劉倩雯,張南峰,阮潔珊,葉廣文,張艷喜,高向東
電阻點焊質(zhì)量檢測技術(shù)研究現(xiàn)狀
劉倩雯1,張南峰2,阮潔珊2,葉廣文1,張艷喜1,高向東1
(1.廣東工業(yè)大學(xué) 廣東省焊接工程技術(shù)研究中心,廣州 510006;2.黃埔海關(guān)技術(shù)中心,廣東 東莞 523076)
電阻點焊過程由于受到各種因素的影響,熔核區(qū)域容易出現(xiàn)裂紋、縮孔、未熔合等缺陷,焊點質(zhì)量直接影響焊接部件的使用壽命,因此對焊點的缺陷檢測與質(zhì)量評定非常重要。對電阻點焊原理進(jìn)行概述,總結(jié)了電阻點焊質(zhì)量檢測技術(shù)最新研究成果及應(yīng)用,分析了焊接過程參數(shù)監(jiān)控方法、焊后無損檢測方法的檢測機(jī)理、質(zhì)量評定方法及其在實際應(yīng)用中的優(yōu)缺點,對電阻點焊無損檢測技術(shù)的發(fā)展進(jìn)行了展望。有機(jī)結(jié)合現(xiàn)有無損檢測方法,運(yùn)用信號處理、人工智能、模式識別等技術(shù),提高檢測的便捷性、高效性和智能性,是未來電阻點焊質(zhì)量檢測技術(shù)研究的重點。
電阻點焊;無損檢測;焊接質(zhì)量;研究現(xiàn)狀
電阻點焊是以焦耳定律為理論基礎(chǔ)的一種連接方法,在通過變壓器解決電阻點焊電源問題后,世界上第1臺點焊機(jī)隨之誕生[1-2]。電阻點焊具有操作簡便、效率高、成本低、適合大批量自動化生產(chǎn)、節(jié)約材料、成品整體性好、工作環(huán)境較好等優(yōu)點,廣泛應(yīng)用于汽車、航天航空、家電等制造領(lǐng)域。電阻點焊原理和點焊的基本焊接循環(huán)如圖1所示,點焊機(jī)通過施加一定的壓力,將焊件壓緊于上下電極之間,利用電流通過焊件時產(chǎn)生的電阻熱將局部金屬熔化,從而使焊件實現(xiàn)連接[3]。電阻點焊過程由預(yù)壓階段、加熱階段、壓力維持和壓力休止4個基本階段組成[4-5]。
圖1 電阻點焊原理
為防止腐蝕,通常在薄鋼板表面鍍鋅,電阻點焊發(fā)生在電極和材料之間的界面接觸電阻處,在焊接過程中,鍍鋅層先于鋼材熔化,液態(tài)鋅與熱影響區(qū)相互作用,可能會滲入鋼板的晶界,導(dǎo)致其延展性降低,焊點容易產(chǎn)生裂紋。由于受到各種因素的影響,在電阻點焊過程中熔核區(qū)域還容易出現(xiàn)縮孔、未熔合等缺陷,電阻點焊質(zhì)量會直接影響焊接部件的使用壽命,因此對焊接部件的檢測與質(zhì)量評定非常重要。常規(guī)的外觀檢測難以滿足需求,而破壞性試驗又會浪費大量成本,且無法杜絕不良品流入市場,提高電阻點焊質(zhì)量檢測精度和效率是工業(yè)生產(chǎn)的迫切需求。
基于企業(yè)對更高質(zhì)量產(chǎn)出和產(chǎn)品可追溯性的需求,電阻點焊質(zhì)量檢測技術(shù)得到了快速發(fā)展,目前多種無損檢測方法應(yīng)用在電阻點焊檢測中,常見的檢測方法主要有焊接參數(shù)監(jiān)測法、超聲波檢測法、紅外檢測法、X射線檢測法、渦流檢測法、磁光成像檢測法。
電阻點焊依靠熔核實現(xiàn)金屬連接,一般情況下,熔核尺寸越大,焊點強(qiáng)度越高[6]。焊接參數(shù)監(jiān)測法采用專用傳感器實時監(jiān)測并控制焊接過程中的參數(shù),如焊接電流[7]、焊接電壓[8]等,通過建立焊接參數(shù)與熔核尺寸、缺陷分布的關(guān)系來評估焊點質(zhì)量。
焊接電流信號波形能有效反映焊接強(qiáng)度,焊接電流峰值越大,焊接強(qiáng)度越高[9]。過小的焊接電流無法得到合格的熔核直徑,過大又會產(chǎn)生大量噴濺甚至導(dǎo)致電極黏附[10]?;诤附与娏骱腿酆酥睆降年P(guān)聯(lián)建立一個模糊控制器,可以估算熔核直徑,間接評估焊接質(zhì)量[11]。
由于受到許多非線性因素的影響,電阻點焊過程難以控制。恒流控制是一種簡單、易于監(jiān)測的方法,采用恒熱量輸出的控制方式,焊前檢測網(wǎng)壓有效值,對網(wǎng)壓波動和負(fù)載功率因數(shù)進(jìn)行補(bǔ)償,可以得到恒流輸出[12]。對焊接電流的持續(xù)時間進(jìn)行閉環(huán)控制,能進(jìn)一步提高電阻點焊工藝的穩(wěn)定性[13]。
電壓信號可通過連接上、下電極間的導(dǎo)線直接測量得到[14],一般為避免點焊過程中電磁信號干擾,均采用屏蔽雙絞線的方法。電極電壓的變化與熔核形成過程、焊點強(qiáng)度關(guān)聯(lián)密切,在電阻點焊過程中,由于被焊材料會經(jīng)過熱膨脹、屈服、熔化、冷卻和凝固的過程,其導(dǎo)電率和回路阻抗不斷變化,兩電極間電壓隨之變化[15]。如圖2所示,電壓曲線可分為4個階段:第1階段電壓快速增加,第2階段電壓持續(xù)上升,第3階段電極電壓緩慢下降,第4階段電極電壓顯著降低[16]。電極電壓曲線特征(拐點和峰值之間的時間差、振幅差、曲線的下降率、焊接熱輸入)能有效評價焊接質(zhì)量,利用特征工程挖掘有效電壓信號特征并輸入到廣義回歸神經(jīng)網(wǎng)絡(luò),能實現(xiàn)對熔核直徑的預(yù)測[15-16]。
