趙思琪 張浪 劉騫 陳倩 孔保華
肉類富含蛋白質(zhì)、脂肪等營養(yǎng)物質(zhì),在加工或貯藏過程中易受到微生物的污染而發(fā)生腐敗變質(zhì)。天然抗菌劑作為一種肉類保鮮劑,因具有良好的抑菌活性、安全性及生物可降解性而受到廣泛關(guān)注。然而,有些天然抗菌劑具有高揮發(fā)性、低水溶性、熱不穩(wěn)定等缺陷,導(dǎo)致其在肉類保鮮中的應(yīng)用受到局限。納米乳液作為一種包埋系統(tǒng),能夠?qū)⑻烊豢咕鷦┌裨谄鋬?nèi)部,以提高天然抗菌劑的穩(wěn)定性和抑菌活性,并改善天然抗菌劑的釋放性能,從而緩解天然抗菌劑的局限性。本文綜述天然抗菌劑納米乳液的構(gòu)成和制備方法,并在此基礎(chǔ)上進(jìn)一步論述天然抗菌劑納米乳液的抑菌機(jī)理與優(yōu)勢以及天然抗菌劑納米乳液在肉類保鮮中的研究進(jìn)展,以期為天然抗菌劑納米乳液在肉類保鮮中的應(yīng)用提供理論基礎(chǔ)和實踐指導(dǎo)。
納米乳液;天然抗菌劑;制備方法;抑菌機(jī)理;肉類保鮮
Preparation, Antibacterial Mechanism of Natural Antimicrobial-Loaded Nanoemulsions and Their Application in Meat Preservation: A Literature Review
ZHAO Siqi, ZHANG Lang, LIU Qian, CHEN Qian, KONG Baohua*
Meat and meat products are rich in nutrients such as protein and fat and prone to spoilage during processing or improper storage due to microbial contamination. Natural antimicrobial agents have?been widely used as meat preservatives?because of their excellent antibacterial activity, safety, and biodegradability. However, some natural antimicrobial agents are of high volatility, low water solubility, and thermal instability, which limits?their application in meat and meat product preservation. Nanoemulsions can allow incorporation of?natural antimicrobial agents into their interior to improve the stability,?antibacterial activity?and release performance of natural antimicrobial agents, thus?alleviating?their?limitations. In this review, the composition, preparation methods, antibacterial mechanism of natural antimicrobial-loaded nanoemulsions are summarized. Furthermore, the recent progress in the application of natural antimicrobial-loaded nanoemulsions in meat preservation is discussed to provide theoretical basis and practical guidance for the application of natural antimicrobial-loaded nanoemulsions in meat and meat product preservation.
nanoemulsion; natural antimicrobial; preparation methods; antibacterial mechanism; meat preservation
DOI:10.7506/rlyj1001-8123-20220117-003
中圖分類號:TS251.1 ?????????文獻(xiàn)標(biāo)志碼:A ????????????????文章編號:
肉類富含蛋白質(zhì)、脂肪等營養(yǎng)物質(zhì),是人體所需營養(yǎng)成分的重要來源,并具有良好的風(fēng)味,備受消費(fèi)者喜愛。然而,在肉類加工或貯藏過程中,這些營養(yǎng)物質(zhì)會被腐敗微生物利用,導(dǎo)致肉類發(fā)生腐敗變質(zhì),出現(xiàn)異味、變色、發(fā)黏等現(xiàn)象,嚴(yán)重影響其感官及營養(yǎng)特性。為了緩解肉類的腐敗變質(zhì)問題,許多保鮮技術(shù)應(yīng)運(yùn)而生,總體可分為物理保鮮技術(shù)和化學(xué)保鮮技術(shù)。物理保鮮技術(shù)包括低溫保藏、輻照、高壓處理以及包裝技術(shù)等?;瘜W(xué)保鮮技術(shù)是通過添加抗菌劑達(dá)到抑菌或殺菌目的,以延長肉類貯藏期的保鮮技術(shù),抗菌劑可根據(jù)來源分為合成抗菌劑和天然抗菌劑。與合成抗菌劑相比,天然抗菌劑具有安全無毒、生物可降解等優(yōu)勢;而與物理保鮮技術(shù)相比,天然抗菌劑具有更加廣泛的適用范圍,因此天然抗菌劑受到廣泛關(guān)注,逐漸成為當(dāng)下的研究熱點(diǎn)。然而,某些天然抗菌劑因具有高揮發(fā)性、低水溶性及熱不穩(wěn)定性,并且對環(huán)境變化敏感,導(dǎo)致其在實際應(yīng)用中的利用率較低。此外,這些性質(zhì)不穩(wěn)定的天然抗菌劑還易與肉中蛋白質(zhì)、脂肪等成分互作,導(dǎo)致其抑菌活性降低。
