宋瑩 相思曼 孫雅致
摘要: 為優(yōu)化三維虛擬試衣設(shè)計(jì)流程、縮短研發(fā)周期、提升研發(fā)效率,本文以連衣裙為研究對象,CLO3D虛擬試衣軟件為研究手段,改變由二維樣板生成三維樣衣的傳統(tǒng)虛擬試衣流程。首先采用逆向流程設(shè)計(jì)方法,以松量人體模型為參照繪制連衣裙基礎(chǔ)廓形,通過擬合工具首先生成三維曲面樣板,并根據(jù)直觀著裝效果對樣板進(jìn)行優(yōu)化設(shè)計(jì),直至得出最佳的三維曲面樣板;然后在此基礎(chǔ)上,通過軟件的展平工具將三維樣板自動生成為二維平面樣板;最后通過對連衣裙的著裝效果與舒適性進(jìn)行主客觀一致性驗(yàn)證可知,該方法在實(shí)現(xiàn)連衣裙樣板快速成型的同時,由于連衣裙著裝效果直觀可見,也保證了二維樣板的準(zhǔn)確性。
關(guān)鍵詞: 逆向流程;人體模型;CLO3D;虛擬試衣;服裝樣板;服裝壓力
中圖分類號: TS941.26文獻(xiàn)標(biāo)志碼: A文章編號: 10017003(2022)04005906
引用頁碼: 041109DOI: 10.3969/j.issn.1001-7003.2022.04.009(篇序)
隨著服裝產(chǎn)業(yè)數(shù)字化、智能化的高速發(fā)展,以及個性化服裝需求的快速增長,消費(fèi)者對著裝的需求已經(jīng)不僅局限于單一的同質(zhì)化模式,而是更加重視對服裝的品質(zhì)、造型及個性的追求[1]。針對消費(fèi)者的著裝需求現(xiàn)狀,越來越多的服裝企業(yè)采用先進(jìn)的、智能化的三維服裝技術(shù)[2],設(shè)計(jì)并生產(chǎn)出款式豐富多樣、具有時尚化氣息、符合消費(fèi)者個性需求的服裝,并實(shí)現(xiàn)縮短研發(fā)周期、降低生產(chǎn)成本、提高設(shè)計(jì)效率,以及快速響應(yīng)市場的生產(chǎn)目標(biāo)[3]。
針對這一技術(shù),董禮強(qiáng)[4]利用CLO3D虛擬仿真軟件創(chuàng)建虛擬模特,以此為基礎(chǔ)對衣身、領(lǐng)子、袖子等部位進(jìn)行仿真設(shè)計(jì),實(shí)現(xiàn)平面結(jié)構(gòu)造型立體展示的快速實(shí)現(xiàn)。沈雷等[5]通過分析國內(nèi)外智能服裝的發(fā)展現(xiàn)狀,歸納總結(jié)出智能服裝在性能即材料選擇等方面存在的問題,并提出解決方案,同時對智能服裝的發(fā)展趨勢做出預(yù)判。江紅霞等[6]對服裝結(jié)構(gòu)部件進(jìn)行模塊化設(shè)計(jì),并利用三維虛擬試衣技術(shù)在對服裝虛擬試穿的基礎(chǔ)上,對服裝細(xì)節(jié)進(jìn)行仿真處理,提高了服裝虛擬試衣的逼真效果。ZHOU等[7]將服裝零部件進(jìn)行模塊劃分,通過分析各零部件模塊之間的轉(zhuǎn)換規(guī)則,建立了服裝零件連接的數(shù)學(xué)模型,為智能服裝設(shè)計(jì)提供理論支持。LI等[8]以裙裝為研究對象,通過開發(fā)以客戶為中心的協(xié)同模式,實(shí)現(xiàn)客戶通過手機(jī)應(yīng)用程序進(jìn)行裙裝設(shè)計(jì),并創(chuàng)建數(shù)學(xué)模型對研究結(jié)論進(jìn)行了驗(yàn)證。