趙升升,程毓,張小波,常正凱
Si和316L基片上TiN薄膜微觀結(jié)構(gòu)和應(yīng)力的對(duì)比分析
趙升升1,程毓1,張小波2,常正凱2
(1.深圳職業(yè)技術(shù)學(xué)院 機(jī)電工程學(xué)院,廣東 深圳 518055;2.深圳市速普儀器有限公司,廣東 深圳 518000)
比較Si和316L基片上TiN薄膜的微觀結(jié)構(gòu)和應(yīng)力,分析基片材料和基片初始曲率對(duì)薄膜應(yīng)力的影響。采用電弧離子鍍技術(shù)在Si基片和316L基片上制備了TiN薄膜,實(shí)測(cè)了薄膜應(yīng)力,通過(guò)XRD、SEM、TEM等方法對(duì)薄膜的微觀結(jié)構(gòu)進(jìn)行了分析。運(yùn)用有限元分析技術(shù),以結(jié)構(gòu)力學(xué)為原理,分別對(duì)不同初始曲率的Si基片和316L基片上的薄膜應(yīng)力測(cè)試進(jìn)行了計(jì)算和校正應(yīng)用。相同工藝條件下,316L基片上TiN薄膜的應(yīng)力比Si基片上的大。TiN薄膜應(yīng)力隨偏壓的增大而增大。薄膜生長(zhǎng)至近表面都形成了柱狀晶結(jié)構(gòu),316L基片與TiN薄膜的膜基界面處出現(xiàn)較多的半共格生長(zhǎng)結(jié)構(gòu),而Si基片的膜基界面結(jié)合以納米晶混合為主?;某跏记拾霃綍?huì)導(dǎo)致薄膜應(yīng)力測(cè)試產(chǎn)生誤差,初始半徑越小,引起的誤差越大。偏壓作用下,316L基片上薄膜會(huì)產(chǎn)生更大的壓應(yīng)力。316L與TiN薄膜的膜基界面結(jié)合更好,有利于其承受更高的薄膜應(yīng)力。316L基片的初始曲率半徑顯著小于Si基片,由此引起的薄膜應(yīng)力測(cè)試誤差較大,有必要對(duì)316L基片上的薄膜應(yīng)力測(cè)試結(jié)果進(jìn)行校正。
基片彎曲法;應(yīng)力測(cè)試;殘余應(yīng)力;基片初始曲率;基片材料
掃碼查看文章講解
薄膜應(yīng)力問(wèn)題是薄膜制備和應(yīng)用過(guò)程中一個(gè)長(zhǎng)期存在的問(wèn)題,薄膜應(yīng)力狀態(tài)將影響其使役性能[1]。由物理氣相沉積技術(shù)制備的硬質(zhì)薄膜,因其優(yōu)異的力學(xué)特性,被廣泛應(yīng)用于切削刀具及機(jī)械零部件表面,其膜基結(jié)合力[2]、抗摩擦磨損[3]和抗腐蝕[4]等性能都受到薄膜應(yīng)力的顯著影響。已有大量研究專注于改善和控制薄膜應(yīng)力,包括改進(jìn)沉積工藝[5]、調(diào)節(jié)合金成分[6]、制備多層膜[7]、采用成分梯度[8]、引入過(guò)渡層[9]以及沉積后進(jìn)行退火處理[10]等。
準(zhǔn)確測(cè)定薄膜應(yīng)力是相關(guān)研究開(kāi)展的首要條件,當(dāng)前應(yīng)用最廣泛的薄膜應(yīng)力測(cè)試方法有X射線衍射法和基片彎曲法兩種[11]。盡管X射線衍射法測(cè)量塊體材料應(yīng)力的應(yīng)用中被認(rèn)為是很可靠的方法之一,但薄膜材料普遍存在織構(gòu),引起-sin2非線性問(wèn)題,導(dǎo)致應(yīng)力數(shù)據(jù)分散。此外,X射線衍射法測(cè)量應(yīng)力需要用到薄膜的彈性模量數(shù)據(jù),薄膜的彈性模量受制備工藝的影響很大,且難于測(cè)定,這將對(duì)應(yīng)力計(jì)算結(jié)果產(chǎn)生直接影響。薄膜的厚度在微米量級(jí)甚至更薄,使得掠射法不得不被采用,這將導(dǎo)致測(cè)試角度受限。以上這些因素表明,X射線衍射法在薄膜應(yīng)力測(cè)試中受到很大限制[12]?;瑥澢ㄊ腔赟toney公式的薄膜應(yīng)力測(cè)量技術(shù)[13],采用特定方法(如激光杠桿技術(shù))測(cè)出基片在單面鍍膜前后曲率半徑的變化量,就可計(jì)算薄膜應(yīng)力值。此技術(shù)的核心關(guān)鍵,在于精確地測(cè)定基片的曲率半徑值。為減小基片初始曲率對(duì)應(yīng)力測(cè)試的影響,大量的研究都采用了初始曲率很小的Si基片[14-17],但考慮到硬質(zhì)薄膜的應(yīng)用基片多為金屬材料,金屬基片上的薄膜應(yīng)力結(jié)果更能反映實(shí)際情況,也有許多研究選用了不銹鋼或高速鋼等材料作基片[7-8,18-19]。即使薄膜的制備工藝完全相同,基片材料不同,必然導(dǎo)致薄膜應(yīng)力狀態(tài)的不同。