為了解決天然抗菌劑在肉類應(yīng)用中的局限性,通常采用包埋技術(shù)將天然抗菌劑進(jìn)行封裝。納米乳液是一種由2?種互不相溶的相構(gòu)成的納米級包埋系統(tǒng),其平均粒徑為20~200 nm。它能夠促進(jìn)天然抗菌劑與微生物之間的相互作用、增強(qiáng)天然抗菌劑的溶解性和吸收性、提高天然抗菌劑的穩(wěn)定性并改善天然抗菌劑的釋放性能,這為解決天然抗菌劑的局限性提供了一種可能。目前,天然抗菌劑納米乳液在食品保鮮領(lǐng)域中已受到比較廣泛的關(guān)注,但關(guān)于天然抗菌劑納米乳液在肉類保鮮中的應(yīng)用報道較少,相關(guān)綜述并不多見?;诖耍疚木C述天然抗菌劑納米乳液的構(gòu)成、制備方法、抑菌機(jī)理與抑菌優(yōu)勢,并在此基礎(chǔ)上論述天然抗菌劑在肉類保鮮中的應(yīng)用,旨在為天然抗菌劑納米乳液在肉類保鮮領(lǐng)域的研究與開發(fā)提供理論基礎(chǔ)和實踐指導(dǎo)。
天然抗菌劑納米乳液主要包括3 種類型:水包油型(O/W)、油包水型(W/O)和雙連續(xù)型(圖1)。在食品工業(yè)中,關(guān)于水包油型和油包水型納米乳液的應(yīng)用較多,而雙連續(xù)型納米乳液并不常見。
1.1 ??天然抗菌劑納米乳液的構(gòu)成
1.1.1 ??分散相
在水包油型天然抗菌劑納米乳液中,分散相為脂溶性天然抗菌劑的油溶液。常見的脂溶性天然抗菌劑有植物精油、一些植物提取物等,它們?nèi)苡谌8视停╰riacylgycerol,TAG)、中鏈甘油三酯(medium-chain triglycerides,MCT)等油脂中,構(gòu)成水包油型天然抗菌劑納米乳液的分散相。在油包水型天然抗菌劑納米乳液中,分散相由水溶性天然抗菌劑的水溶液構(gòu)成。此外,分散相中通常含有多元醇、無機(jī)鹽離子及大分子聚合物等,這些物質(zhì)有助于增強(qiáng)乳化劑的乳化能力并降低分散相表面張力,從而提高天然抗菌劑納米乳液的穩(wěn)定性。
1.1.2 ??連續(xù)相
在水包油型天然抗菌劑納米乳液中,連續(xù)相為水相,其中主要含有殼聚糖、果膠、纖維素、海藻酸鹽等生物聚合物,這些聚合物具有一定黏附性和控釋能力,有助于天然抗菌劑的靶向釋放并延長天然抗菌劑發(fā)揮活性的時間。在油包水型天然抗菌劑納米乳液中,連續(xù)相為油相,主要由一些常見油脂(TAG、MCT等)構(gòu)成。
1.1.3 ??乳化劑
乳化劑也稱為中間相,是天然抗菌劑納米乳液的重要組成部分。乳化劑能夠在水油界面吸附,降低界面張力,從而提高納米乳液穩(wěn)定性,防止沉降、絮凝、聚結(jié)、奧氏熟化等現(xiàn)象的發(fā)生。此外,乳化劑還影響天然抗菌劑納米乳液的粒徑尺寸、分散相黏度及粒子間電斥力,直接關(guān)系到天然抗菌劑納米乳液的光學(xué)和流變學(xué)特性。
乳化劑可分為合成乳化劑和天然乳化劑2?種。在食品工業(yè)中,吐溫、司盤是應(yīng)用最為廣泛的合成乳化劑,這些小分子合成乳化劑能夠相對容易地在油水界面展開,具有良好的乳化效果。然而,合成乳化劑對人體健康具有潛在隱患,因此,研究人員逐漸對安全無害的天然乳化劑加以重視。常見的天然乳化劑可根據(jù)其成分分為多糖乳化劑(阿拉伯樹膠、果膠、改性淀粉、大豆多糖)、蛋白質(zhì)乳化劑(明膠、酪蛋白、乳清蛋白)和磷脂乳化劑(卵磷脂)。有研究表明,含小分子合成乳化劑的納米乳液具有更小的液滴尺寸,而含有天然大分子乳化劑的納米乳液液滴尺寸較大,在動力學(xué)穩(wěn)定性方面表現(xiàn)更佳。乳化劑也可根據(jù)親水親油平衡(hydrophile lipophilic balance,HLB)值進(jìn)行分類,HLB值是描述乳化劑在水相和油相中相對溶解趨勢的重要參數(shù)。當(dāng)HLB值為3~6,乳化劑優(yōu)先溶于油相,有形成油包水型納米乳液的趨勢;當(dāng)HLB值為10~18時,乳化劑則優(yōu)先溶于水中,傾向于形成水包油型納米乳液。因此,在實際應(yīng)用中應(yīng)根據(jù)所需天然抗菌劑納米乳液的類型選擇合適的乳化劑。
1.2 ??天然抗菌劑納米乳液的制備
1.2.1 ??高能制備方法
高能制備方法包括高壓均質(zhì)法、超聲乳化法及微射流法,主要涉及到高壓均質(zhì)器、超聲均質(zhì)器、微流化器等機(jī)械裝置,這些裝置會產(chǎn)生過大應(yīng)力,破壞分散相,使其成為納米級別的液滴。
1.2.1.1 ??高壓均質(zhì)法
高壓均質(zhì)法是最常用于制備納米乳液的高能方法,可制得100 nm以下的乳液液滴。在高壓均質(zhì)過程中,預(yù)混的粗乳液在高壓均質(zhì)器施加的10~350 MPa壓力條件下通過5~10 nm的狹窄間隙。高壓均質(zhì)器利用粗乳液通過狹窄間隙時受到的高速剪切、高頻振蕩、對流撞擊等機(jī)械力作用實現(xiàn)對粗乳液液滴的細(xì)化。將制得的乳液再循環(huán)至加料器,使均質(zhì)過程持續(xù)進(jìn)行,以進(jìn)一步減小液滴尺寸。一般情況下,經(jīng)過15~20 次高壓均質(zhì)處理后,可得到穩(wěn)定的乳液液滴。在高壓均質(zhì)過程中,溫度、壓力及循環(huán)次數(shù)的增加有利于減小天然抗菌劑納米乳液的最終液滴尺寸。
1.2.1.2 ??超聲乳化法