圖2 典型的電極電壓曲線[16]
動態(tài)電阻是指在點焊過程中上下電極之間等效電阻的變化,即不斷進(jìn)行電、熱、力交互作用而引起焊接區(qū)電阻的變化[17],它可通過測量上下電極的瞬間電壓和流經(jīng)電極的二次電流來計算獲得[18]。由于電流計不能直接測量焊接電流,一般使用環(huán)繞電路的羅氏線圈獲得焊接電流[19]。監(jiān)測焊接機(jī)主回路中的過程變量也能獲得電極間動態(tài)電阻的變化,這種方法無需在二次電路中安裝額外的監(jiān)測裝置[20]。
典型低碳鋼動態(tài)電阻曲線見圖3,可以看出,電阻點焊過程可分為3個階段:第1個階段由于接觸面積快速增加,動態(tài)電阻明顯下降;第2階段焊件局部熔化,熔核形成,在熔核形成過程中由于提高體電阻率的影響大于接觸面積減小的影響,動態(tài)電阻呈上升趨勢;第3階段達(dá)到峰值后,動態(tài)電阻隨著熔核直徑增大而逐漸減小[21]。有研究學(xué)者根據(jù)鎳板焊點掃描電子顯微鏡圖像,將動態(tài)電阻曲線分為6個階段:表面加熱、粗糙面軟化、金屬固相升溫、表面部分金屬熔化、熔核生長和飛濺[22],研究表明,動態(tài)電阻曲線出現(xiàn)的第2個峰值(表明熔核的形成)可作為質(zhì)量控制的輸入變量。
圖3 典型動態(tài)電阻曲線示意圖[21]
電阻點焊過程中,在邊緣焊接、裝配不良以及軸向不對中的情況下容易發(fā)生飛濺[23],在飛濺發(fā)生時電阻信號會突然下降,利用動態(tài)電阻曲線的爬升時間、下降幅度、收尾值等特征可有效識別電阻點焊缺陷(未熔合、飛濺)[24],如圖4所示。
圖4 熱沖壓高強(qiáng)鋼的電阻點焊動態(tài)電阻曲線[24]
監(jiān)控電極壓力是探測焊接區(qū)金屬飛濺最有效方法之一[25]。一般來說,壓力傳感器安裝在固定電極下方,可在整個焊接過程中直接監(jiān)測電極力的動態(tài)變化。發(fā)生飛濺時電極力會出現(xiàn)驟降后驟升的情況,這是因為發(fā)生飛濺時兩電極間突然失去接觸,但由于兩電極很快再次接觸從而形成沖擊振動,隨后逐漸恢復(fù)到穩(wěn)定狀態(tài)[26]。
在發(fā)生飛濺時,電極壓力信號會出現(xiàn)劇烈波動,其對應(yīng)的頻譜出現(xiàn)高頻特征,通過小波分解,可提取壓力信號的4個特征(通電階段壓力信號的標(biāo)準(zhǔn)差、小波分解目標(biāo)層的峰–峰值、細(xì)節(jié)信號能量比的最高值、其所在層數(shù))作為識別飛濺的特征指標(biāo)[27],如圖5所示。
電阻點焊過程中,焊接區(qū)金屬經(jīng)歷了復(fù)雜的變化過程,電極位移隨之不斷變化,該變化與熔核狀態(tài)具有一定對應(yīng)關(guān)系[28]。電極位移曲線可分為4個階段,包括初始急劇下降階段、增加階段、衰減階段和穩(wěn)定階段[29]。如圖6所示,在加熱、壓力維持階段的位移變化與熱膨脹、熱收縮有關(guān),兩電極在這2個階段的相對位移變化被稱為“熱膨脹電極位移”[30]。
熱膨脹電極位移能探測焊接區(qū)產(chǎn)生的金屬飛濺,當(dāng)發(fā)生飛濺時,焊接電壓和焊接電流信號曲線無明顯變化,而電極位移曲線會出現(xiàn)明顯突變[31]。采用非接觸式激光位移傳感器對電極位移進(jìn)行實時閉環(huán)控制,在保證焊點拉剪強(qiáng)度的同時能夠有效抑制飛濺[32]。文獻(xiàn)[33]提出一種將電極位移曲線轉(zhuǎn)化為二值圖像的方法,將圖像特征輸入到概率神經(jīng)網(wǎng)絡(luò),能夠識別出飛濺、電流分流、邊緣距離小等缺陷,該分類器在小樣本條件下有著很高的精度和實用性。此外,電極位移信號還能用于點焊過程的故障診斷,對電極軸向錯位、工件表面未處理、工件翹曲、工件導(dǎo)電不良等故障狀態(tài)能進(jìn)行有效表征[34]。
圖5 鋁合金電阻點焊壓力信號[27]
圖6 點焊電極熱膨脹位移的物理過程
超聲波在介質(zhì)內(nèi)傳播出現(xiàn)的反射、折射、衰減等會使能量發(fā)生變化,這種變化是分析判別被檢物質(zhì)內(nèi)部結(jié)構(gòu)特征和物理性能的依據(jù)。由于焊件缺陷區(qū)域與焊件材料本身的結(jié)構(gòu)特征、聲學(xué)物理性能存在差異,通過超聲波檢測可以檢測焊件內(nèi)部缺陷[35-37],目前該方法是電阻點焊無損檢測中應(yīng)用最為廣泛的一種。
在超聲檢測中,有A、B、C掃描3種檢測模式,其中A掃描顯示的是某一點反射波的強(qiáng)度信號,B掃描顯示的是縱向截面的反射波信號,C掃描顯示的是缺陷水平投影圖像[36],如圖7所示。