上述的三維虛擬試衣技術(shù)研究都是采用正向設(shè)計(jì)的流程,在利用三維掃描獲得人體相關(guān)數(shù)據(jù)的基礎(chǔ)上,將服裝的二維結(jié)構(gòu)樣板輸入軟件,根據(jù)軟件數(shù)據(jù)庫信息創(chuàng)建虛擬模特信息后,通過虛擬縫合工具將服裝二維樣板轉(zhuǎn)換為三維成衣[9];然后借助創(chuàng)建好的虛擬模特進(jìn)行試穿,根據(jù)虛擬試衣效果對二維樣板進(jìn)行修正,并通過再次或多次試穿驗(yàn)證,直至得出最佳的著裝效果與二維服裝樣板。這種正向的設(shè)計(jì)流程雖然可以有效提高產(chǎn)品設(shè)計(jì)的顧客滿意度,但是也存在由于二維樣板的反復(fù)修正而造成設(shè)計(jì)流程與周期延長的問題。
逆向流程設(shè)計(jì)也稱為反向流程設(shè)計(jì),不同于傳統(tǒng)的正向流程設(shè)計(jì)方法,是一種根據(jù)產(chǎn)品造型首先創(chuàng)建出其三維模型,在此基礎(chǔ)上,反向推算出其二維基礎(chǔ)數(shù)據(jù)的方法。這種方法由于具有效果直觀可見、數(shù)據(jù)實(shí)時同步等優(yōu)勢,因此可以極大地為企業(yè)降低研發(fā)成本、提升研發(fā)效率?;谀嫦蛄鞒淘O(shè)計(jì)的上述優(yōu)勢,本文以CLO3D虛擬試衣軟件為研究手段,創(chuàng)新性地采用將服裝輪廓進(jìn)行硬化處理,創(chuàng)建出三維的服裝曲面樣板,再結(jié)合服裝款式特點(diǎn)對三維服裝的曲面樣板進(jìn)行省道或分割線的細(xì)分處理,最終利用自動展平技術(shù)將三維服裝樣板展開鋪平提取二維平面樣板的逆向流程設(shè)計(jì)方法。通過逆向流程設(shè)計(jì)方法,實(shí)現(xiàn)合體服裝的三維樣衣到二維樣板逆向轉(zhuǎn)換的一次性成功,或減少二維樣板的修正次數(shù),并以一款合體連衣裙為實(shí)例,驗(yàn)證了該方法的準(zhǔn)確性與可行性,從而為服裝款式與結(jié)構(gòu)的數(shù)字化設(shè)計(jì)提供參考借鑒。
1實(shí)驗(yàn)
1.1數(shù)據(jù)采集
根據(jù)GB/T 1335.2—2008《服裝號型女子》[10]中的女體分類標(biāo)準(zhǔn),本實(shí)驗(yàn)選取一名體型符合165/84A標(biāo)準(zhǔn)的女性為被試者,依據(jù)CLO3D虛擬試衣軟件中的模特參數(shù)信息[11],從橫向尺寸與縱向尺寸中提取創(chuàng)建人體模型的特征部位尺寸共計(jì)19個,并對上述部位尺寸做出標(biāo)記。
利用Vitus Smart XXL無接觸式三維人體掃描儀(北京力泰友聯(lián)科技有限公司)對被試者特征部位進(jìn)行數(shù)據(jù)采集,實(shí)驗(yàn)環(huán)境為室內(nèi)溫度25 ℃,相對濕度65%,并且關(guān)閉門窗避免風(fēng)速造成實(shí)驗(yàn)誤差。要求被試者在掃描區(qū)間內(nèi)的規(guī)定位置完成掃描所需的指定動作,每個指定動作保證維持5~10 s[12],并將掃描后尺寸數(shù)據(jù)導(dǎo)出創(chuàng)建人體模型所需的19個特征部位尺寸。具體人體掃描數(shù)據(jù)如表1所示。