超聲乳化法具有能耗低、制備乳液更均勻等優(yōu)點(diǎn),目前已廣泛用于納米乳液的制備。超聲波發(fā)生器尖端接觸液體時會產(chǎn)生界面波動,形成空化氣泡,同時使分散相形成較大尺寸的液滴。隨后,空化氣泡破裂產(chǎn)生的高剪切力會將較大的液滴破碎成較小的液滴,從而達(dá)到細(xì)化和均質(zhì)的目的。通常,超聲乳化處理15~20 min后,液滴的粒徑尺寸基本穩(wěn)定,它與超聲功率、時間以及配方中乳化劑的類型和含量密切相關(guān)。在超聲乳化過程中,有效乳化僅發(fā)生在波導(dǎo)輻射器附近,因此超聲乳化法更適用于小批量生產(chǎn)。
1.2.1.3 ??微射流法
微射流法是以高壓均質(zhì)的工業(yè)應(yīng)用為基礎(chǔ)開發(fā)出來的,具有高效、高能、可控制液滴大小等優(yōu)點(diǎn)。其制備過程是使預(yù)混的粗乳液通過高壓泵送裝置進(jìn)入微流化器中,隨后在2?條獨(dú)立微通道中以高速狀態(tài)加速碰撞,從而產(chǎn)生極強(qiáng)的剪切力和撞擊力,使較大的液滴發(fā)生破裂。此外,利用微射流法制備天然抗菌劑納米乳液時,也可直接將分散相和連續(xù)相分別從2?個入口通過微通道,無需經(jīng)過預(yù)乳化步驟。
1.2.2 ??低能制備方法
低能制備方法操作成本和設(shè)備投資較低,反應(yīng)條件溫和,對熱敏性天然抗菌劑活性影響較小,近年來受到廣泛關(guān)注。常見的低能制備方法包括自乳化法、相轉(zhuǎn)變法、膜乳化法等。
1.2.2.1 ??自乳化法
自乳化法制備天然抗菌劑納米乳液的過程是在連續(xù)攪拌下,將含有乳化劑的分散相逐步注入連續(xù)相中。納米乳液是在分散相與連續(xù)相混合過程中,由系統(tǒng)內(nèi)部化學(xué)能驅(qū)動而形成的,無需外部能量輸入。自乳化過程中,溫度、攪拌充分程度及分散相添加速率都對納米乳液的粒徑和穩(wěn)定性有重要影響。
1.2.2.2 ??相轉(zhuǎn)變組分法
相轉(zhuǎn)變組分法的操作過程是在恒溫下通過向一種組分中逐步加入另一組分引發(fā)相轉(zhuǎn)變,從而制得所需的納米乳液。以制備水包油型天然抗菌劑納米乳液為例,首先向含有親水性乳化劑的油相中逐步滴加水相,此時會形成油包水型天然抗菌劑微乳液(圖2A)。隨著水相含量增加,乳化劑的自發(fā)曲率逐漸趨向于零(圖2B),當(dāng)繼續(xù)滴加水相,水相和油相組分比例超過一定值時,即發(fā)生相轉(zhuǎn)變,形成水包油型天然抗菌劑納米乳液(圖2C)。在制備過程中,水相或油相的滴加速率和攪拌速率會影響乳液的穩(wěn)定性和最終粒徑尺寸。
1.2.2.3 ??膜乳化法
膜乳化是一種新型高效節(jié)能技術(shù),操作條件溫和,適用于制備含有熱敏性成分的納米乳液,并能夠有效控制液滴尺寸和分布。膜乳化法包括直接乳化和預(yù)乳化。直接乳化是將分散相直接壓入膜,隨后分散相在膜另外一側(cè)流動的連續(xù)相中被擠壓成內(nèi)相液滴(圖3A);而預(yù)乳化是將預(yù)先制備好的粗乳液壓入膜,進(jìn)而形成納米乳液(圖3B、C)。在預(yù)乳化過程中,膜的親水性或疏水性決定著粗乳液是否發(fā)生相轉(zhuǎn)變,當(dāng)水包油型粗乳液通過疏水膜時,最終會形成油包水型納米乳液,而通過親水膜時不發(fā)生相轉(zhuǎn)變;當(dāng)油包水型粗乳液通過親水膜時,最終會形成水包油型納米乳液,通過疏水膜時不發(fā)生相轉(zhuǎn)變。
2.1 ??天然抗菌劑納米乳液的抑菌機(jī)理
天然抗菌劑納米乳液的抑菌機(jī)理取決于所包埋的天然抗菌劑。天然抗菌劑可根據(jù)來源分為植物源性天然抗菌劑、動物源性天然抗菌劑和微生物源性天然抗菌劑。其中,動物源性天然抗菌劑(殼聚糖、溶菌酶、乳鐵蛋白等)因性質(zhì)穩(wěn)定無需借助納米乳液包埋系統(tǒng)。
2.1.1 ??植物源性天然抗菌劑的抑菌機(jī)理
植物精油是最典型的植物源性天然抗菌劑,它是芳香植物和草本植物的次生代謝產(chǎn)物,存在于葉、莖、芽、花、種子和果實中。植物精油成分復(fù)雜、來源廣泛、種類繁多。表1列舉了幾種常見的植物精油及其主要抑菌成分與抑菌對象。此外,酚類、黃酮類、醌類、生物堿類等植物抽提物也是研究較為廣泛的植物源性天然抗菌劑。目前已有研究證明了茶多酚、姜黃素、類胡蘿卜素、石榴籽提取物等植物抽提物的抗菌活性。
植物源性天然抗菌劑發(fā)揮抑菌活性最主要的方式是破壞微生物細(xì)胞膜結(jié)構(gòu)。植物源性天然抗菌劑可進(jìn)入細(xì)胞膜的磷脂雙分子層結(jié)構(gòu),隨后其活性成分與細(xì)胞膜蛋白質(zhì)位點(diǎn)結(jié)合,促進(jìn)細(xì)胞膜組織和結(jié)構(gòu)的變化,從而使細(xì)胞膜通透性增加,造成細(xì)胞重要內(nèi)容物滲出,導(dǎo)致細(xì)胞溶解、死亡。另外,抗菌劑融入細(xì)胞后,會對細(xì)胞造成以下影響(圖4):1)抑制細(xì)胞對營養(yǎng)物質(zhì)的吸收;2)改變細(xì)胞內(nèi)ATP的含量或降低ATP合成酶活性;3)抑制呼吸鏈中電子的傳遞;4)抑制蛋白質(zhì)和核酸的合成。
2.1.2 ??微生物源性天然抗菌劑的抑菌機(jī)理
微生物源性天然抗菌劑包括乳酸鏈球菌素(Nisin)、納他霉素、-聚賴氨酸、片球菌素和羅伊氏細(xì)菌素等。其中,Nisin和納他霉素對環(huán)境變化敏感,易與肉中成分相互作用,通常需要借助包埋系統(tǒng)克服其應(yīng)用局限。