前期工作中,筆者基于基片彎曲法設(shè)計(jì)了一種薄膜應(yīng)力測(cè)試儀,并開(kāi)展了大量研究[8,10,12],發(fā)現(xiàn)用于薄膜制備的基片總是存在一定的初始曲率。Savchuk等[20]和Pandey等[21]的研究指出了這個(gè)現(xiàn)象?;跏记薁顟B(tài)對(duì)于薄膜應(yīng)力測(cè)試結(jié)果必然存在影響,分析并校正這個(gè)誤差,對(duì)于提高薄膜應(yīng)力測(cè)試的準(zhǔn)確性有十分重要的意義,但相關(guān)研究鮮有報(bào)道。
本工作采用電弧離子鍍技術(shù)分別在Si基片和316L基片上制備了TiN薄膜,通過(guò)分析薄膜的生長(zhǎng)結(jié)構(gòu),研究了兩種基片材料對(duì)薄膜微觀結(jié)構(gòu)和應(yīng)力的影響。考慮到兩種基片的初始曲率半徑差異較大,采用有限元分析,計(jì)算了系列基片初始曲率半徑對(duì)薄膜應(yīng)力測(cè)試結(jié)果引起的誤差,提出對(duì)Stoney公式引入校正因子,并對(duì)實(shí)測(cè)應(yīng)力進(jìn)行了校正。
基片材料分別選用達(dá)到鏡面反射的Si基片和經(jīng)過(guò)研磨拋光的316L不銹鋼,Si的彈性模量和泊松比分別為132 GPa和0.27,尺寸為50 mm×10 mm× 0.5 mm;316L的彈性模量和泊松比分別為195 GPa和0.3,尺寸為50 mm×10 mm×0.8 mm。采用PVD7590型電弧離子鍍膜機(jī),選用純度為99.99%的Ti靶,靶基距為200 mm,工作室本底真空為5.0×10?3Pa,加熱至400 ℃,Ar離子刻蝕60 min后,通入N2,保持真空1.0 Pa,Ti靶弧流100 A,脈沖偏壓分別設(shè)定為?150 V(占空比60%)和?250 V(占空比60%),單面沉積制備TiN薄膜樣品,樣品實(shí)物圖見(jiàn)圖1。
利用ZEISS生產(chǎn)的SUPRA55型掃描電鏡(SEM)測(cè)定薄膜厚度,TiN薄膜厚度分別為3.09 (Si基片,?150 V)、2.23(Si基片,?250 V)、2.95(316L基片,?150 V)、2.57 μm(316L基片,?250 V),薄膜應(yīng)力和基片曲率半徑采用速普儀器生產(chǎn)的FST1000型薄膜應(yīng)力儀進(jìn)行測(cè)試。選用Rigaku smartlab 9KW diffractometer,以掠入射角度1.2°,對(duì)薄膜進(jìn)行了XRD相結(jié)構(gòu)分析,Gatan 695型離子減薄儀和FEI Talos F200X型熱場(chǎng)發(fā)射的透射電子顯微鏡(TEM)結(jié)合,用于TiN薄膜生長(zhǎng)結(jié)構(gòu)的觀察與分析。
圖1 Si基片和316L基片上TiN薄膜的樣品
采用有限元分析技術(shù),以結(jié)構(gòu)尺寸為邊界條件,
基片的短邊為固定約束,設(shè)定薄膜和基片之間為剛性連接(無(wú)分層和剝離現(xiàn)象),且基片變形始終處于彈性變形范圍內(nèi),利用結(jié)構(gòu)力學(xué)基本原理對(duì)薄膜應(yīng)力導(dǎo)致的基片曲率變形狀態(tài)進(jìn)行計(jì)算。為了對(duì)實(shí)測(cè)樣品應(yīng)用計(jì)算結(jié)果,模型中預(yù)設(shè)的基片尺寸和力學(xué)性能參數(shù)與實(shí)測(cè)樣品保持一致,具體參數(shù)和基片初始曲率半徑值等相關(guān)計(jì)算參數(shù)見(jiàn)表1。其中,實(shí)測(cè)樣品的TiN薄膜厚度與分析模型的預(yù)設(shè)值略有差異,但由于薄膜厚度遠(yuǎn)遠(yuǎn)小于基片厚度(Si/TiN厚度比為166倍,而316L/TiN厚度比為266倍),薄膜厚度的微小差異對(duì)計(jì)算結(jié)果實(shí)際應(yīng)用的影響可以忽略。