1.2人體模型創(chuàng)建
由于CLO3D支持人體數(shù)據(jù)任意調(diào)整變化,可實(shí)現(xiàn)無數(shù)種尺寸規(guī)格的模特人體。因此,本實(shí)驗(yàn)根據(jù)人體掃描所得出的19個特征部位尺寸,對選定的虛擬試衣軟件中自帶的虛擬模特進(jìn)行參數(shù)設(shè)置,獲得實(shí)驗(yàn)所需的基礎(chǔ)人體模型參數(shù)。由于服裝成衣尺寸與基礎(chǔ)人體尺寸之間通常具有一定的松量,結(jié)合本實(shí)驗(yàn)樣衣的款式特征,將胸圍、腰圍和臀圍的放松量均設(shè)定為4 cm,上臂圍放松量為3 cm,如圖1所示。
接下來在CLO3D中通過調(diào)整參數(shù)設(shè)置,將連衣裙上述部位的放松量附加于基礎(chǔ)人體模型表面,軟件后臺會在已有數(shù)據(jù)的基礎(chǔ)上,自動生成其他特征部位的尺寸,從而將基礎(chǔ)人體模型調(diào)整為各部位尺寸與成品連衣裙相吻合的松量人體模型,如圖2所示。兩種人體模型關(guān)鍵部位的尺寸對比如表2所示。
1.3連衣裙曲面創(chuàng)建
本實(shí)驗(yàn)以CLO3D虛擬試衣軟件為技術(shù)平臺,首先對基礎(chǔ)型連衣裙的曲面進(jìn)行創(chuàng)建。具體方法為:以松量人體模型為參照,根據(jù)款式要求直接繪制連衣裙基礎(chǔ)結(jié)構(gòu)廓形,利用軟件中的擬合工具,將其與松量人體模型進(jìn)行服裝擬合,即在松量人體模型的表面創(chuàng)建一個緊貼人體的連衣裙曲面;隨后將松量人體模型轉(zhuǎn)換為基礎(chǔ)人體模型,依據(jù)基礎(chǔ)人體模型的連衣裙著裝效果可對連衣裙結(jié)構(gòu)造型直接進(jìn)行修正、調(diào)整,確保連衣裙結(jié)構(gòu)造型與實(shí)際款式相一致;接下來將最終修正并擬合后的連衣裙曲面進(jìn)行面料的硬化處理,使整個連衣裙曲面造型光滑且符合松量人體模型曲線,進(jìn)而得出最終的連衣裙曲面樣板。利用基礎(chǔ)數(shù)據(jù)繪制二維樣板,通過反復(fù)虛擬試衣進(jìn)行樣板修正才能確定最終樣板的傳統(tǒng)方法,這種方法不僅能夠?qū)崿F(xiàn)樣板的一次性快速成型,并且由于其著裝效果直觀可見,從而使樣板的準(zhǔn)確性得到極大優(yōu)化。
具體操作為:首先選中需硬化的連衣裙樣片,并將樣片的物理性能參數(shù)根據(jù)款式需要設(shè)置為桑蠶絲素緞,本實(shí)驗(yàn)面料重要性能參數(shù)設(shè)置如圖3所示。在此基礎(chǔ)上,點(diǎn)擊硬化功能鍵對樣片自動進(jìn)行硬化處理,通過硬化處理后的樣片更加挺括立體,可塑性極強(qiáng),可與人體模型的表面完全吻合。本文以連衣裙前片為例,創(chuàng)建連衣裙曲面擬合與硬化過程,如圖4所示。
1.4平面樣板獲取