Nisin由某些乳酸鏈球菌菌株產(chǎn)生,是世界衛(wèi)生組織允許作為食品防腐劑使用的唯一一種細(xì)菌素。目前,Nisin已被證實對葡萄球菌、李斯特菌等多種細(xì)菌具有顯著抑制作用。Nisin有3 種抑菌方式。第1種抑菌方式為破壞微生物細(xì)胞膜。首先,Nisin分子會附著于細(xì)胞膜上的脂質(zhì)體Ⅱ,形成Nisin-脂質(zhì)體Ⅱ復(fù)合物,隨后Nisin-脂質(zhì)體Ⅱ復(fù)合物插入細(xì)胞膜,在細(xì)胞膜上形成孔洞,引起細(xì)胞膜內(nèi)外滲透壓發(fā)生改變,從而造成細(xì)胞內(nèi)容物外泄,導(dǎo)致細(xì)胞死亡。第2種抑菌方式為抑制微生物細(xì)胞壁的合成。由于脂質(zhì)體Ⅱ是細(xì)胞壁合成的前體物質(zhì),因此Nisin分子的附著會抑制肽聚糖網(wǎng)絡(luò)的生長,從而抑制細(xì)胞壁的合成,達(dá)到抑菌目的。第3種抑菌方式為通過與蛋白殘基的巰基結(jié)合使孢子內(nèi)含有巰基的酶失活,從而抑制孢子向外生長。一般而言,Nisin對革蘭氏陽性菌的抑制作用更加明顯。
納他霉素是一種由納他鏈霉菌發(fā)酵產(chǎn)生的多烯大環(huán)內(nèi)酯類物質(zhì),它對青霉菌、根霉菌、曲霉菌等大部分霉菌及酵母菌具有極強(qiáng)抑制作用,目前已被歐洲食品安全局和美國食品藥品監(jiān)督管理局批準(zhǔn)作為食品防腐劑使用。納他霉素的抑菌機(jī)理與真菌細(xì)胞中的甾醇類化合物有關(guān)。納他霉素內(nèi)酯結(jié)構(gòu)中的共軛雙鍵通過范德華力與真菌細(xì)胞膜中的麥角甾醇或其他甾醇類基團(tuán)結(jié)合,形成甾醇-納他霉素復(fù)合體,從而影響細(xì)胞中甾醇類物質(zhì)的利用機(jī)制,擾亂細(xì)胞正常代謝活動。此外,這一復(fù)雜復(fù)合物的產(chǎn)生會導(dǎo)致細(xì)胞膜畸變,引起胞內(nèi)重要營養(yǎng)物質(zhì)滲出,從而達(dá)到抑菌效果。由于細(xì)菌和病毒不含有甾醇類物質(zhì),故納他霉素對其幾乎沒有抑菌活性。
2.2 ??天然抗菌劑納米乳液的抑菌優(yōu)勢
2.2.1 ??具有較強(qiáng)抑菌活性
納米乳液較小的液滴能夠?qū)⑻烊豢咕鷦┻\(yùn)輸?shù)轿⑸锛?xì)胞膜表面,增加天然抗菌劑的活性表面積,從而促進(jìn)天然抗菌劑發(fā)揮活性,達(dá)到更強(qiáng)的抑菌效果。Wang Yanbo等報道,與純山蒼子精油相比,山蒼子精油納米乳液對李斯特菌和海鏈球菌表現(xiàn)出更強(qiáng)的抑制作用。同樣,Maté等研究發(fā)現(xiàn),與-檸檬烯相比,-檸檬烯納米乳液對李斯特菌的抑制作用更加顯著。然而,Liu Xiaoli等在比較肉桂精油與肉桂精油納米乳液的抑菌活性時發(fā)現(xiàn),對于黑曲霉,肉桂精油納米乳液表現(xiàn)出更強(qiáng)的抑菌作用,而對于大腸桿菌,肉桂精油的抑菌作用更強(qiáng)。
根據(jù)上述研究可知,納米乳液的包埋有助于天然抗菌劑中的活性成分進(jìn)入微生物細(xì)胞內(nèi)部,此外,還能夠增加天然抗菌劑在水介質(zhì)中的分散性和溶解性,從而使天然抗菌劑與目標(biāo)微生物更加充分地相互作用,表現(xiàn)出更強(qiáng)的抑菌活性。然而,其抑菌活性會因微生物種類的不同而表現(xiàn)出較大差異。因此,在實際應(yīng)用中針對不同種類的微生物應(yīng)選用合適的天然抗菌劑納米乳液,以達(dá)到最佳抑菌效果。
2.2.2 ??具有較強(qiáng)穩(wěn)定性
納米乳液粒徑較小,能夠通過布朗運(yùn)動克服重力因素,因此具有較強(qiáng)動力學(xué)穩(wěn)定性。除整個系統(tǒng)具有較強(qiáng)穩(wěn)定性外,包埋在系統(tǒng)內(nèi)部的天然抗菌劑因受外界影響較小,相比于游離天然抗菌劑也具有較強(qiáng)的穩(wěn)定性。根據(jù)Kreutz等報道,對卡尼里拉精油(essential oil of ,EOAC)納米乳液和EOAC-甲醇溶液進(jìn)行相同條件的光處理和熱處理后,納米乳液更有利于維持EOAC中主要化合物的含量。Zheng Bingjing等在評估不同包埋系統(tǒng)(二甲基亞砜水溶液、納米乳液、水凝膠珠)對姜黃素穩(wěn)定性的影響時也得出了類似的結(jié)論。另外,天然抗菌劑的穩(wěn)定性也會受乳化劑用量和類型的影響。Chen Wenye等[70]以米糠蛋白作為槲皮素納米乳液的乳化劑,結(jié)果表明,米糠蛋白含量為3%時有助于提高槲皮素的穩(wěn)定性。Kharat等研究發(fā)現(xiàn),皂苷對姜黃素的穩(wěn)定性無積極作用,反而會因其促過氧化反應(yīng)的能力而加速姜黃素的降解。
由此可見,天然抗菌劑納米乳液不僅自身具有較強(qiáng)穩(wěn)定性,納米乳液系統(tǒng)同時也能夠減少外界環(huán)境對天然抗菌劑的影響,從而提高天然抗菌劑的穩(wěn)定性。但若乳化劑的用量和類型不當(dāng),會加速天然抗菌劑的降解。因此,在具體應(yīng)用中應(yīng)結(jié)合所包埋天然抗菌劑的理化性質(zhì),確定恰當(dāng)?shù)娜榛瘎┯昧亢皖愋停M(jìn)而在最大程度上提高天然抗菌劑納米乳液的穩(wěn)定性。
2.2.3 ??具有良好釋放性能
天然抗菌劑納米乳液的釋放性能體現(xiàn)在兩方面:緩慢釋放和靶向釋放。緩慢釋放能夠延長天然抗菌劑發(fā)揮抑菌活性的時間,以達(dá)到持久的抑菌效果。目前已有研究證明了納米乳液的緩釋作用。Syed等評估香芹醇、香葉醇精油與香芹醇、香葉醇精油納米乳液的抑菌作用,結(jié)果表明,納米乳液使香芹醇和香葉醇精油的抑菌效果延長至9 d。這是因為在納米乳液系統(tǒng)中,用于發(fā)揮抑菌作用的精油數(shù)量較少,大量精油在納米乳液中得以長期保留,從而延長抗菌時間。靶向釋放能夠使天然抗菌劑精準(zhǔn)、有效地發(fā)揮抑菌活性,提高其利用率。有研究表明,靶向釋放與乳化劑有關(guān),當(dāng)乳化劑液滴與微生物細(xì)胞膜的磷脂雙分子層結(jié)構(gòu)融合時,會促進(jìn)天然抗菌劑在特定位置靶向釋放,并且這一特性在使用大分子天然乳化劑時更為突出。目前關(guān)于天然抗菌劑納米乳液靶向釋放的研究較少,其具體過程和機(jī)制仍有待探索。