超聲波A掃描信號的時域和頻域特征可用于識別合格焊點、脫焊、熔核過小、氣孔、壓痕過深5種情況。正常焊點超聲回波信號波峰幅值緩慢衰減,雜波較少,波峰平均間隔與板厚相符。在脫焊的情況下,由于一部分聲波從上層鋼板下表面反射回來,波峰平均間隔減小一半。對于氣孔和熔核過小的情況,由于內(nèi)部結(jié)構(gòu)復(fù)雜不均勻,信號出現(xiàn)高幅小回波和大量雜波。在壓痕過深情況下,信號同樣出現(xiàn)很多雜波,但信號衰減系數(shù)正常,由于焊點位置板厚減小,波峰平均間隔減小[38-39]。超聲響應(yīng)可以定量評價電阻點焊熔核的形狀和尺寸,通過增加頻率能提高檢測靈敏度[40]。
圖7 超聲波掃描方式[36]
超聲A掃描技術(shù)是超聲檢測的基礎(chǔ),具有經(jīng)濟(jì)、高效的優(yōu)點,但檢測結(jié)果不直觀,對操作人員要求較高,比較依賴經(jīng)驗。文獻(xiàn)[41]通過實驗和仿真相結(jié)合,研究了孔隙率、裂紋深度、裂紋長度、裂紋直徑對回波信號的影響,這類仿真有助于理解超聲波檢測的工作機(jī)理,能為實際檢測提供理論指導(dǎo)。文獻(xiàn)[42]將超聲信號的波峰數(shù)量以及波峰的幅值差輸入到BP神經(jīng)網(wǎng)絡(luò),用來預(yù)測拉伸強(qiáng)度和疲勞壽命,此類研究將人工智能技術(shù)運(yùn)用到超聲波檢測中,能輔助檢測操作員對檢測結(jié)果進(jìn)行判斷,有助于提高檢測精度和效率。
C掃描圖像能直觀地觀察并測量焊核直徑以及焊核內(nèi)部缺陷尺寸、位置和類型,如圖8所示[42]。當(dāng)缺陷長度低于探頭檢測精度時,C掃描無法檢測到該缺陷。利用C掃描圖像檢測焊點內(nèi)部形貌特征[43],再通過A掃描信號對缺陷區(qū)域進(jìn)行深度檢測,2種掃描方法結(jié)合可使缺陷檢測事半功倍。C掃描圖像還可以檢測點焊凹坑坡度,掃描圖像中白色區(qū)域越大,則表明熔核凹痕斜坡越長,凹痕越深[44]。
圖8 焊核內(nèi)部缺陷的截面金相圖和C掃描圖[44]
紅外熱成像是對被測表面的溫度場進(jìn)行非接觸測量和分析[45]。根據(jù)高于絕對零度的物體均會發(fā)射紅外輻射的原理,通過光學(xué)手段采集視場中物體所發(fā)射的紅外輻射,并將其轉(zhuǎn)換成電信號。信號經(jīng)過處理后得到視場中各點的溫度值,最終以偽彩色圖像顯示視場區(qū)域的溫度分布[46]。
由于紅外檢測易受環(huán)境干擾,所以在利用紅外熱成像測量熔核尺寸和厚度時,可根據(jù)相對紅外強(qiáng)度的變化來減少表面反射和環(huán)境干擾的影響,后處理檢測采用專用感應(yīng)加熱器代替閃光燈可使信噪比提高數(shù)個數(shù)量級[47-48]。
在設(shè)定延遲時間后,根據(jù)熱像儀測得的溫度直方圖對被測樣品進(jìn)行分組,高質(zhì)量焊點的溫度值比低質(zhì)量焊點的溫度值高。電極的清潔度和平整度對焊點質(zhì)量有很大的影響,紅外熱成像還可檢測電極磨損和損壞情況[49]。雖然該技術(shù)可以發(fā)現(xiàn)缺陷的存在,但是很難確認(rèn)缺陷的類型以及位置。因此在大量焊點檢測中,先通過紅外檢測及時定位可能存在缺陷的焊點后,再采用超聲波檢測或其他無損檢測方法對焊點進(jìn)一步檢測以獲得缺陷尺寸、類型和位置等信息,可以大大提高檢測效率。
通過對比紅外熱成像、超聲紅外熱成像和鎖相紅外熱成像獲取的電阻點焊焊點圖像(見圖9),可以看出鎖相紅外熱成像能得到更好的圖像質(zhì)量[50]。使用高幀頻紅外熱像儀采集微型電阻點焊的紅外熱圖像,焊點位置溫度下降速度越快,焊點圖像輪廓越清晰,則微型電阻點焊接頭的結(jié)合狀態(tài)越好[51]。
圖9 焊點外觀以及3種紅外熱成像圖像[48]
當(dāng)強(qiáng)度均勻的射線束透照被檢物體時,物體局部結(jié)構(gòu)或成分的差異將會影響物體對射線的衰減特性,使不同部位的透射射線強(qiáng)度出現(xiàn)差異,采用檢測器對其進(jìn)行檢測就可以判斷物體內(nèi)部的缺陷和物質(zhì)分布。X射線檢測目前主要應(yīng)用于工件內(nèi)部形狀缺陷檢測,能得到缺陷處的直觀圖像,還可以測量缺陷的幾何參數(shù)[52-53]。利用X射線檢測可以直觀地判斷熔核形狀、尺寸[54],文獻(xiàn)[55]用X射線測量焊點直徑,用于校準(zhǔn)熱成像測量結(jié)果。X射線檢測對氣孔等體積型缺陷的檢出率比較高,但對裂紋等面積型缺陷的檢出率較低,而且對微小缺陷不靈敏。此外,射線照射角度的選取很重要,選取不適當(dāng)時容易漏檢。
電阻點焊X射線圖像包含大量的缺陷特征信息,通過圖像處理[56]或人工智能技術(shù)對點焊缺陷進(jìn)行提取或識別,或通過顏色渲染突顯缺陷特征,是該方向的研究熱點。
X射線還可以用于檢測電阻點焊焊點殘余應(yīng)力分布,當(dāng)焊點存在殘余應(yīng)力時,晶面間距會發(fā)生變化,產(chǎn)生的衍射峰也將隨之移動,衍射線位移能反映應(yīng)力大小。對于超高強(qiáng)鋼電阻點焊,其殘余應(yīng)力以焊核中心為原點呈對稱分布趨勢,最大值出現(xiàn)在熱影響區(qū)處,是引起點焊結(jié)構(gòu)失效的主要因素[57]。還有學(xué)者研究了不銹鋼電阻點焊熔核的殘余應(yīng)力分布,發(fā)現(xiàn)熔核表面殘余拉應(yīng)力在熔核中心處達(dá)到最大值,并向熔核邊緣方向減小,如圖10所示[58]。