表1 計(jì)算參數(shù)[22-23]
Tab.1 Calculation parameters[22-23]
圖2為Si基片和316L基片上TiN薄膜的XRD衍射圖??梢钥吹剑趦煞N基片上薄膜的相結(jié)構(gòu)相似,晶面(220)都是最強(qiáng)衍射峰,表明薄膜具有擇優(yōu)取向性。當(dāng)偏壓增大時(shí),晶面(220)的峰都相應(yīng)地增強(qiáng),擇優(yōu)取向更明顯。在物理氣相沉積技術(shù)中,薄膜的擇優(yōu)取向可由熱力學(xué)和動(dòng)力學(xué)效應(yīng)來(lái)分析[24]。熱力學(xué)效應(yīng)主要是表面能和應(yīng)變能的最小化,TiN 薄膜具有面心立方結(jié)構(gòu),晶面(200)具有最低表面能,而晶面(111)具有最低的應(yīng)變能。動(dòng)力學(xué)效應(yīng)主要與不同晶面的擇優(yōu)濺射有關(guān),晶面不同對(duì)應(yīng)的濺射率不同,其中晶面(220)具有最低的濺射率。顯然,兩種基片上的TiN薄膜的擇優(yōu)取向,動(dòng)力學(xué)效應(yīng)起了主導(dǎo)作用。
圖2 Si基片和316L基片上TiN薄膜的XRD衍射圖
圖3為Si基片和316L基片上TiN薄膜的TEM截面形貌??梢钥吹剑琒i基片上TiN薄膜的生長(zhǎng)過(guò)程為納米晶—等軸晶—柱狀晶,晶粒相對(duì)較小,柱狀晶寬度分布在50~100 nm。316L基片上薄膜的晶粒形態(tài)也是柱狀晶,但晶粒較粗大,柱狀晶寬度分布在200~500 nm。衍射結(jié)果表明,兩種基片的薄膜都存在較強(qiáng)的擇優(yōu)取向,結(jié)果與XRD相一致。
圖4是Si基片和316L基片上TiN薄膜的膜基界面處高分辨照片。如圖4a所示,TiN薄膜與Si基片的膜基界面,TiN一側(cè)為納米晶結(jié)構(gòu),Si一側(cè)為大單晶結(jié)構(gòu)。通過(guò)晶面標(biāo)定,發(fā)現(xiàn)TiN側(cè)的納米晶區(qū)域中有Si納米晶的存在。TiN與Si雖然都是面心立方結(jié)構(gòu),但晶格常數(shù)存在較大差別,Si的晶格常數(shù)為0.541 nm× 0.541 nm×0.541 nm,TiN的晶格常數(shù)為0.424 nm× 0.424 nm×0.424 nm,這不利于共格界面的形成,納米晶混合晶區(qū)的界面結(jié)構(gòu)有利于降低界面能。觀察圖4b可以發(fā)現(xiàn),TiN薄膜與316L基片的膜基界面處存在共格生長(zhǎng)的現(xiàn)象。雖然二者同為面心立方晶體結(jié)構(gòu),取向均為[112]晶帶軸,但存在7°的夾角,而且晶格常數(shù)也有一定差異,316L的晶格常數(shù)為0.343 nm× 0.343 nm×0.343 nm,TiN的晶格常數(shù)為0.424 nm× 0.424 nm×0.424 nm,所以此界面的共格結(jié)構(gòu)可認(rèn)定為半共格結(jié)構(gòu)。
為了進(jìn)一步分析TiN與Si的界面情況,對(duì)圖4a虛線區(qū)域進(jìn)行傅里葉(FFT)變換分析。圖5為TiN/Si膜基界面納米晶混合區(qū)高分辨照片和對(duì)圖5a的FFT變換模式。容易發(fā)現(xiàn),在納米晶區(qū)同時(shí)存在Si和TiN晶粒,兩種納米晶混雜生長(zhǎng)在一起。Si和TiN 的晶格常數(shù)差異較大,使得Si與TiN晶粒以無(wú)固定取向的納米晶互相結(jié)合,更有利于界面能的降低。
圖3 Si基片和316L基片上TiN薄膜的截面形貌
圖4 Si基片和316L基片上TiN薄膜的膜基界面處高分辨照片
圖5 TiN/Si膜基界面納米晶區(qū)高分辨照片和對(duì)a圖FFT變換模式