3.1 ??制備可食性涂膜
可食性涂膜是指將液體直接涂在食品表面后形成的涂層。目前已有大量研究表明,基于天然抗菌劑納米乳液的可食性涂膜可應(yīng)用于肉類保鮮。Xiong Yun等報道,牛至精油-白藜蘆醇納米乳液可食性涂膜不僅能夠顯著抑制豬里脊中微生物的生長繁殖,還可保持豬肉的嫩度。同樣,Wang Lei等研究發(fā)現(xiàn),含有百里香精油和百里香酚納米乳液的可食性涂膜可有效延長豬肉的貯藏期。Abdou等發(fā)現(xiàn),基于姜黃素納米乳液的可食性涂膜能夠顯著抑制雞肉中嗜冷細(xì)菌、酵母菌和霉菌的生長,同時提高雞肉的感官品質(zhì)。此外,天然抗菌劑納米乳液可食性涂膜對魚類也顯示出較強(qiáng)抑菌作用。Shokri等研究表明,阿魏精油納米乳液可食性涂膜對于虹鱒魚的質(zhì)地、顏色有積極影響,并能夠抑制魚肉中的腐敗菌。綜合上述研究結(jié)果可知,天然抗菌劑納米乳液可食性涂膜對不同來源生鮮肉的抑菌作用具有廣泛的適用性。
除生鮮肉外,天然抗菌劑納米乳液可食性涂膜在肉制品中也得到了廣泛的應(yīng)用。根據(jù)Huang Mingyuan等的報道,與迷迭香提取物--聚賴氨酸粗乳液涂膜相比,經(jīng)過納米乳液涂膜處理的即食烤雞在4 ℃條件下顯示出更低水平的活菌數(shù)、霉菌和酵母菌數(shù)。Sun Yanan等發(fā)現(xiàn),茴香精油-肉桂醛納米乳液可食性涂膜能夠顯著抑制豬肉餅中的大腸桿菌和金黃色葡萄球菌,使其保質(zhì)期延長6~10 d。此外,該涂膜有助于提高豬肉餅的感官品質(zhì)。Liu Qiong等研究表明,含有茴香精油-Nisin-聚賴氨酸復(fù)合抗菌劑的納米乳液涂膜能夠有效抑制即食瑤族肉制品中總活菌數(shù)的增加,并使其貯藏期延長至16 d。綜上所述,基于天然抗菌劑納米乳液的可食性涂膜在生鮮肉及肉制品中均具有良好保鮮效果,在未來肉類保鮮領(lǐng)域中具有較大發(fā)展?jié)摿Α?/p>
3.2 ??制備活性包裝膜
基于天然抗菌劑納米乳液的活性包裝膜是指將天然抗菌劑納米乳液加入包裝材料后,通過加熱、加壓、涂布、擠出等方法制成的薄膜?,F(xiàn)已有研究證實了天然抗菌劑納米乳液活性包裝膜的體外抑菌活性。Zhang Xinhui等研究發(fā)現(xiàn),含有百里香精油納米乳液的活性包裝膜呈現(xiàn)出較強(qiáng)的抑菌活性并具有較好的機(jī)械柔韌性和防紫外線性能。根據(jù)Hasheminya等的報道,基于鼠尾草精油納米乳液的活性包裝膜對李斯特菌的抑制能力及對自由基的清除能力均較強(qiáng)。雷凱研究發(fā)現(xiàn),香芹酚納米乳液-羧甲基殼聚糖復(fù)合包裝膜對大腸桿菌和金黃色葡萄球菌具有良好的抑菌活性,抑制率最高分別可達(dá)99.9%和99.0%。
含有天然抗菌劑納米乳液的活性包裝膜不僅具有較強(qiáng)的體外抑菌活性,其應(yīng)用于肉及肉制品中時良好的抑菌性能也得到了驗證。Amiri等報道,與僅含有扎塔里亞多花精油的包裝膜相比,含有扎塔里亞多花精油納米乳液的包裝膜對牛肉餅具有更強(qiáng)的抗菌及抗氧化活性。同樣,Ansarian等在最近的研究中發(fā)現(xiàn),含有白藜蘆醇和丁香精油的納米乳液包裝膜對駱駝肉具有較強(qiáng)抗菌抗氧化作用,并能夠改善其感官品質(zhì)。目前關(guān)于天然抗菌劑納米乳液活性包裝膜的研究集中在膜的性能及體外抑菌作用,對于其在肉類保鮮中的研究和應(yīng)用較少,但現(xiàn)有研究均表明,基于天然抗菌劑納米乳液的活性包裝膜在肉及肉制品中抑菌效果良好,具有廣闊的發(fā)展前景。
3.3 ??用作肉制品加工原料
將天然抗菌劑納米乳液直接添加到肉制品的加工配方中是一種便捷、有效的應(yīng)用方法。Feng Xiao等研究發(fā)現(xiàn),與生育酚粗乳液相比,生育酚納米乳液更加有效地改善了魚腸在4 ℃條件下貯藏16 d期間的品質(zhì)。Moraes-Lovison等以牛至精油納米乳液作為原料制作雞肉餅時發(fā)現(xiàn),牛至精油納米乳液對雞肉餅中大腸桿菌和金黃色葡萄球菌具有較強(qiáng)抑制作用,并且對雞肉餅的感官品質(zhì)無顯著影響。同樣,Pinelli等報道,混合精油(豆蔻精油、肉桂精油、檸檬精油、辣椒精油)納米乳液的添加能夠顯著減少熟肉制品中產(chǎn)孢梭菌的營養(yǎng)細(xì)胞。由此可見,將天然抗菌劑納米乳液作為原料用于肉制品的加工制作能夠有效抑制肉制品中腐敗微生物的生長,具有良好保鮮效果,但該方法并不適用于生鮮肉的保鮮。
納米乳液作為一種納米級包埋系統(tǒng),能夠有效解決天然抗菌劑在實際應(yīng)用中的局限性,增強(qiáng)天然抗菌劑的抑菌活性、提高天然抗菌劑穩(wěn)定性并改善其釋放性能。裝載天然抗菌劑的納米乳液在肉類保鮮中具有廣闊的發(fā)展前景,它可以用于制備可食性涂膜和活性包裝膜,還能夠作為原料用于肉制品的加工制作。然而,天然抗菌劑納米乳液在實際應(yīng)用中仍面臨著一些挑戰(zhàn),包括以下三方面:1)目前大規(guī)模制備納米乳液的技術(shù)為高能制備技術(shù),這些技術(shù)操作條件劇烈,會對性質(zhì)不穩(wěn)定的天然抗菌劑造成影響,而低能制備技術(shù)仍處于實驗室規(guī)模,尚未投入大規(guī)模生產(chǎn);2)用于制備納米乳液的乳化劑大多為合成乳化劑,可能對人體健康造成不利影響;3)目前對于納米乳液被人體吸收后的潛在毒性尚不清楚,需進(jìn)行更深層次的研究。為使天然抗菌劑納米乳液更好地應(yīng)用于肉類保鮮,應(yīng)繼續(xù)深入探索低能制備技術(shù),以擴(kuò)大其應(yīng)用規(guī)模。此外,在今后的研究中,需要更加注重對天然乳化劑的應(yīng)用,使天然抗菌劑納米乳液在不損害人體健康的同時最大限度地發(fā)揮抑菌活性。另外,針對納米乳液對人體的潛在毒性應(yīng)進(jìn)行深入的體外模擬實驗,以確保天然抗菌劑納米乳液被人體吸收后的安全性。最后,將天然抗菌劑納米乳液與其他保鮮技術(shù)聯(lián)用可能取得更好的抑菌效果,以實現(xiàn)肉類的高效保鮮。