渦流檢測是利用電磁感應(yīng)原理,檢測工件缺陷的無損檢測方法,適用于導(dǎo)電材料。用激磁線圈使導(dǎo)電工件產(chǎn)生感應(yīng)電流,在工件存在缺陷時,渦流場的強(qiáng)度和分布會發(fā)生變化,利用檢測線圈探測渦流變化可以獲取缺陷信息。由于渦流具有趨膚效應(yīng),因此渦流檢測只能用于檢測表面和亞表面缺陷[59]。
渦流熱成像技術(shù)結(jié)合了電磁感應(yīng)原理和紅外檢測技術(shù),利用感應(yīng)電流使工件產(chǎn)生焦耳熱,通過紅外相機(jī)監(jiān)測表面溫度變化。該檢測方法快速、直觀且易于部署,可將一些不可見或細(xì)微的裂紋顯示出來,如圖11所示,結(jié)合數(shù)字圖像處理技術(shù),可以增強(qiáng)顯示效果,有助于對缺陷種類的識別[60]。
圖10 熔核對稱中心位置示意圖、兩截面的應(yīng)力測量圖和統(tǒng)計分析[58]
圖11 渦流熱成像檢測結(jié)果[60]
文獻(xiàn)[61]研究發(fā)現(xiàn),渦流檢測得到的掃描磁曲線特征能夠估計熔核的深度輪廓,低頻的掃描磁通量變化與焊點的剪切強(qiáng)度具有良好的相關(guān)性,將渦流檢測技術(shù)與磁通量滲透技術(shù)相結(jié)合,能對電阻點焊質(zhì)量進(jìn)行綜合評定。
磁光成像檢測法是以法拉第磁致旋光效應(yīng)為理論基礎(chǔ)的一種新型無損檢測技術(shù)。其檢測原理如圖12所示,當(dāng)LED光源產(chǎn)生的自然光經(jīng)起偏器后得到線偏振光,線偏振光通過磁光薄膜和反光鏡后,在無缺陷的強(qiáng)磁場不發(fā)生偏轉(zhuǎn),在因缺陷而產(chǎn)生的漏磁場中發(fā)生偏轉(zhuǎn),再經(jīng)過反光鏡反射后通過磁光薄膜,包含缺陷信息的線偏振光經(jīng)檢偏器檢偏后被CMOS相機(jī)接收,形成缺陷的磁光圖像[62-63]。該方法實際就是通過施加磁場將電阻焊點缺陷的磁場分布信息轉(zhuǎn)化為光強(qiáng)信息,并將光強(qiáng)信息形成直觀的焊接缺陷圖像。
圖12 磁光成像檢測原理[62]
目前磁光檢測的勵磁方式主要有直流勵磁、交流勵磁、旋轉(zhuǎn)磁場勵磁。直流勵磁就是向勵磁線圈通入直流電后產(chǎn)生恒定磁場,該方法比較簡便,但是恒定磁場存在易飽和的問題,容易丟失缺陷信息。交流激勵是向勵磁線圈通入交流電,從而產(chǎn)生交變磁場,該方法雖然彌補(bǔ)了恒定磁場易飽和的不足,但仍然是單一方向磁場,難以檢測多方向缺陷。旋轉(zhuǎn)磁場是由2個正交的交變磁場疊加而成,兩者相位差為π/2,該勵磁方式可實現(xiàn)多方向的缺陷檢測[64-66]。
磁光成像檢測法最早應(yīng)用于飛機(jī)鉚釘缺陷的檢測中,目前在焊縫缺陷檢測中已有大量研究,其中在鋁材和導(dǎo)磁性材料中的研究較多。焊接缺陷磁光圖像如圖13所示,該方法能夠以圖像的形式直接展現(xiàn)焊點缺陷形態(tài),具有無輻射、直觀、操作簡便和實時成像等優(yōu)點[67-68]。
電阻點焊具有效率高、成本低、自動化程度高等優(yōu)勢,在制造業(yè)中得到廣泛應(yīng)用,在實際應(yīng)用中,待檢測焊點的數(shù)量龐大,檢測的便捷性和高效性是企業(yè)關(guān)注的重點。因此電阻點焊無損檢測除了需要提高準(zhǔn)確度,還需要考慮檢測效率和成本。
超聲波檢測也正是由于其便捷性、效率優(yōu)勢和成本優(yōu)勢被廣泛應(yīng)用于電阻點焊質(zhì)量檢測中,但該方法對耦合劑依賴度大,且對操作人員要求較高。焊接參數(shù)監(jiān)測法可以在焊接過程中實時檢測,但難以直接反映熔核信息。紅外檢測速度快且易于部署,但是易受環(huán)境干擾,而且難以確定缺陷類型和位置。X射線檢測對大多數(shù)的材料都適用,但其設(shè)備成本較高且對微小缺陷檢測不靈敏,射線對人體有害。渦流檢測對表面和亞表面的缺陷檢測靈敏度較高,但難以檢測內(nèi)部缺陷。磁光檢測能夠?qū)崟r成像、操作簡便、成像直觀,但適用范圍較小。
從目前的研究與發(fā)展來看,電阻點焊無損檢測技術(shù)未來會在以下方面進(jìn)一步探索。
1)優(yōu)化現(xiàn)有缺陷檢測方法,進(jìn)一步提高新方法如磁光成像檢測等方法的可靠性和智能性。
2)不同缺陷檢測方法優(yōu)缺互補(bǔ),同時使用多種無損檢測方法,對電阻點焊質(zhì)量進(jìn)行全面綜合的評定。例如,先通過紅外檢測及時定位可能存在缺陷的焊點后,再采用超聲波檢測等其他無損檢測方法對焊點進(jìn)一步檢測。
3)結(jié)合深度學(xué)習(xí)、大數(shù)據(jù)等新技術(shù),深入探索電阻點焊過程的各種干擾因素,快速智能地檢測和識別缺陷,建立綠色、適應(yīng)性強(qiáng)的電阻點焊質(zhì)量檢測模型。
[1] 岑耀東, 陳芙蓉. 電阻縫焊數(shù)值模擬研究進(jìn)展[J]. 焊接學(xué)報, 2016, 37(2): 123-128.