由于人體的表面呈凹凸不平的曲面造型,主要體現(xiàn)在胸部、背部、腹部與臀部隆起,以及后腰部位的凹陷等,并由此產(chǎn)生面料余缺。因此,在將連衣裙曲面造型鋪平展開獲得二維平面樣板的過程中,要利用傳統(tǒng)的平面制版方式中的省道設(shè)計(jì)對樣板內(nèi)部結(jié)構(gòu)造型進(jìn)行設(shè)計(jì)與修正,對產(chǎn)生的面料余缺進(jìn)行消除處理[13-14],從而確保三維的曲面樣板能夠正確鋪平為二維平面樣板。本文以連衣裙前衣身為例,具體操作方法為:根據(jù)連衣裙成衣款式要求,本實(shí)驗(yàn)連衣裙的衣身省道設(shè)計(jì)包括胸省與腰省,因此首先根據(jù)造型需要在衣身曲面樣板對應(yīng)位置畫出胸?。╝b)與腰?。╟d)的位置,利用CLO3D中的剪刀工具分別將ab與cd剪開;接下來利用軟件中的展平為板片工具將曲面造型自動進(jìn)行二維鋪平處理,在展開過程中,樣板會沿ab和cd自動展開形成衣身的胸省與腰省,從而消除面料余缺,實(shí)現(xiàn)從三維曲面樣板向二維平面樣板轉(zhuǎn)換的逆向流程,如圖5所示。利用同樣的方法,依次完成連衣裙各曲面樣板的平面轉(zhuǎn)換,得到最終的連衣裙平面樣板,如圖6所示。逆向流程設(shè)計(jì)過程如圖7所示。
2驗(yàn)證
2.1客觀驗(yàn)證
利用CLO3D虛擬試衣軟件中虛擬縫合工具對連衣裙進(jìn)行基礎(chǔ)人體模型的虛擬試穿,試衣效果如圖8所示。本實(shí)驗(yàn)連衣裙款式較為合體,因此在進(jìn)行虛擬試衣的同時,對試穿結(jié)果的服裝壓力進(jìn)行測試,以確保連衣裙的著裝舒適度。本實(shí)驗(yàn)采用CLO3D虛擬試衣軟件中的壓力測試工具,對連衣裙服裝壓力進(jìn)行測試并在平臺中進(jìn)行直觀展示。通過服裝壓力顯示確定連衣裙的著裝舒適性,并根據(jù)結(jié)果進(jìn)行樣板修正。當(dāng)壓力指示條的顏色由藍(lán)變紅的時候,表示服裝壓力逐漸加大。本實(shí)驗(yàn)服裝壓力測試結(jié)果顯示,虛擬模特對連衣裙著裝狀態(tài)下的服裝壓力顯示絕大部分區(qū)間壓力指示條顏色呈藍(lán)色,部分區(qū)間壓力指示條呈綠色,服裝壓力為1.45~2.96 kPa的低壓力數(shù)值,說明連衣裙在CLO3D虛擬試衣狀態(tài)下的著裝舒適性較高。
2.2主觀驗(yàn)證
在此基礎(chǔ)上繼續(xù)對面料參數(shù)設(shè)置進(jìn)行不同設(shè)置,分別設(shè)置為95%滌綸、5%氨綸,厚度0.47 mm和100%純棉,參數(shù)厚度0.36 mm兩種不同成分與質(zhì)地的面料,按照相同的實(shí)驗(yàn)流程再次進(jìn)行虛擬試衣,所得試衣效果同樣符合款式要求,且具有較高的著裝舒適性。利用虛擬試衣修正后的連衣裙平面樣板分別制作3件實(shí)際成衣,由之前選取的5名女性被試者分別進(jìn)行試穿。5名被試者對3件連衣裙樣衣試穿的主觀感受采用5級分制進(jìn)行表述,具體分?jǐn)?shù)含義為:1分表示極為不美觀不舒適;2分為較為不美觀不舒適;3分為美觀度與舒適性一般;4分為美觀度較高與舒適性較好;5分為極為美觀,極為舒適。被試者對連衣裙各部位的試穿體驗(yàn)主觀評分如表3所示。