[1] 薛佳祺, 王穎, 周輝, 等. 包裝技術(shù)在肉制品保鮮中的研究進(jìn)展[J]. 食品工業(yè)科技, 2021, 42(16): 367-373. DOI:10.13386/j.issn1002-0306.2020080047.
[2] ZHOU G H, XU X L, LIU Y, et al. Preservation technologies for fresh meat: a review[J]. Meat Science, 2010, 86(1): 119-128. DOI:10.1016/j.meatsci.2010.04.033.
[3] 鄧鈺楨, 張亞迪, 楊曉溪, 等. 納米技術(shù)在肉類保鮮中的應(yīng)用研究進(jìn)展[J]. 肉類研究, 2020, 34(12): 87-93. DOI:10.7506/rlyj1001-8123-20201123-276.
[4] BELLéS M, ALONSO V, RONCALéS P, et al. A review of fresh lamb chilling and preservation[J]. Small Ruminant Research, 2017, 146: 41-47. DOI:10.1016/j.smallrumres.2016.12.003.
[5] BISHT B, BHATNAGAR P, GURURANI P, et al. Food irradiation: effect of ionizing and non-ionizing radiations on preservation of fruits and vegetables: a review[J]. Trends in Food Science and Technology, 2021, 114: 372-385. DOI:10.1016/j.tifs.2021.06.002.
[6] GUYON C, MEYNIER A, LAMBALLERIE M D. Protein and lipid oxidation in meat: a review with emphasis on high-pressure treatments[J]. Trends in Food Science and Technology, 2016, 50: 131-143. DOI:10.1016/j.tifs.2016.01.026.
[7] SORO A B, NOORE S, HANNON S, et al. Current sustainable solutions for extending the shelf life of meat and marine products in the packaging process[J]. Food Packaging and Shelf Life, 2021, 29(9): 100722. DOI:10.1016/j.fpsl.2021.100722.
[8] MUNEKATA P, ROCCHETTI G, PATEIRO M, et al. Addition of plant extracts to meat and meat products to extend shelf-life and health-promoting attributes: an overview[J]. Current Opinion in Food Science, 2020, 31: 81-87. DOI:10.1016/j.cofs.2020.03.003.
[9] 朱燕莉, 王正莉, 王衛(wèi), 等. 天然食品防腐劑的抑菌機(jī)理研究進(jìn)展[J]. 中國調(diào)味品, 2021, 46(9): 176-180. DOI:10.3969/j.issn.1000-9973.2021.09.034.
[10] SMAOUI S, HLIMA H B, BRA?EK O B, et al. Recent advancements in encapsulation of bioactive compounds as a promising technique for meat preservation[J]. Meat Science, 2021, 181: 108585. DOI:10.1016/j.meatsci.2021.108585.
[11] NASEEMA A, LOHITESH K, ALOK K B, et al. A critical review of synthesis procedures, applications and future potential of nanoemulsions[J]. Advances in Colloid and Interface Science, 2021, 287: 102318. DOI:10.1016/j.cis.2020.102318.
[12] REHMAN A, TONG Q Y, SHARIF H R, et al. Biopolymer based nanoemulsion delivery system: an effective approach to boost the antioxidant potential of essential oil in food products[J]. Carbohydrate Polymer Technologies and Applications, 2021, 2: 100082. DOI:10.1016/j.carpta.2021.100082.
