張麗君,柳樹(shù)英,趙曉麗,2
1 甘肅省中醫(yī)藥研究院,甘肅 蘭州 730050;2 甘肅省中醫(yī)院
為了中醫(yī)藥事業(yè)的振興發(fā)展,2019 年10 月25 日中共中央總書(shū)記習(xí)近平強(qiáng)調(diào),要遵循中醫(yī)藥發(fā)展規(guī)律,傳承精華,守正創(chuàng)新,加快推進(jìn)中醫(yī)藥現(xiàn)代化、產(chǎn)業(yè)化,堅(jiān)持中西醫(yī)并重,推動(dòng)中醫(yī)藥和西醫(yī)藥相互補(bǔ)充、協(xié)調(diào)發(fā)展,推動(dòng)中醫(yī)藥事業(yè)和產(chǎn)業(yè)高質(zhì)量發(fā)展,推動(dòng)中醫(yī)藥走向世界,充分發(fā)揮中醫(yī)藥防病治病的獨(dú)特優(yōu)勢(shì)和作用,為建設(shè)健康中國(guó)、實(shí)現(xiàn)中華民族偉大復(fù)興的中國(guó)夢(mèng)貢獻(xiàn)力量[1]。中醫(yī)學(xué)類(lèi)期刊作為中醫(yī)藥研究成果的展現(xiàn)平臺(tái),為中醫(yī)藥的發(fā)展起到了至關(guān)重要的作用。目前,中醫(yī)學(xué)類(lèi)期刊種類(lèi)眾多,如何通過(guò)客觀指標(biāo)來(lái)評(píng)價(jià)其學(xué)術(shù)影響力,成為了眾多學(xué)者關(guān)注的熱點(diǎn)。本研究依據(jù)《中國(guó)科技期刊引證報(bào)告(核心版)》24~29種中醫(yī)學(xué)類(lèi)期刊學(xué)術(shù)影響力的評(píng)價(jià)指標(biāo),將近10年核心總被引頻次(期刊自創(chuàng)刊以來(lái)所登載的全部論文在統(tǒng)計(jì)當(dāng)年被引用的總次數(shù))、核心影響因子(國(guó)際上通告的期刊評(píng)價(jià)指標(biāo),表示評(píng)價(jià)前2年期刊平均每篇論文被引用的次數(shù),公式為:該刊前兩年發(fā)表論文在統(tǒng)計(jì)當(dāng)年被引的總次數(shù)/該刊前兩年發(fā)表論文總數(shù))和綜合評(píng)價(jià)總分(根據(jù)中國(guó)科技期刊綜合評(píng)價(jià)指標(biāo)體系,計(jì)算多項(xiàng)科學(xué)計(jì)量指標(biāo),采用層次分析法確定重要指標(biāo)的權(quán)重,分學(xué)科對(duì)每種期刊進(jìn)行綜合評(píng)定,計(jì)算出每個(gè)期刊的綜合評(píng)價(jià)總分)3個(gè)主要計(jì)量指標(biāo)進(jìn)行分析,現(xiàn)將結(jié)果報(bào)道如下。
1.1 資料來(lái)源以2010—2019 年《中國(guó)科技期刊引證報(bào)告(核心版)》中醫(yī)學(xué)類(lèi)期刊為數(shù)據(jù)來(lái)源,對(duì)其核心總被引頻次、核心影響因子和綜合評(píng)價(jià)總分3個(gè)主要計(jì)量指標(biāo)進(jìn)行數(shù)據(jù)分析。
1.2 研究方法以核心總被引頻次和核心影響因子為自變量,綜合評(píng)價(jià)總分為因變量。1)應(yīng)用自變量獨(dú)立性檢驗(yàn)對(duì)自變量核心總被引頻次及核心影響因子進(jìn)行相關(guān)性檢驗(yàn),以確認(rèn)核心被引頻次與核心影響因子是否有正相關(guān)。2)應(yīng)用因變量常規(guī)性檢驗(yàn)對(duì)因變量綜合評(píng)價(jià)總分進(jìn)行常規(guī)性檢驗(yàn),確認(rèn)綜合評(píng)價(jià)總分符合正態(tài)分布。3)應(yīng)用自變量與因變量線性檢驗(yàn)分別對(duì)自變量核心總被引頻次與因變量綜合評(píng)價(jià)總分、自變量核心影響因子與因變量綜合評(píng)價(jià)總分進(jìn)行線性檢驗(yàn),確認(rèn)核心總被引頻次與綜合評(píng)價(jià)總分、核心影響因子與綜合評(píng)價(jià)總分呈線性關(guān)系。
1.3 統(tǒng)計(jì)學(xué)方法采用開(kāi)源統(tǒng)計(jì)分析軟件Rstudio(1.4.1103)對(duì)核心總被引頻次及核心影響因子與綜合評(píng)價(jià)總分進(jìn)行多元線性回歸分析。