通過被試者主觀評分可知,被試者對3件連衣裙樣衣著裝評價的平均分?jǐn)?shù)均在4.6分以上,說明連衣裙成衣的板型美觀度與舒適度較高。本文在此基礎(chǔ)上對連衣裙虛擬試衣的效果與被試者實(shí)際著裝效果進(jìn)行比對,可以看出,利用CLO3D對連衣裙進(jìn)行虛擬試衣的最終造型效果與被試者的實(shí)際著裝效果基本吻合,具有較高一致度,由此也可證實(shí)利用CLO3D虛擬試衣軟件通過對松量人體模型進(jìn)行服裝曲面造型創(chuàng)建,進(jìn)而獲取最終服裝平面樣板這一方法的有效性。本文以首件實(shí)驗(yàn)樣衣為例,虛擬試衣效果與真人試穿的連衣裙試穿比對效果如圖9所示。
3結(jié)論
本文創(chuàng)新性地在服裝三維數(shù)字化技術(shù)應(yīng)用中,采用了一種逆向流程設(shè)計(jì)方法實(shí)現(xiàn)服裝款式設(shè)計(jì)與樣板生成。通過基礎(chǔ)人體模型創(chuàng)建松量人體模型,并構(gòu)建出連衣裙的曲面樣板,對曲面樣板進(jìn)行內(nèi)部細(xì)節(jié)結(jié)構(gòu)設(shè)計(jì),鋪平展開并調(diào)整之后形成二維服裝樣板。通過虛擬試衣軟件的服裝壓力測試與被試者的主觀評價結(jié)果對二維樣板的著裝效果進(jìn)行驗(yàn)證可知:這種采用逆向流程的設(shè)計(jì)方法,可以在利用虛擬仿真技術(shù)進(jìn)行服裝款式設(shè)計(jì)與制版的過程中,由于著裝效果直觀可見,因此可以減少樣板修正次數(shù),在實(shí)現(xiàn)樣板快速生產(chǎn)的基礎(chǔ)上,確保成衣造型美觀、穿著舒適度,從而縮短研發(fā)周期、提升研發(fā)效率;同時通過CLO3D軟件的虛擬試衣效果與連衣裙成衣著裝效果的比對可以證明,采用逆向流程設(shè)計(jì)的試衣效果與成衣具有較高的一致性,能夠滿足服裝款式設(shè)計(jì)的特征需求,有效提升了服裝平面樣板向立體造型轉(zhuǎn)變的設(shè)計(jì)流程。
參考文獻(xiàn):
[1]周琴. 基于3D虛擬試衣技術(shù)的針織時裝結(jié)構(gòu)設(shè)計(jì)研究[J]. 針織工業(yè), 2021(2): 65-69.ZHOU Qin. 3D virtual technology based structure design of knitted fashion[J]. Knitting Industries, 2021(2): 65-69.
[2]郭美林, 鄭瑞平. 基于CLO3D的裙裝結(jié)構(gòu)設(shè)計(jì)及成衣實(shí)現(xiàn)[J]. 天津紡織科技, 2020(4): 22-26.GUO Meilin, ZHENG Jiping. Design and implementation of skirt structure based on CLO3D[J]. Tianjin Textile Science & Technology, 2020(4): 22-26.
[3]胡佳琪, 宋瑩. 基于CLO3D虛擬試衣技術(shù)的旗袍著裝效果評價研究[J]. 絲綢, 2021, 58(12): 73-77.HU Jiaqi, SONG Ying. Research on the dressing effect evaluation of Qipao based on CLO3D virtual fitting technology[J]. Journal of Silk, 2021, 58(12): 73-77.