薄膜應(yīng)力的測(cè)試采用基片彎曲法,應(yīng)用Stoney公式計(jì)算薄膜應(yīng)力值,見(jiàn)式(1)。
圖7展示了Si基片和316L基片在系列初始曲率半徑0和薄膜應(yīng)力條件下的曲率誤差值的變化。如圖7所示,對(duì)于這兩種基片材料,首先,在相同的基片初始曲率半徑(0相同)條件下,隨著薄膜應(yīng)力的變化,曲率誤差值的變化很小,即薄膜應(yīng)力大小對(duì)曲率誤差值的影響可以忽略;其次,隨著基片初始曲率半徑0的變化,曲率誤差值變化顯著,|0|越大,基片初始曲率越小,基片越接近于理想狀態(tài)(0=∞),相應(yīng)的曲率誤差值越小;反之,|0|越小,曲率誤差值越大。容易發(fā)現(xiàn),0為負(fù)值(基片上凹,上表面鍍膜)時(shí),曲率誤差值為正值,導(dǎo)致實(shí)測(cè)的薄膜應(yīng)力值偏大;而0為正值(基片上凸,上表面鍍膜)時(shí),曲率誤差值為負(fù)值,導(dǎo)致實(shí)測(cè)的薄膜應(yīng)力值偏小。
圖6 在?1 GPa薄膜應(yīng)力作用下基片初始曲率半徑為∞與10 m時(shí)Si和316L基片的變形情況
圖8是在?1 GPa薄膜應(yīng)力下,Si和316L基片初始曲率半徑0與曲率誤差值的關(guān)系曲線。對(duì)圖中所有數(shù)據(jù)點(diǎn)進(jìn)行曲線擬合,發(fā)現(xiàn)與0存在清晰的冪函數(shù)關(guān)系。圖中4種情況下,曲線對(duì)應(yīng)的冪函數(shù)運(yùn)算系數(shù)存在一定差異,但運(yùn)算形式是一致的,可歸納得到與0的關(guān)系式:
式中:為曲率誤差值;0為基片初始曲率半徑;和為運(yùn)算系數(shù)。0為正值時(shí)公式取“?”,0為負(fù)值時(shí)公式取“+”。和的具體值需要根據(jù)基片材料的形狀尺寸和力學(xué)參數(shù)確定。根據(jù)以上分析,有必要根據(jù)基片初始曲率半徑0對(duì)Stoney公式進(jìn)行校正,以提高薄膜應(yīng)力測(cè)試結(jié)果的精度。引入曲率誤差值得到校正公式如下:
圖9為Si基片和316L基片上TiN薄膜的應(yīng)力實(shí)測(cè)和校正結(jié)果。如圖9所示,第一,兩種基片都存在一定的初始曲率(0≠0),Si基片的初始曲率半徑絕對(duì)值比316L基片的大2~3倍,根據(jù)圖8中的公式,316L基片應(yīng)力測(cè)試的曲率誤差值明顯更大,即316L基片上的薄膜應(yīng)力值誤差更大,最大達(dá)到3.85%(0=17.77 m)。第二,相同工藝條件下,Si基片上的TiN薄膜應(yīng)力明顯小于316L基片,而隨偏壓增大,兩種基片上薄膜應(yīng)力都隨之增大。第三,由校正應(yīng)力扣除熱應(yīng)力后的薄膜生長(zhǎng)應(yīng)力可知,兩種基片上薄膜的生長(zhǎng)應(yīng)力比其最終的殘余應(yīng)力值更加接近。
圖7 Si基片和316L基片在系列的初始曲率半徑和薄膜應(yīng)力條件下的曲率誤差值
圖8 Si基片和316L基片的基片初始曲率半徑R0與基片曲率誤差值E的關(guān)系曲線
圖9 Si基片和316L基片上TiN薄膜的應(yīng)力實(shí)測(cè)和校正結(jié)果
兩種基片上的TiN薄膜都是柱狀晶形態(tài),偏壓引起的高速粒子的釘扎效應(yīng)會(huì)更加顯著地導(dǎo)致薄膜壓應(yīng)力增大,而柱狀晶在橫向的競(jìng)爭(zhēng)生長(zhǎng)也會(huì)增大薄膜壓應(yīng)力[8]。通常認(rèn)為,晶界滑移可以部分釋放晶粒間的壓應(yīng)力,顯然柱狀晶尺寸越大,晶界滑移越困難。所以,316L基片上的薄膜更容易產(chǎn)生高的壓應(yīng)力。