[13] MCCLEMENTS D J. Advances in edible nanoemulsions: digestion, bioavailability, and potential toxicity[J]. Progress in Lipid Research, 2021, 81: 101081. DOI:10.1016/j.plipres.2020.101081.
[14] JAMALI S N, ASSADPOUR E, FENG J G, et al. Natural antimicrobial-loaded nanoemulsions for the control of food spoilage/pathogenic microorganisms[J]. Advances in Colloid and Interface Science, 2021. 295: 102504. DOI:10.1016/j.cis.2021.102504.
[15] 張冉冉, 杜玉蘭, 范培浩, 等. 油包水乳化體系穩(wěn)定性的研究與分析[J]. 日用化學(xué)工業(yè), 2020, 50(8): 566-571. DOI:10.3969/j.issn.1001-1803.2020.08.010.
[16] LIANG Chunxia, QI Dongli, ZHANG Lina, et al. Preparation and evaluation of a water-in-oil nanoemulsion drug delivery system loaded with salidroside[J]. Chinese Journal of Natural Medicines, 2021, 19(3): 231-240. DOI:10.1016/S1875-5364(21)60025-0.
[17] 陳雯燁, 王志高, 鞠興榮, 等. 納米乳的研究進(jìn)展與潛在局限性[J]. 糧食科技與經(jīng)濟(jì), 2020, 45(3): 79-83. DOI:10.16465/j.gste.cn431252ts.20200322.
[18] RAVERA F, DZIZA K, SANTINI E, et al. Emulsification and emulsion stability: the role of the interfacial properties[J]. Advances in Colloid and Interface Science, 2021, 288: 102344. DOI:10.1016/j.cis.2020.102344.
[19] KIM W, WANG Y, SELOMULYA C. Dairy and plant proteins as natural food emulsifiers[J]. Trends in Food Science and Technology, 2020, 105: 261-272. DOI:10.1016/j.tifs.2020.09.012.
[20] 江連洲, 李佳妮, 姜楠, 等. 納米乳液制備技術(shù)及功能應(yīng)用研究進(jìn)展[J]. 中國食物與營養(yǎng), 2017, 23(6): 33-38. DOI:10.3969/j.issn.1006-9577.2017.06.008.
[21] TAHA A, AHMED E, ISMAIEL A, et al. Ultrasonic emulsification: an overview on the preparation of different emulsifiers-stabilized emulsions[J]. Trends in Food Science and Technology, 2020, 105: 363-377. DOI:10.1016/j.tifs.2020.09.024.
[22] LIU Chang, PEI Ruisong, HEINONEN M. Faba bean protein: a promising plant-based emulsifier for improving physical and oxidative stabilities of oil-in-water emulsions[J]. Food Chemistry, 2022, 369: 130879. DOI:10.1016/j.foodchem.2021.130879.
[23] AKHTAR M, DING R. Covalently cross-linked proteins and polysaccharides: formation, characterisation and potential applications[J]. Current Opinion in Colloid and Interface Science, 2017, 28: 31-36.?DOI:10.1016/j.cocis.2017.01.002.
[24]?MARHAMATI M, RANJBAR G, REZAIE M, Effects of emulsifiers on the physicochemical stability of oil-in-water nanoemulsions: a critical review[J]. Journal of Molecular Liquids, 2021, 340: 117218. DOI:10.1016/j.molliq.2021.117218.
[25] PANDEY A K, CHáVEZ-GONZáLEZ M L, SILVA A S, et al. Essential oils from the genus ?as antimicrobial food preservatives: progress in their use as nanoemulsions: a new paradigm[J]. Trends in Food Science and Technology, 2021, 111: 426-441. DOI:10.1016/j.tifs.2021.02.076.
[26] 劉偉, 宋弋, 張潔, 等. 高壓均質(zhì)在食品加工中的研究進(jìn)展[J]. 食品研究與開發(fā), 2017, 38(24): 213-219. DOI:10.3969/j.issn.1005-6521.2017.24.042.
[27] SONI G, KALE K, SHETTY S, et al. Quality by design (QbD) approach in processing polymeric nanoparticles loading anticancer drugs by high pressure homogenizer[J]. Heliyon, 2020, 6(4): e03846. DOI:10.1016/j.heliyon.2020.e03846.
[28] THOMAS S H, LEONG, ZHOU Meifang, et al. Preparation of water-in-oil-in-water emulsions by low frequency ultrasound using skim milk and sunflower oil[J]. Food Hydrocolloids, 2017, 63: 685-695. DOI:10.1016/j.foodhyd.2016.10.017.
[29] MODARRES-GHEISARI S M M, GAVAGSAZ-GHOACHANI R, MALAKI M, et al. Ultrasonic nano-emulsification: a review[J]. Ultrasonics Sonochemistry, 2019, 52: 88-105. DOI:10.1016/j.ultsonch.2018.11.005.
[30] KOROLEVA M Y, YURTOV E V. Nanoemulsions: the properties, methods of preparation and promising applications[J]. Russian Chemical Reviews, 2012, 81(1): 21-43. DOI:10.1070/RC2012v081n01ABEH004219.
[31] 王爽爽. 高壓微射流制備杜仲籽油納米乳液的研究及應(yīng)用[D]. 鄭州:?鄭州輕工業(yè)大學(xué), 2020: 16-18. DOI:10.27469/d.cnki.gzzqc.2020.000010.
[32] SOLANS C, SOLé I. Nano-emulsions: formation by low-energy methods[J]. Current Opinion in Colloid and Interface Science, 2012, 17(5): 246-254. DOI:10.1016/j.cocis.2012.07.003.
[33] ZHANG Lin, ZHANG Fang, FAN Zhaokai, et al. DHA and EPA nanoemulsions prepared by the low-energy emulsification method: process factors influencing droplet size and physicochemical stability[J]. Food Research International, 2019, 121: 359-366. DOI:10.1016/j.foodres.2019.03.059.
[34] SOLANS C, MORALES D, HOMS M. Spontaneous emulsification[J]. Current Opinion in Colloid and Interface Science, 2016, 22: 88-93. DOI:10.1016/j.cocis.2016.03.002.