[4]董禮強(qiáng). CLO3D技術(shù)在服裝快速結(jié)構(gòu)設(shè)計(jì)中的應(yīng)用研究[J]. 浙江紡織服裝職業(yè)技術(shù)學(xué)院學(xué)報, 2014(2): 26-30.DONG Liqiang. On the application of CLO3D in fast garment pattern design[J]. Journal of Zhejiang Fashion Institute of Technology, 2014(2): 26-30.
[5]沈雷, 桑盼盼. 不同領(lǐng)域技術(shù)下智能服裝的發(fā)展現(xiàn)狀及趨勢[J]. 絲綢, 2019, 56(3): 45-53.SHEN Lei, SANG Panpan. Research on development status and trendof smart clothing under technologies of different fields[J]. Journal of Silk, 2019, 56(3): 45-53.
[6]江紅霞, 黃智威, 劉基宏. 基于模塊劃分的旗袍虛擬展示[J]. 紡織學(xué)報, 2021, 42(5): 138-142.JIANG Hongxia, HUANG Zhiwei, LIU Jihong. Virtual display of cheongsam based on modularization[J]. Journal of Textile Research, 2021, 42(5): 138-142.
[7]ZHOU H M, XU Y N, WANG L C, et al. A garment design method based on modularization[J]. Textile Research Journal, 2016, 86(16): 1710-1715.
[8]LI P, YU C, WU C M. Customer-centered co-design modularization: The skirt design on mobile application[J]. Journal of the Textile Institute, 2019, 110(11): 1538-1544.
[9]于欣禾, 王建萍. 互聯(lián)網(wǎng)環(huán)境下男襯衫定制顧客感知價值評價方法[J]. 紡織學(xué)報, 2020, 41(3): 136-142.YU Xinhe, WANG Jianping. Customer perceived value evaluation method of men’s shirts customization under internet environment[J]. Journal of Textile Research, 2020, 41(3): 136-142.
[10]謝勇, 吳秋英, 肖勁蓉, 等. 臀圍松量對女褲襠部特征的影響分析與模型構(gòu)建[J]. 絲綢, 2020, 57(11): 41-45.XIE Yong, WU Qiuying, XIAO Jinrong, et al. Influence of hip ease allowance on crotch characteristics of women’s trousers and model construction[J]. Journal of Silk, 2020, 57(11): 41-45.
[11]田丙強(qiáng), 徐增波, 胡守忠. 基于CLO3D虛擬試衣技術(shù)的著裝合體性評估[J]. 東華大學(xué)學(xué)報(自然科學(xué)版), 2018, 14(3): 397-402.TIAN Bingqiang, XU Zengbo, HU Shouzhong. Evaluation of dress fit based on CLO3D virtual fitting technique[J]. Journal of Donghua University (Natural Science), 2018, 14(3): 397-402.
[12]冀艷波, 王玲麗, 劉凱旋. 基于數(shù)字化三維人體模型的旗袍定制設(shè)計(jì)[J]紡織學(xué)報, 2020, 42(1): 133-144.JI Yanbo, WANG Lingli, LIU Kaixuan. Custom design of cheongsam based on digital 3-D human model[J]. Journal of Textile Research, 2020, 42(1): 133-144.
[13]劉燾, 徐利平, 鄒奉元. 青年女性腰部形態(tài)分類對旗袍腰省位置設(shè)定的影響[J]. 紡織學(xué)報, 2019, 40(12): 114-118.LIU Tao, XU Liping, ZOU Fengyuan. Influences of waist shape classification of young female on position setting of cheongsam waist dart[J]. Journal of Textile Research, 2019, 40(12): 114-118.
[14]宋瑩, 王寶環(huán). 不同省量設(shè)置對標(biāo)準(zhǔn)體旗袍造型的影響[J]. 絲綢, 2017, 54(9): 25-30.SONG Ying, WANG Baohuan. Influence of dart value setting on standard size modeling of cheongsam[J]. Journal of Silk, 2017, 54(9): 25-30.