薄膜應(yīng)力主要由生長(zhǎng)應(yīng)力和熱應(yīng)力兩部分組成[19]。一方面,電弧離子鍍制備薄膜過(guò)程中,偏壓電場(chǎng)會(huì)導(dǎo)致金屬正離子在薄膜生長(zhǎng)過(guò)程中撞擊基片(薄膜)表面產(chǎn)生釘扎作用,進(jìn)而增加薄膜壓應(yīng)力[25],基片的導(dǎo)電性對(duì)于偏壓施加的有效性會(huì)產(chǎn)生一定影響,顯然Si的導(dǎo)電性不如316L,所以Si基片上薄膜在生長(zhǎng)過(guò)程中產(chǎn)生的壓應(yīng)力偏低。增大偏壓時(shí),基片表面受到的離子釘扎作用增強(qiáng),所以偏壓增加對(duì)薄膜壓應(yīng)力的影響都是正相關(guān)。另一方面,薄膜制備時(shí)真空腔室恒溫400 ℃,出爐后冷卻至室溫(25 ℃),因薄膜和基片材料的熱膨脹系數(shù)差異必然導(dǎo)致熱應(yīng)力。根據(jù)熱應(yīng)力公式和相關(guān)參數(shù)[19,26-27],Si基片和316L基片上的TiN薄膜所產(chǎn)生的熱應(yīng)力分別為0.75 GPa和?1.385 GPa,前者為拉應(yīng)力,而后者為壓應(yīng)力。綜上分析,Si基片上的TiN薄膜應(yīng)力,由較小的生長(zhǎng)應(yīng)力(壓應(yīng)力)和熱應(yīng)力(拉應(yīng)力)組成;而316L基片上的TiN薄膜應(yīng)力,由較大的生長(zhǎng)應(yīng)力(壓應(yīng)力)和熱應(yīng)力(壓應(yīng)力)組成。前者拉壓應(yīng)力部分抵消,后者壓壓應(yīng)力疊加增強(qiáng),最終結(jié)果必然導(dǎo)致Si基片上薄膜的殘余應(yīng)力明顯小于316L基片上的。
圖8和圖9的界面結(jié)構(gòu)分析表明,TiN/Si界面結(jié)合為兩相混合的納米晶區(qū),而TiN/316L界面為半共格結(jié)構(gòu),很顯然,TiN/316L界面有利于薄膜生長(zhǎng)中柱狀晶粒的長(zhǎng)大,柱狀晶互相競(jìng)爭(zhēng)進(jìn)一步推高薄膜壓應(yīng)力。同時(shí),TiN/316L的半共格結(jié)構(gòu),相比于TiN/Si的納米晶界面,更有利于提升膜基結(jié)合強(qiáng)度,使其膜基體系可以承受更高的薄膜應(yīng)力。
采用電弧離子鍍技術(shù)在Si基片和316L基片上制備了TiN薄膜,對(duì)薄膜的微觀結(jié)構(gòu)和應(yīng)力狀態(tài)進(jìn)行了對(duì)比分析。結(jié)果表明,不同基片的TiN薄膜的相結(jié)構(gòu)及其隨偏壓變化規(guī)律一致;相同工藝條件下,316L基片上TiN薄膜的應(yīng)力比Si基片上的更大;TiN薄膜的應(yīng)力都隨偏壓的增大而增大,此規(guī)律與基片材料無(wú)關(guān);薄膜生長(zhǎng)至近表面都呈柱狀晶形態(tài),316L基片上的TiN膜的晶粒更粗大,柱狀晶的寬度分布在200~500 nm,且在膜基界面出現(xiàn)了半共格生長(zhǎng)結(jié)構(gòu),這種結(jié)構(gòu)對(duì)膜基結(jié)合有利,可使其承受更高的薄膜應(yīng)力。
通過(guò)有限元分析發(fā)現(xiàn),基片的初始曲率半徑對(duì)基片彎曲法應(yīng)力測(cè)試結(jié)果存在一定的影響,基片的初始曲率半徑絕對(duì)值越小,引起的薄膜應(yīng)力測(cè)試誤差越大;反之,基片越接近理想狀態(tài)(0=∞),引起的誤差越小。為了去除此誤差,在Stoney公式增加一個(gè)曲率誤差值因子,提出了一個(gè)校正公式。對(duì)實(shí)驗(yàn)制備的兩種基片上TiN薄膜的應(yīng)力測(cè)試,進(jìn)行了應(yīng)用。結(jié)果表明,兩種基片都存在一定的初始曲率,316L基片的初始曲率半徑顯著小于Si基片,所以引起的誤差更大,有必要對(duì)其進(jìn)行誤差校正。
[1] ABADIAS G, CHASON E, KECKES J, et al. Review Article: Stress in Thin Films and Coatings: Current Status, Challenges, and Prospects[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2018, 36(2): 020801.