CEN Yao-dong, CHEN Fu-rong. Recent Progress in Numerical Simulation of Resistance Seam Welding[J]. Transactions of the China Welding Institution, 2016, 37(2): 123-128.
[2] 鄭元亮. 點焊、縫焊和凸焊[M]. 北京: 機(jī)械工業(yè)出版社, 1988: 1-12.
ZHENG Yuan-liang. Spot, Seam and Projection Welding[M]. Beijing: China Machine Press, 1988: 1-12.
[3] 殷蘇民, 劉素霞, 吳國平. 精密電阻焊技術(shù)在高速堿錳電池負(fù)極釘點焊機(jī)中的應(yīng)用[J]. 機(jī)械設(shè)計與制造, 2008(7): 90-92.
YIN Su-min, LIU Su-xia, WU Guo-ping. Precision Resistance Welding Technology and Its Application on Current Collector Welding Machine for High-Speed Alkaline Battery[J]. Machinery Design & Manufacture, 2008(7): 90-92.
[4] TANG H, HOU W, HU S J. Forging Force in Resistance Spot Welding[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2002, 216(7): 957-968.
[5] 李友力. 電阻點焊參數(shù)對熱成型鋼板焊接質(zhì)量影響[D]. 哈爾濱: 哈爾濱工業(yè)大學(xué), 2016: 1-11.
LI You-li. Influnce of Rasistance Spot Welding Parameters on Welding Quality of Hot-Stamped Steel[D]. Harbin: Harbin Institute of Technology, 2016: 1-11.
[6] 杜漢斌, 朱強(qiáng), 王武榮, 等. 三層板電阻點焊接頭界面力學(xué)性能[J]. 精密成形工程, 2017, 9(5): 192-197.
DU Han-bin, ZHU Qiang, WANG Wu-rong, et al. Mechanical Properties of Three-Layer Resistance Spot Welding Joint Interface[J]. Journal of Netshape Forming Engineering, 2017, 9(5): 192-197.
[7] ASLANLAR S, OGUR A, OZSARAC U, et al. Effect of Welding Current on Mechanical Properties of Galvanized Chromided Steel Sheets in Electrical Resistance Spot Welding[J]. Materials and Design, 2005, 28(1): 2-7.
[8] SALEM M, BROWN L J. Improved Consistency of Resistance Spot Welding with Tip Voltage Control[J]. Canadian Conference on Electrical and Computer Engineering, 2011: 548-551.
[9] PODRZAJ P, POLAJNAR I, DIACI J, et al. Influence of Welding Current Shape on Expulsion and Weld Strength of Resistance Spot Welds[J]. Science and Technology of Welding and Joining, 2006, 11(3): 250-254.
[10] SIFA A, BASKORO A S, SUGENG S, et al. Identification of the Thickness of Nugget on Worksheet Spot Welding Using Non Destructive Test (NDT)-Effect of Pressure[J]. IOP Conference Series: Materials Science and Engineering, 2018, 306: 012009.
[11] EL-BANNA M, FILEV D, CHINNAM R B. Intelligent Constant Current Control for Resistance Spot Welding[C]// IEEE International Conference on Fuzzy Systems, Vancouver, 2006: 1570-1577.
[12] 隋育松, 徐可君, 江龍平, 等. 一種適用于多波和半波點焊的恒流控制方法[J]. 南京航空航天大學(xué)學(xué)報, 2001, 33(2): 179-182.
SUI Yu-song, XU Ke-jun, JIANG Long-ping, et al. A Method for Constant Current Control Suitable for Multi-Wave and Half-Wave Spot Welding[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2001, 33(2): 179-182.
[13] ZHOU Kang, CAI Li-long. A Nonlinear Current Control Method for Resistance Spot Welding[J]. IEEE/ASME Transactions on Mechatronics: A Joint Publication of the IEEE Industrial Electronics Society and the ASME Dynamic Systems and Control Division, 2014, 19(2): 559-569.
[14] ZHAO Da-wei, WANG Yuan-xun, SHENG Su-ning, et al. Real Time Monitoring Weld Quality of Small Scale Resistance Spot Welding for Titanium Alloy[J]. Measurement, 2013, 46(6): 1957-1963.
[15] ZHAO Da-wei, WANG Yuan-xun, LIN Zong-guo, et al. Quality Monitoring Research of Small Scale Resistance Spot Welding Based on Voltage Signal[J]. ISIJ International, 2013, 53(2): 240-244.
[16] WAN X, WANG Y, ZHAO D. Quality Evaluation in Small-Scale Resistance Spot Welding by Electrode Voltage Recognition[J]. Science and Technology of Welding and Joining, 2016, 21(5): 358-365.
[17] 劉浩, 劉發(fā)清, 元涵. 動態(tài)電阻曲線在電阻點焊參數(shù)調(diào)整中的應(yīng)用[J]. 熱加工工藝, 2018, 47(9): 191-195.
LIU Hao, LIU Fa-qing, YUAN Han. Application of Dynamic Resistance Curve in Adjustment of Resistance Spot Welding Parameters[J]. Hot Working Technology, 2018, 47(9): 191-195.
[18] DICKINSON D W, FRANKLIN J E, STANYA A. Characterization of Spot Welding Behavior by Dynamic Electrical Parameter Monitoring[J]. Welding Journal, 1980, 59(6): 170s-176s.
[19] WAN Xiao-dong, WANG Yuan-xun, ZHAO Da-wei, et al. Weld Quality Monitoring Research in Small Scale Resistance Spot Welding by Dynamic Resistance and Neural Network[J]. Measurement, 2017, 99: 120-127.
[20] CHO Y, RHEE S. New Technology for Measuring Dynamic Resistance and Estimating Strength in Resistance Spot Welding[J]. Measurement Science & Technology, 2000, 11(8): 1173-1178.