2.1 核心總被引頻次、核心影響因子及綜合評(píng)價(jià)總分2010—2019 年間中醫(yī)學(xué)類(lèi)期刊核心總被引頻次、核心影響因子和綜合評(píng)價(jià)總分3 個(gè)主要計(jì)量指標(biāo)[2-11]數(shù)值見(jiàn)表1—3;核心總被引頻次及核心影響因子與綜合評(píng)價(jià)總分的關(guān)系見(jiàn)圖1。
表1 2010—2019年中醫(yī)學(xué)類(lèi)期刊核心總被引頻次 次
續(xù)表1
表2 2010—2019年中醫(yī)學(xué)類(lèi)期刊核心影響因子
表3 2010—2019年中醫(yī)學(xué)類(lèi)期刊綜合評(píng)價(jià)總分 分
逐年對(duì)自變量核心總被引頻次及核心影響因子進(jìn)行相關(guān)性檢驗(yàn),核心總被引頻次與核心影響因子未展現(xiàn)顯著相關(guān)性。線性檢驗(yàn)結(jié)果顯示核心總被引頻次與綜合評(píng)價(jià)總分、核心影響因子與綜合評(píng)價(jià)總分呈線性相關(guān)??梢?jiàn),自變量核心總被引頻次及核心影響因子與因變量綜合評(píng)價(jià)總分呈明顯的線性關(guān)系并呈正相關(guān)。其中,核心影響因子與綜合評(píng)價(jià)總分呈明顯的線性關(guān)系并呈正相關(guān)。見(jiàn)圖1。
2.2 影響系數(shù)和可決系數(shù)2010—2019 年中醫(yī)學(xué)類(lèi)期刊核心總被引頻次、核心影響因子對(duì)綜合評(píng)價(jià)總分影響系數(shù)和線性回歸模型的可決系數(shù)結(jié)果見(jiàn)表4。核心總被引頻次線性回歸見(jiàn)圖2;核心影響因子線性回歸見(jiàn)圖3;線性回歸模型可決系數(shù)見(jiàn)圖4。
表4 2010—2019年核心總被引頻次、核心影響因子對(duì)綜合評(píng)價(jià)總分影響系數(shù)和線性回歸模型的可決系數(shù)
圖2 核心總被引頻次線性回歸
圖3 核心影響因子線性回歸
圖4 線性回歸模型可決系數(shù)
由圖2 可知,2010—2019 年間核心總被引頻次對(duì)綜合評(píng)價(jià)總分的影響系數(shù)總體呈下降趨勢(shì),其10年間的均值為0.005,說(shuō)明核心總被引頻次對(duì)綜合評(píng)價(jià)總分的影響較低。由圖3 可知,2010—2019 年間核心影響因子對(duì)綜合評(píng)價(jià)總分的影響系數(shù)呈總體上升趨勢(shì),其10年間的均值為42.781,說(shuō)明核心影響因子對(duì)綜合評(píng)價(jià)總分有較強(qiáng)的影響。由圖4 可知,多元線性回歸模型的模型可決系數(shù)(Adjusted R-squared)在2010—2019 年間的分布較為平緩,說(shuō)明自變量核心總被引頻次及核心影響因子對(duì)因變量綜合評(píng)價(jià)總分有較強(qiáng)的解釋性。
使用統(tǒng)計(jì)分析軟件Rstudio對(duì)2010—2019年間24~29 種中醫(yī)類(lèi)期刊主要指標(biāo)進(jìn)行了多元線性回歸分析,發(fā)現(xiàn)中醫(yī)學(xué)類(lèi)期刊重要指標(biāo)核心總被引頻次及核心影響因子與綜合評(píng)價(jià)總分每年均呈正向的線性關(guān)系,核心影響因子越高,其對(duì)應(yīng)的綜合評(píng)價(jià)總分越高;核心總被引頻次對(duì)綜合評(píng)價(jià)總分的影響系數(shù)呈下降趨勢(shì),且對(duì)綜合評(píng)價(jià)總分影響較小;核心影響因子對(duì)綜合評(píng)價(jià)總分的影響系數(shù)呈上升趨勢(shì),且對(duì)綜合評(píng)價(jià)總分影響較大。自變量核心被引頻次及核心影響因子對(duì)因變量綜合評(píng)價(jià)總分的可決系數(shù)保持穩(wěn)定趨勢(shì),說(shuō)明核心總被引頻次及核心影響因子可以很好地解釋綜合評(píng)價(jià)總分,且該多元線性回歸模型具有穩(wěn)定性。
綜上所述,本統(tǒng)計(jì)結(jié)果對(duì)于中醫(yī)學(xué)類(lèi)期刊的發(fā)展與提升具有積極意義。為了提升綜合評(píng)價(jià)總分,中醫(yī)學(xué)類(lèi)期刊應(yīng)注重核心總被引頻次及核心影響因子,尤其應(yīng)重視核心影響因子。所以,中醫(yī)類(lèi)期刊應(yīng)注重其發(fā)文質(zhì)量,提高核心影響因子,以提高綜合評(píng)價(jià)總分。