[2] YIN De-qiang, PENG Xiang-he, QIN Yi, et al. Impact of Residual Stress on the Adhesion and Tensile Fracture of TiN/CrN Multi-Layered Coatings from First Principles[J]. Physica E: Low-Dimensional Systems and Nanostru-ct-ures, 2012, 44(9): 1838-1845.
[3] OLADIJO O P, VENTER A M, CORNISH L A. Corre-lation between Residual Stress and Abrasive Wear of WC-17Co Coatings[J]. International Journal of Refractory Metals and Hard Materials, 2014, 44: 68-76.
[4] ZHAO Xiao-li, MUNROE P, HABIBI D, et al. Roles of Compressive Residual Stress in Enhancing the Corrosion Resistance of Nano Nitride Composite Coatings on Steel [J]. Journal of Asian Ceramic Societies, 2013, 1(1): 86-94.
[5] CEMIN F, ABADIAS G, MINEA T, et al. Tuning High Power Impulse Magnetron Sputtering Discharge and Sub-strate Bias Conditions to Reduce the Intrinsic Stress of TiN Thin Films[J]. Thin Solid Films, 2019, 688: 137335.
[6] ZHOU Xu-yang, THOMPSON G B. The Influence of Alloying Interactions on Thin Film Growth Stresses[J]. Applied Surface Science, 2019, 463: 545-555.
[7] JIANG C L, ZHU H L, SHIN K S, et al. Influence of Titanium Interlayer Thickness Distribution on Mechanical Properties of Ti/TiN Multilayer Coatings[J]. Thin Solid Films, 2017, 632: 97-105.
[8] 趙升升, 程毓, 常正凱, 等. (Ti,Al)N涂層應(yīng)力沿層深分布的調(diào)整及大厚度涂層的制備[J]. 金屬學(xué)報(bào), 2012, 48(3): 277-282.
ZHAO Sheng-sheng, CHENG Yu, CHANG Zheng-kai, et al. Modification of Stress Distribution along the Thic-k-ness of (Ti,Al)N Coatings and Preparation of the Coatings with Large Thickness[J]. Acta Metallurgica Sinica, 2012, 48(3): 277-282.
[9] HUANG Jia-hong, MA C H, CHEN H. Effect of Ti Inter-layer on the Residual Stress and Texture Development of TiN Thin Films[J]. Surface and Coatings Technology, 2006, 200(20-21): 5937-5945.
[10] 趙升升, 周晟昊, 曾德長(zhǎng). 退火對(duì)大厚度TiAlN涂層力學(xué)性能影響的研究[J]. 真空科學(xué)與技術(shù)學(xué)報(bào), 2017, 37(2): 182-187.
ZHAO Sheng-sheng, ZHOU Sheng-hao, ZENG De-chang. Synthesis and Characterization of TiAlN Thick Films with Top-down Decreasing Gradient of Nitrogen[J]. Chin-ese Journal of Vacuum Science and Technology, 2017, 37(2): 182-187.
[11] 冉春華, 金義棟, 祝聞, 等. 應(yīng)力對(duì)薄膜結(jié)構(gòu)與性能影響的研究現(xiàn)狀[J]. 材料導(dǎo)報(bào), 2013, 27(5): 139-142.