[21] XING Bo-bin, XIAO Yi, QIN Q H, et al. Quality Assessment of Resistance Spot Welding Process Based on Dynamic Resistance Signal and Random Forest Based[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(1/2/3/4): 327-339.
[22] TAN W, ZHOU Y, KERR H W, et al. A Study of Dynamic Resistance during Small Scale Resistance Spot Welding of Thin Ni Sheets[J]. Journal of Physics D: Applied Physics, 2004, 37(14): 1998-2008.
[23] WEN J, WANG C S, XU G C, et al. Real Time Monitoring Weld Quality of Resistance Spot Welding for Stainless Steel[J]. ISIJ International, 2009, 49(4): 553-556.
[24] 陳樹君, 郝鍵, 鄔娜. 熱沖壓高強(qiáng)鋼電阻點焊質(zhì)量評估系統(tǒng)[J]. 北京工業(yè)大學(xué)學(xué)報, 2018, 44(1): 50-55.
CHEN Shu-jun, HAO Jian, WU Na. Quality Evaluation System for Resistance Spot Welding of Hot Stamping High Strength Steel[J]. Journal of Beijing University of Technology, 2018, 44(1): 50-55.
[25] PODRZAJ P, POLAJNAR I, DIACI J, et al. Expulsion Detection System for Resistance Spot Welding Based on a Neural Network[J]. Measurement Science & Technology, 2004, 15(3): 592-598.
[26] 劉桂梅, 韓靖玉, 韓寶生, 等. 電阻點焊動態(tài)電極力的測試[J]. 焊接, 2006(3): 48-50.
LIU Gui-mei, HAN Jing-yu, HAN Bao-sheng, et al. Measurement of Dynamic Electrode Force in Resistance Spot Welding[J]. Welding & Joining, 2006(3): 48-50.
[27] 陳樹君, 郝鍵, 李方, 等. 鋁合金電阻點焊壓力信號的動態(tài)特征分析[J]. 焊接學(xué)報, 2020, 41(3): 1-6.
CHEN Shu-jun, HAO Jian, LI Fang, et al. Dynamic Characteristics Analysis of Resistance Spot Welding Pressure Signal of Aluminum Alloy[J]. Transactions of the China Welding Institution, 2020, 41(3): 1-6.
[28] 趙大偉. 鈦合金小尺寸電阻點焊工藝優(yōu)化與質(zhì)量監(jiān)控[D]. 武漢: 華中科技大學(xué), 2014: 2-27.
ZHAO Da-wei. Research on Process Parameters Optimization and Quality Monitoring of Small Scale Resistance Spot Welding for TC2 Titanium Alloy[D]. Wuhan: Huazhong University of Science and Technology, 2014: 2-27.
[29] WANG X F, LI Y B, LI R H, et al. Experimental Study on Electrode Displacement Fluctuation Characteristics during Resistance Spot Welding[J]. Science and Technology of Welding and Joining, 2011, 16(2): 140-145.
[30] LI Yong-bing, XU Jun, CHEN Guan-long, et al. Real-Time Measuring System Design and Application of Thermal Expansion Displacement during Resistance Spot Welding Process[J]. ICMIT 2005: Information Systems and Signal Processing, 2005, 6041: 60411T.
[31] 馬躍洲, 劉建花, 陳劍虹. 基于電極位移信號的點焊模糊推理系統(tǒng)模型[J]. 蘭州理工大學(xué)學(xué)報, 2006, 32(1): 1-6.
MA Yue-zhou, LIU Jian-hua, CHEN Jian-hong. Fuzzy Inference System Model Based on Electrode Displacement Signals during Resistance Spot Welding[J]. Journal of Lanzhou University of Technology, 2006, 32(1): 1-6.
[32] 曾志, 張延松, 張小云. 基于電極位移的電阻點焊控制器研究[J]. 中國機(jī)械工程, 2007, 18(15): 1830-1832.
ZENG Zhi, ZHANG Yan-song, ZHANG Xiao-yun. Research on Resistance Spot Welding Controller Based on the Electrode Displacement[J]. China Mechanical Engineering, 2007, 18(15): 1830-1832.
[33] ZHANG H J, WANG F J, GAO W G, et al. Quality Assessment for Resistance Spot Welding Based on Binary Image of Electrode Displacement Signal and Probabilistic Neural Network[J]. Science and Technology of Welding and Joining, 2014, 19(3): 242-249.
[34] 楊乃文, 張鵬賢, 董亞婭, 等. 基于電極位移信號的點焊過程故障診斷[J]. 電焊機(jī), 2008, 38(12): 66-69.
YANG Nai-wen, ZHANG Peng-xian, DONG Ya-ya, et al. Fault Diagnosis in the Processing of RSW Based on Electrode Displacement Signals[J]. Electric Welding Machine, 2008, 38(12): 66-69.
[35] MOZURKEWICH G, GHAFFARI B, POTTER T J. Spatially Resolved Ultrasonic Attenuation in Resistance Spot Welds: Implications for Nondestructive Testing[J]. Ultrasonics, 2008, 48(5): 343-350.
[36] 王彬. 車身部件電阻點焊質(zhì)量超聲無損檢測研究[D]. 武漢: 武漢理工大學(xué), 2018: 5-16.
WANG Bin. Research on Ultrasonic Nondestructive Testing for Resistance Spot Welding Quality of Auto-Body Parts[D]. Wuhan: Wuhan University of Technology, 2018: 5-16.
[37] MOGHANIZADEH A. Evaluation of the Physical Properties of Spot Welding Using Ultrasonic Testing[J]. The International Journal of Advanced Manufacturing Technology, 2016, 85(1/2/3/4): 535-545.
[38] 孫靜茹, 李京龍, 豆建新, 等. 鋁合金回填式攪拌摩擦點焊缺陷的超聲檢測及信號識別[J]. 精密成形工程, 2019, 11(6): 65-72.
SUN Jing-ru, LI Jing-long, DOU Jian-xin, et al. Ultrasonic Testing and Signal Identification of the Defects in Aluminium Alloy Refill Friction Stir Spot Welding[J]. Journal of Netshape Forming Engineering, 2019, 11(6): 65-72.