Reverse flow optimization design of garments based on virtual simulation technologySONG Ying, XIANG Siman, SUN Yazhi(College of Clothing and Textile, Eastern Liaoning University, Dandong 118003, China)
Abstract: With the rapid development of digital and intelligent garment industry, as well as the rapid growth of individualized garment demand, consumers’ demand for clothing is not limited to a single homogeneous model, but more attention has been paid to the quality of clothing, modeling and the pursuit of comfort. In view of this situation, this article takes dresses as the research object, CLO3D virtual fitting software as the research method, and changes the traditional 2D patterns to generate the virtual fitting process of the 3D patterns. In order to improve the speed and efficiency of garment pattern generation, the reverse process design method is adopted, which firstly creates 3D surface patterns and then quickly generates 2D plane patterns.
First of all, taking the ease allowance mannequin as the reference, the author draws the basic structure outline of the dress according to the style requirement, and uses the fitting tool in the software to fit the ease allowance mannequin with the clothing, that is, to create a dress surface close to the human body on the surface of the ease allowance mannequin. Then, the ease allowance mannequin is transformed into the base mannequin, and the structure and shape of the dress can be directly modified and adjusted to ensure that the dress structure shape is consistent with the actual style according to the dress effect of the basic mannequin. Next, the modified and fitted surface of the dress is hardened to make the whole surface of the dress smooth and consistent with the ease allowance mannequin curve. Then the final 3D surface pattern of the dress is obtained.
The surface of the human body is uneven, so in the process of flattening out the curved surface of the dress to obtain the 2D plane pattern, it is necessary to use the dart design in the traditional plane pattern making way to design and modify the internal structure modeling of the pattern, and eliminate the redundant part of the fabric through the dart. According to the actual style of the dress, the positions and shapes of the bust and waist of the dress and the horizontal division of the waist are drawn on the curved pattern. The scissors of CLO3D are used to cut the darts of each part in turn, so as to ensure that the 3D curved pattern can be correctly paved into the 2D plane pattern. Next, with the flatting tool of the software as the plate tool, the curved surface is automatically flattened to realize the reverse flow from 3D surface template to 2D plane template.
The sewing tool in CLO3D virtual fitting software is used to do the virtual fitting of the basic mannequin of the dress, and the pressure test tool in the software is used to test the clothing pressure of the virtual fitting results. The result shows that the dressing effect of the virtual fitting is consistent with that of the actual dress style, and the overall clothing pressure of the dress belongs to blue low pressure. It shows that the pressure of the dress is low and the comfort of the dress is high. On this basis, the conclusion of reverse flow design is further verified. First, the original fabric parameter settings are changed. Two different settings are made for the fabric parameters to obtain two fabrics with different components and texture, namely, the 0.47 mm thick fabric made of 95% polyester and 5% spandex and 0.36 mm thick fabric made of cotton. The virtual fitting is carried out again according to the same experimental process, and the dressing effect of the virtual fitting is also in line with the dress style requirements. Three garments are made by using the dress plane pattern modified by virtual fitting, and five female subjects are selected to try on the dress samples respectively. The results of the fitting are compared with the virtual fitting results, and the participants are asked to give subjective ratings on the comfort of the dress according to their own feelings. The results show that the shape and comfort of garments are consistent with the virtual fitting results, which verifies the feasibility and accuracy of the one-time rapid prototyping of the sample by reverse process design.
CLO3D virtual fitting software can optimize the accuracy of garment patterns greatly because of its powerful functions such as efficient online revision, visual dressing effect and real-time synchronization of plate data. Combined with the reverse process design method, it can shorten the research and develop cycle, improve the research and develop efficiency and the satisfaction of consumers. The research results can be used for reference in the technology and method of intelligent manufacturing in garment industry.
Key words: reverse flow; mannequins; CLO3D; virtual fitting; garment pattern; clothing pressure