RAN Chun-hua, JIN Yi-dong, ZHU Wen, et al. Study Status on the Impact of Stress on Structure and Properties of Films[J]. Materials Review, 2013, 27(5): 139-142.
[12] 趙升升, 程毓, 張小波, 等. 全自動(dòng)薄膜應(yīng)力儀[J]. 真空科學(xué)與技術(shù)學(xué)報(bào), 2016, 36(1): 98-102.
ZHAO Sheng-sheng, CHENG Yu, ZHANG Xiao-bo, et al. Novel Device for Automatic Evaluation of Thin- Film Residual Stress[J]. Chinese Journal of Vacuum Sci-ence and Technology, 2016, 36(1): 98-102.
[13] STONEY G G.. The Tension of Metallic Films Deposited by Electrolysis[J]. Proceedings of the Royal Society of London Series A, Containing Papers of a Mathematical and Physical Character, 1909, 82(553): 172-175.
[14] CHENG Guo-an, HAN Dong-yan, LIANG Chang-lin, et al. Influence of Residual Stress on Mechanical Pro-per-ties of TiAlN Thin Films[J]. Surface and Coatings Tech--nology, 2013, 228: S328-S330.
[15] ZHANG Li-qiang, YANG Hui-sheng, PANG Xiao-lu, et al. Microstructure, Residual Stress, and Fracture of Sp-u-ttered TiN Films[J]. Surface and Coatings Technology, 2013, 224: 120-125.
[16] 唐鑫, 馬東林, 陳暢子, 等. 高功率脈沖磁控濺射制備的TiN薄膜應(yīng)力釋放及其結(jié)合穩(wěn)定性研究[J]. 表面技術(shù), 2019, 48(9): 245-251.
TANG Xin, MA Dong-lin, CHEN Chang-zi, et al. Stress Release and Adhesion Stability of TiN Films Deposited by High Power Pulsed Magnetron Sputtering[J]. Surface Technology, 2019, 48(9): 245-251.
[17] DAI Wei, LI Xu, WU Liang, et al. Influences of Target Power and Pulse Width on the Growth of Diam-ond- Like/Graphite-Like Carbon Coatings Deposited by High Power Impulse Magnetron Sputtering[J]. Diamond and Related Materials, 2021, 111: 108232.
[18] MEI Hai-juan, DING Ji cheng, XIAO Xiao-lan, et al. Influence of Pulse Frequency on Microstructure and Mech-a-nical Properties of Al-Ti-V-Cu-N Coatings Dep-o-sited by HiPIMS[J]. Surface and Coatings Technology, 2021, 405: 126514.
[19] 邱龍時(shí), 喬關(guān)林, 馬飛, 等. TiN薄膜的殘余應(yīng)力調(diào)控及力學(xué)性能研究[J]. 機(jī)械工程學(xué)報(bào), 2017, 53(24): 42- 48.
QIU Long-shi, QIAO Guan-lin, MA Fei, et al. Study on Residual Stress Modulation and Mechanical Properties of Titanium Nitride Coatings[J]. Journal of Mechanical Engineering, 2017, 53(24): 42-48.
[20] SAVCHUK O, VOLINSKY A A. Nonparametric Esti-mation of SiC Film Residual Stress from the Wafer Surface Profile[J]. Measurement, 2021, 177: 109238.
[21] PANDEY A, DUTTA S, PRAKASH R, et al. Growth and Evolution of Residual Stress of AlN Films on Silicon (100) Wafer[J]. Materials Science in Semiconductor Pro-cessing, 2016, 52: 16-23.
[22] MEI Hai-juan, ZHAO Sheng-sheng, CHEN Wei, et al. Microstructure and Residual Stress of TiN Films Depo-sited at Low Temperature by Arc Ion Plating[J]. Tran-sactions of Nonferrous Metals Society of China, 2018, 28(7): 1368-1376.
[23] RESNIK D, VRTA?NIK D, ALJAN?I? U, et al. Influ-ence of Mechanical Stress on Adhesion Properties of DC Magnetron Sputtered Ti/NiV/Ag Layers on n+Si Sub-strate[J]. Microelectronic Engineering, 2008, 85(7): 1603- 1607.
[24] 趙彥輝, 郭朝乾, 楊文進(jìn), 等. 軸向磁場(chǎng)對(duì)電弧離子鍍TiN薄膜組織結(jié)構(gòu)及力學(xué)性能的影響[J]. 中國(guó)表面工程, 2015, 28(1): 56-61.