[39] 吳剛, 關(guān)山月, 汪小凱, 等. 薄板點焊超聲檢測信號特征分析與缺陷識別[J]. 焊接學(xué)報, 2019, 40(4): 112-118.
WU Gang, GUAN Shan-yue, WANG Xiao-kai, et al. Feature Analysis and Defect Recognition of Ultrasonic Detection Signal for Spot Welding of Sheet[J]. Transactions of the China Welding Institution, 2019, 40(4): 112-118.
[40] SAFI A M, AKANDA M A S, SADIQUE J, et al. Nondestructive Evaluation of Spot Weld in Stainless Steel Using Ultrasonic Immersion Method[J]. Procedia Engineering, 2014, 90: 110-115.
[41] AMIRI N, FARRAHI G H, KASHYZADEH K R, et al. Applications of Ultrasonic Testing and Machine Learning Methods to Predict the Static & Fatigue Behavior of Spot-Welded Joints[J]. Journal of Manufacturing Processes, 2020, 52(C): 26-34.
[42] MIRMAHDI E. Numerical and Experimental Modeling of Spot Welding Defects by Ultrasonic Testing on Similar Sheets and Dissimilar Sheets[J]. Russian Journal of Nondestructive Testing, 2020, 56(8): 620-634.
[43] 孫鑫宇, 曾凱, 何曉聰, 等. 電阻點焊接頭超聲波C掃描檢測分析[J]. 昆明理工大學(xué)學(xué)報: 自然科學(xué)版, 2016, 41(5): 22-26.
SUN Xin-yu, ZENG Kai, HE Xiao-cong, et al. Ultrasonic Imaging Analyses of Resistance Spot Welded Joints of Stainless Steel[J]. Journal of Kunming University of Science and Technology: Natural Science Edition, 2016, 41(5): 22-26.
[44] 陳振華, 史耀武, 趙海燕. 薄鍍鋅鋼板點焊超聲成像分析[J]. 機(jī)械工程學(xué)報, 2009, 45(12): 274-278.
CHEN Zhen-hua, SHI Yao-wu, ZHAO Hai-yan. Ultrasonic Imaging Analyses of Spot Welds on Galvanized Steel Sheet[J]. Journal of Mechanical Engineering, 2009, 45(12): 274-278.
[45] 宋海燕, 陳繼濤, 宋娟, 等. 基于紅外熱成像技術(shù)的激光焊接質(zhì)量在線檢測[J]. 激光雜志, 2020, 41(8): 45-49.
SONG Hai-yan, CHEN Ji-tao, SONG Juan, et al. On-Line Inspection of Laser Welding Quality Based on Infrared Thermal Imaging Technology[J]. Laser Journal, 2020, 41(8): 45-49.
[46] 張冠華, 黃煒. 紅外熱成像測溫技術(shù)在金屬機(jī)械加工方面的應(yīng)用[J]. 紅外與激光工程, 2001, 30(1): 74-78.
ZHANG Guan-hua, HUANG Wei. Applications of the Infrared Thermography on the Metal Mechanical Processing[J]. Infrared and Laser Engineering, 2001, 30(1): 74-78.
[47] CHEN Jian, FENG Zhi-li. IR-Based Spot Weld NDT in Automotive Applications[J]. SPIE Conference on Thermosense-Thermal Infrared Applications XXXVII, Baltimore, 2015, 9485: 948513.
[48] CHEN Jian, FENG Zhi-li. Online Resistance Spot Weld NDE Using Infrared Thermography[C]// Conference on Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, and Civil Infrastructure, Portland, 2017: 101690K.
[49] FOREJTOVá L, ZAVADIL T, KOLA?íK L, et al. Non-Destructive Inspection by Infrared Thermography of Resistance Spot Welds Used in Automotive Industry[J]. Acta Polytechnica, 2019, 59(3): 238-247.
[50] LEE Sang-yun, NAM J, HWANG W, et al. A Study on Integrity Assessment of the Resistance Spot Weld by Infrared Thermography[J]. Procedia Engineering, 2011, 10(C): 1748-1753.
[51] 范秋月, 陳虹微, 金璐, 等. 微型電阻點焊質(zhì)量的紅外檢測研究[J]. 電焊機(jī), 2020, 50(12): 96-99.
FAN Qiu-yue, CHEN Hong-wei, JIN Lu, et al. Micro-Resistance Spot Welding Quality Detection Based on Infrared Detection[J]. Electric Welding Machine, 2020, 50(12): 96-99.
[52] 丁衛(wèi)良, 常華峰, 潘龍龍, 等. X射線無損檢測的應(yīng)用及發(fā)展趨勢[J]. 科技創(chuàng)新與應(yīng)用, 2020(36): 161-162.
DING Wei-liang, CHANG Hua-feng, PAN Long-long, et al. Application and Development Trend of X-Ray Non-Destructive Testing[J]. Technology Innovation and Application, 2020(36): 161-162.
[53] 王永偉, 朱波, 曹偉偉, 等. 碳纖維復(fù)合材料導(dǎo)線X射線無損檢測技術(shù)開發(fā)及應(yīng)用[J]. 化學(xué)分析計量, 2014, 23(5): 72-74.
WANG Yong-wei, ZHU Bo, CAO Wei-wei, et al. Development and Application of Non-Destructive Testing Technology on ACCC[J]. Chemical Analysis and Meterage, 2014, 23(5): 72-74.
[54] 馬芳, 李曉琳, 淡婷, 等. 點焊試樣X射線底片白斑影像產(chǎn)生機(jī)理分析[J]. 理化檢驗(物理分冊), 2015, 51(3): 173-176.
MA Fang, LI Xiao-lin, DAN Ting, et al. Mechanism Analysis on Light Spot on X-Ray Film of Spot Welding Specimens[J]. Physical Testing and Chemical Analysis (Part A: Physical Testing), 2015, 51(3): 173-176.
[55] MYRACH P, JONIETZ F, MEINEL D, et al. Calibration of Thermographic Spot Weld Testing with X-Ray Computed Tomography[J]. Quantitative InfraRed Thermography Journal, 2017, 14(1): 122-131.
[56] 王東華, 周源華, 剛鐵, 等. 基于小波模極大值的點焊缺陷邊緣檢測[J]. 上海交通大學(xué)學(xué)報, 2003, 37(3): 432-434.
