zhao Jiahong, Wang Tianxu. 2021&. Optimization of enrichment plays, evaluation of sweet area & section and application of key technologies for the continental shale strata oil in China. Acta Geologica Sinica, 95(8): 2257~2272.
Yang Taotao, Fan Guozhang, Lu Fuliang, Wang Bin, Wu Jingwu, Lu Yintao. 2013&. The logging features and identification methods of source rock. Nature Gas Geoscience, 24(2) : 414~422.
Yan Weilin, Zhao Jie, Zheng Jiandong, Dong Wanbai, Zhang Huabing. 2014&. Well logging evaluation of Fuyu tight oil reservoirs in North Songliao Basin. Petroleum Geology and Oilfield Development in Daqing, 33(5) : 209~214.
Yin Chengfang, Ke Shizhen, Jiang Ming, Kang Zhengming, Wang Weidong, Sun Xun, Zheng Shutong. 2017&. Application of new well logging technology in the evaluation of “seven properties” of continental tight oil: A case study on the Gaotaizi oil layer in the Northern Songliao Basin. Petroleum Science Bulletin, 1: 32~43.
Yuan Junliang, Deng Jingen, Zhang Dingyu, Li Dahua, Yan Wei, Chen Chaogang, Cheng Lijun, Chen Zijian. 2014&. Fracability evaluation of shale-gas reservoirs. Acta Petrolei Sinica, 34(3) : 523~527.
Yuan Xuanjun, Lin Shenhu, Liu Qun, Yao Jingli, Wang Lan, Guo Hao, Deng Xiuqin, Cheng Dawei. 2015&. Lacustrine fine-grained sedimentary features and organic-rich shale distribution pattern: A case study of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China. Petroleum Exploration and Development, 42(1) : 34~43.
Zhang Chao, Zhang Liqiang, Chen Jiale, Luo Hongmei, Liu Shuhui. 2017&. Lithofacies types and discrimination of Paleogene fine-grained sedimentary rocks in the Dongying Sag, Bohai Bay Basin, China. Nature Gas Geoscience, 28(5) : 713~723.
Zhang J L, Zhang P H, Dong Z R, Ding F, Wang J K, Ren W W. 2014. Diagenesis of the funing sandstones (Paleogene), Gaoji Oilfield, Subei Basin, East of China. Petroleum Science and Technology, 32(9): 1095~1103.
Zhang Jinyan. 2012&. Well Logging evaluation method of shale oil reservoirs and its applications. Progress in Geophysics, 27(3): 1154~1162.
Zhang Pengfei, Lu Shuangfang, Li Junqian, XueHaitao, Li Wenbiao, Zhang Yu, Wang Siyuan, Feng Wenjun. 2019&. Identification method of sweet spot zone in lacustrine shale oil reservoir and its application: A case study of the Shahejie Formation in Dongying Sag, Bohai Bay Basin. Oil & Gas Geology, 40(6) : 1339~1350.
Zhang Pengfei, Lu Shuangfang, Li Junqian, Chen Chen, Xue Haitao, Zhang Jie. 2018. Petrophysical characterization of oil-bearing shales by low-field nuclear magnetic resonance (NMR). Marine and Petroleum Geology, 89: 775~785.
Zhao Jun, Qin Weiqiang, Zhang Li, Deng Ning. 2005&. Anisotropy of dipole shear wave and its application to ground stress evaluation. Acta Petrolei Sinica, 26(4): 54~57.
Zhao Peiqiang, Mao Zhiqiang, Huang Zhenhua, Zhang Chong. 2016. A new method for estimating total organic carbon content from well logs. AAPG Bulletin, 100(8): 1311~1327.
Zhao Xianzheng, Pu Xiugang, Han Wenzhong, Zhou Lihong, Shi Zhannan, Chen Shiyue, Xiao Dunqing. 2017&. A new method for lithology identification of fine grained deposits and reservoir sweet spot analysis: A case study of Kong 2 Member in Cangdong sag, Bohai Bay Basin, China. Petroleum Exploration and Development, 44(4) : 492~502.
Zhao Xianzheng, Zhou Lihong, Pu Xiugang, Han Wenzhong, Jin Fengming, Xiao Dunqing, Shi Zhannan, Deng Yuan, Zhang Wei, Jiang Wenya. 2019. Exploration breakthroughs and geological characteristics of continental shale oil: A case study of the Kongdian Formation in the Cangdong Sag, China. Marine and Petroleum Geology, 102: 544~556.
Zhao Xianzheng, Zhou Lihong, Pu Xiugang, JinFengming, Shi Zhannan, Han Wenzhong, Jiang Wenya, Han Guomeng, Zhang Wei, Wang Hu, Ma Jianying. 2020&. Formation conditions and enrichment model of retained petroleum in lacustrine shale: A case study of the Paleogene in Huanghua depression, Bohai Bay Basin, China. Petroleum Exploration and Development, 47(5) : 856~869.
Zhao Zhengzhang, Du Jinhu. 2012#. Tight Oil and Gas. Beijing: Petroleum Industry Press.
Zhi Dongming, Tang Yong, Yang Zhifeng, Guo Xuguang, Zheng Menglin, Wan Min, Huang Liliang. 2019&. Geological characteristics and accumulation mechanism of continental shale oil in Jimusaer sag, Junggar Basin. Oil & Gas Geology, 40(3) : 524~534.
Zhong Gaorun, Zhang Xiaoli, Du Jiangmin, Zheng Qian, Li Hang, Li Ning, Wang Peng. 2016&. Source—reservoir configuration of logging evaluation for tight oil in Chang 7 member, Yanchang formation, Ordos basin. Progress in Geophysics, 31(5) : 2285~2291.
Zhong Shumin, Xie Peng, Liu Chuanping. 2016&. Using Log Data to Predict Tight Oil Distribution. Well Logging Technology, 40(1): 85~90.
Zhu Guangyou, Jin Qiang, Zhang Linye. 2003&. Using Log Information to Analyze the Geochemical Characteristics. Well Logging Technology, 27(2) : 104~109.
Zou Caineng, Yang Zhi, Cui Jingwei, Zhu Rukai, Hou Lianhua, Tao Shizhen, Yuan Xuanjun, Wu Songtao, Lin Senhu, Wang Lan, Bai Bin, Yao Jingli. 2013&. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China. Petroleum Exploration and Development, 40(1): 14~26.
Zou Caineng, Zhu Rukai, Bai Bin, Yang Zhi, Hou Lianhua, Zha Ming, Fu Jinhua, Shao Yu, Liu Keyu, Cao Hong, Yuan Xuanjun, Tao Shizhen, Tang Xiaoming, Wang Lan, Li Tingting. 2015&. Significance, Geologic Characteristics, Resource Potential and Future Challenges of Tight Oil and Shale Oil. Bulletin of Mineralogy, Petrology and Geochemistry, 34(1): 3~19.
Zou Caineng, Yang Zhi, Wang Hongyan, Dong Dazhong, Liu Honglin, Shi Zhensheng, Zhang Bin, Sun Shasha, Liu Dexun, Li Guizhong, Wu Songtao, Pang Zhenglian, Pan Songqi, Yuan Yilin. 2019&. “Exploring petroleum inside source kitchen”: Jurassic unconventional continental giant shale oil & gas field in Sichuan basin, China. Acta Geologica Sinica, 93(7): 1551~1562.