ZHAO Yan-hui, GUO Chao-qian, YANG Wen-jin, et al. Effects of Axial Magnetic Field on Microstructure and Mechanical Properties of TiN Films Deposited by Arc Ion Plating[J]. China Surface Engineering, 2015, 28(1): 56-61.
[25] 趙升升, 周晟昊, 余紅雅, 等. 厚度對(duì)TiN薄膜力學(xué)性能的影響[J]. 真空科學(xué)與技術(shù)學(xué)報(bào), 2016, 36(3): 291- 295.
ZHAO Sheng-sheng, ZHOU Sheng-hao, YU Hong-ya, et al. Effect of TiN Films Thickness on Mechanical Pro-perties of Stainless Steel[J]. Chinese Journal of Vacuum Science and Technology, 2016, 36(3): 291-295.
[26] ZHU Xiao-min, YU Jia-kang, WANG Xin-yu. Microstru-cture and Properties of Al/Si/SiC Composites for Elec-tronic Packaging[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(7): 1686-1692.
[27] 陳勇國(guó), 張東明, 劉晶, 等. 鈦合金基體上TiN涂層的殘余熱應(yīng)力分析[J]. 人工晶體學(xué)報(bào), 2009, 38(1): 251- 254.
CHEN Yong-guo, ZHANG Dong-ming, LIU Jing, et al. Thermal Residual Stress Analysis of TiN Coating on Tita-nium Alloy Substrate[J]. Journal of Synthetic Cry-stals, 2009, 38(1): 251-254.
Comparative Study on Stress and Microstructure of TiN Films on Si and 316L Substrates
1,1,2,2
(1. School of Mechanical and Electrical Engineering, Shenzhen Polytechnic, Shenzhen 518055, China; 2. Shenzhen Supro Instruments Co., Ltd., Shenzhen 518000, China)
TiN films on Si substrate and 316L substrate were compared to study the effects of different substrate materials and initial curvature on the film stresses. TiN films were prepared on Si and 316L substrates by arc ion plating. The film stresses was measured. The microstructures of the films were analyzed by XRD, SEM and TEM. Based on the principle of structural mechanics, The finite element analysis technique was used to calculate and correct the stress on Si substrate and 316L substrate with different initial curvature. Under the same deposition process, the stress of TiN film on 316L substrate was larger than that on Si substrate. The film stresses increase with the increase of bias voltage. The columnar crystal structure was formed near the surface of the films. There were many semi-coherent growth structures at the interface between the 316L substrate and TiN film, while nanocrystalline mixing was the main bonding at the interface of the Si substrate and TiN film. The initial radius of curvature of the substrate would cause some errors during film stress testing. The smaller the initial radius was, the greater the errors would be caused. Under the effect of bias, the films on 316L substrate would induce more compressive stress. The bond between 316L and TiN film was better, which was beneficial to bear higher film stresses. The initial radius of curvature of the 316L substrate was significantly smaller than that of the Si substrate, which caused a large error during film stress testing. It is necessary to be corrected for the stress of the films on the 316L substrate.
substrate curvature technique; stress test; residual stress; substrate original curvature; substrate material
2021-04-21;
2021-09-07
ZHAO Sheng-sheng (1979—), Male, Doctor, Associate professor, Research focus: mechanical properties of hard films.
趙升升,程毓,張小波,等. Si和316L基片上TiN薄膜微觀結(jié)構(gòu)和應(yīng)力的對(duì)比分析[J].表面技術(shù), 2022, 51(3): 278-285.
TG174.444
A
1001-3660(2022)03-0278-08
10.16490/j.cnki.issn.1001-3660.2022.03.030
2021-04-21;
2021-09-07
深圳職業(yè)技術(shù)學(xué)院重點(diǎn)項(xiàng)目(6020310007K);深圳市基礎(chǔ)研究項(xiàng)目(JCYJ20190809150001747)
Fund:Supported by the Key Project of Shenzhen Polytechnic (6020310007K); Science and Technology Project of Shenzhen (JCYJ20190809150001747)
趙升升(1979—),男,博士,副教授,主要研究方向?yàn)橛操|(zhì)薄膜的力學(xué)性能。
ZHAO Sheng-sheng, CHENG Yu, ZHANG Xiao-bo, et al. Comparative Study on Stress and Microstructure of TiN Films on Si and 316L Substrates[J]. Surface Technology, 2022, 51(3): 278-285.