WANG Dong-hua, ZHOU Yuan-hua, GANG Tie, et al. Edge Detection of X-Ray Spot Weld Defects Based on Wavelet Modulus Maxima[J]. Journal of Shanghai Jiao Tong University, 2003, 37(3): 432-434.
[57] 韓長錄. 超高強(qiáng)鋼點焊殘余應(yīng)力的測試與數(shù)值分析[D]. 北京: 北京工業(yè)大學(xué), 2014: 7-17.
HAN Chang-lu. The Measuring of Spot Welding Residual Stress of Ultra-High Strength Steel and Numerical Analysis[D]. Beijing: Beijing University of Technology, 2014: 7-17.
[58] AO San-san, LI Chun-jie, HUANG Yi-fei, et al. Determination of Residual Stress in Resistance Spot-Welded Joint by a Novel X-Ray Diffraction[J]. Measurement, 2020, 161: 107892.
[59] 黃建明, 林俊明. 焊縫電磁渦流檢測技術(shù)[J]. 無損檢測, 2004, 26(2): 95-98.
HUANG Jian-ming, LIN Jun-ming. Eddy Current Inspection Technique for Welded Lines[J]. Nondestructive Testing Technologying, 2004, 26(2): 95-98.
[60] TARAM A, ROQUELET C, MEILLAND P, et al. Nondestructive Testing of Resistance Spot Welds Using Eddy Current Thermography[J]. Applied Optics, 2018, 57(18): D63-D68.
[61] TSUKADA K, MIYAKE K, HARADA D, et al. Magnetic Nondestructive Test for Resistance Spot Welds Using Magnetic Flux Penetration and Eddy Current Methods[J]. Journal of Nondestructive Evaluation, 2013, 32(3): 286-293.
[62] MA Nv-jie, GAO Xiang-dong, WANG Cong-yi, et al. Influence of Sampling Frequency on Magneto-Optical Imaging under Alternating Magnetic Field Excitation[J]. IEEE Sensors Journal, 2019, 19(23): 11591-11600.
[63] 代欣欣, 高向東, 鄭俏俏, 等. 焊縫缺陷磁光成像模糊聚類識別方法[J]. 焊接學(xué)報, 2021, 42(1): 54-57.
DAI Xin-xin, GAO Xiang-dong, ZHENG Qiao-qiao, et al. A Method of Fuzzy Clustering Identification for Weld Defects by Magneto-Optical Imaging[J]. Transactions of the China Welding Institution, 2021, 42(1): 54-57.
[64] GAO Xiang-dong, LI Yan-feng, ZHOU Xiao-hu, et al. Multidirectional Magneto-Optical Imaging System for Weld Defects Inspection[J]. Optics and Lasers in Engineering, 2020, 124: 105812.
[65] 高向東, 鄭俏俏, 王春草. 旋轉(zhuǎn)磁場下焊接缺陷磁光成像檢測與強(qiáng)分類研究[J]. 機(jī)械工程學(xué)報, 2019, 55(17): 61-67.
GAO Xiang-dong, ZHENG Qiao-qiao, WANG Chun-cao. Magneto-Optical Imaging Detection and Strong Classification of Weld Defects in Rotating Magnetic Field[J]. Journal of Mechanical Engineering, 2019, 55(17): 61-67.
[66] 馬女杰, 高向東, 代欣欣, 等. 焊接裂紋磁場模擬及磁光成像檢測[J]. 焊接學(xué)報, 2019, 40(9): 77-81.
MA Nv-jie, GAO Xiang-dong, DAI Xin-xin, et al. Magnetic Field Characteristic Simulation and Magnetooptical Imaging Detection of Weld Cracks[J]. Transactions of the China Welding Institution, 2019, 40(9): 77-81.
[67] GAO Xiang-dong, DU Liang-liang, XIE Yi-long, et al. Identification of Weld Defects Using Magneto-Optical Imaging[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105(1/2/3/4): 1713- 1722.
[68] 高向東, 季玉坤, 張艷喜. 一種點焊缺陷磁光成像無損檢測系統(tǒng): CN212391429U[P]. 2021-01-22.
GAO Xiang-dong, JI Yu-kun, ZHANG Yan-xi. Spot Welding Defect Magneto-Optical Imaging Nondestructive Testing System: CN212391429U[P]. 2021-01-22.
Research Status of Quality Detection Technology for Resistance Spot Welding
LIU Qian-wen1, ZHANG Nan-feng2, RUAN Jie-shan2, YE Guang-wen1, ZHANG Yan-xi1, GAO Xiang-dong1
(1.Guangdong Provincial Welding Engineering Technology Research Center, Guangdong University of Technology, Guangzhou 510006, China; 2.Huangpu Customs Technology Center,Guangdong Dongguan 523076, China)
Due to the influence of various factors, welding defects such as cracks, shrinkage cavities and incomplete fusion are prone to occur in the nugget area during resistance spot welding process. The quality of spot welding directly affects the service life of welding components, so the defect detection and quality evaluation of spot welding are very important. In this paper, the principle of resistance spot welding is generalized, and the latest research results and applications of quality detection technology for resistance spot welding are summarized. Also, the monitoring method of welding process parameters, the detection mechanism of non-destructive testing method after welding, the quality evaluation method and its advantages and disadvantages in practical application are analyzed. In addition, the development of non-destructive testing technology for resistance spot welding is prospected. Organically combining existing non-destructive testing methods, using signal processing, artificial intelligence, pattern recognition and other technologies to improve the convenience, efficiency and intelligence of detection, are the focus of future research on quality detection technology for resistance spot welding.
resistance spot welding (RSW); non-destructive testing (NDT); welding quality; research status
10.3969/j.issn.1674-6457.2022.05.013
TG441.7
A
1674-6457(2022)05-0083-11
2021–07–17
廣州市技術(shù)創(chuàng)新發(fā)展專項資金(202002020068)
劉倩雯(1996—),女,碩士生,主要研究方向為無損檢測技術(shù)。
高向東(1963—),男,博士,教授,博士生導(dǎo)師,主要研究方向為焊接自動化。
責(zé)任編輯:蔣紅晨