[35] DHRITLAHRE R K, RUCHIKA, PADWAD Y, et al. Self-emulsifying formulations to augment therapeutic efficacy of nutraceuticals: from concepts to clinic[J]. Trends in Food Science and Technology, 2021, 115: 347-365. DOI:10.1016/j.tifs.2021.06.046.
[36] PERAZZO A, PREZIOSI V, GUIDO S. Phase inversion emulsification: current understanding and applications[J]. Advances in Colloid and Interface Science, 2015, 222: 581-599. DOI:10.1016/j.cis.2015.01.001.
[37] JIANG Tian, LIAO Wei, CHARCOSSET C, et al. Recent advances in encapsulation of curcumin in nanoemulsions: a review of encapsulation technologies, bioaccessibility and applications[J]. Food Research International, 2020, 132: 109035. DOI:10.1016/j.foodres.2020.109035.
[38] VLADISAVLJEVI? G T. Preparation of microemulsions and nanoemulsions by membrane emulsification[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 579: 123709. DOI:10.1016/j.colsurfa.2019.123709.
[39] JIANG Tian, CHARCOSSET C. Premix membrane emulsification for the preparation of curcumin-loaded nanoemulsions[J]. Journal of Food Engineering, 2022, 316: 110836. DOI:10.1016/j.jfoodeng.2021.110836.
[40] NAZIR A, VLADISAVLJEVI? G T. Droplet breakup mechanisms in premix membrane emulsification and related microfluidic channels[J]. Advances in Colloid and Interface Science, 2021, 290: 102393. DOI:10.1016/j.cis.2021.102393.
[41] BATIHA G E, HUSSEIN D E, ABDELAZEEM M, et al. Application of natural antimicrobials in food preservation: recent views[J]. Food Control, 2021, 126: 108066. DOI:10.1016/j.foodcont.2021.108066.
[42] CHAUDHARI A K, SINGH V K, DAS S, et al. Nanoencapsulation of essential oils and their bioactive constituents: a novel strategy to control mycotoxin contamination in food system[J]. Food and Chemical Toxicology, 2021, 149: 112019. DOI:10.1016/j.fct.2021.112019.
[43] 郭娟, 張進(jìn), 王佳敏, 等. 天然抗菌劑在食品包裝中的研究進(jìn)展[J]. 食品科學(xué), 2021, 42(9): 336-346. DOI:10.7506/spkx1002-6630-20200406-066.
[44] ALMATROODI S A, ALSAHLI M A, ALMATROUDI A, et al. Cinnamon and its active compounds: a potential candidate in disease and tumour management through modulating various genes activity[J]. Gene Reports, 2020, 21(10): 100966. DOI:10.1016/j.genrep.2020.100966.
[45] ALIREZALU K, PATEIRO M, YAGHOUBI M, et al. Phytochemical constituents, advanced extraction technologies and techno-functional properties of selected Mediterranean plants for use in meat products. A comprehensive review[J]. Trends in Food Science and Technology, 2020, 100: 292-306. DOI:10.1016/j.tifs.2020.04.010.
[46] SáNCHEZ-CAMARGO A D P, HERRERO M, Rosemary () as a functional ingredient: recent scientific evidence[J]. Current Opinion in Food Science, 2017, 14: 13-19. DOI:10.1016/j.cofs.2016.12.003.
[47] 吳子龍, 趙昕, 耿霄, 等. 連翹精油在食品中應(yīng)用的研究進(jìn)展[J]. 農(nóng)技服務(wù), 2017, 34(1): 9-10. DOI:10.3969/j.issn.1004-8421.2017.01.003.
[48] RATHOD N B, KULAWIK P, OZOGUL F, et al. Biological activity of plant-based carvacrol and thymol and their impact on human health and food quality[J]. Trends in Food Science and Technology, 2021, 116: 733-748. DOI:10.1016/j.tifs.2021.08.023.
[49] YAZGAN H. Investigation of antimicrobial properties of sage essential oil and its nanoemulsion as antimicrobial agent[J]. LWT-Food Science and Technology, 2020, 130: 109669. DOI:10.1016/j.lwt.2020.109669.
[50] 伍燕, 何元琴, 易君明, 等. 不同大蒜精油成分及生物活性對比分析[J]. 現(xiàn)代食品科技, 2020, 36(6): 75-81. DOI:10.13982/j.mfst.1673-9078.2020.6.1214.
[51] SILVA B D, BERNARDES P C, PINHEIRO P F, et al. Chemical composition, extraction sources and action mechanisms of essential oils: natural preservative and limitations of use in meat products[J]. Meat Science, 2021, 176: 108463. DOI:10.1016/j.meatsci.2021.108463.
[52] 唐敏敏, 王虹懿, 劉芳, 等. 植物精油納米包埋技術(shù)的作用機(jī)制及其在肉品保鮮中的應(yīng)用[J]. 食品工業(yè)科技, 2020, 41(21): 345-350. DOI:10.13386/j.issn1002-0306.2020020013.
[53] FALLEH H, JEMAA M B, SAADA M, et al. Essential oils: a promising eco-friendly food preservative[J]. Food Chemistry, 2020, 330: 127268. DOI:10.1016/j.foodchem.2020.127268.
[54] PISOSCHI A M, POP A, GEORGESCU C, et al. An overview of natural antimicrobials role in food[J]. European Journal of Medicinal Chemistry, 2018, 143: 922-935. DOI:10.1016/j.ejmech.2017.11.095.
[55] 徐暢, 于基成, 劉秋. 微生物源食品保鮮劑的研究進(jìn)展[J]. 包裝工程, 2021, 42(13): 9-20. DOI:10.19554/j.cnki.1001-3563.2021.13.002.
[56] MA?ACZEWSKA J, KACZOREK-?UKOWSKA E. Nisin: a lantibiotic with immunomodulatory properties: a review[J]. Peptides, 2021, 137: 170479. DOI:10.1016/j.peptides.2020.170479.
[57] KHAN I, OH D H. Integration of nisin into nanoparticles for application in foods[J]. Innovative Food Science and Emerging Technologies, 2016, 34: 376-384. DOI:10.1016/j.ifset.2015.12.013.
[58] BAHRAMI A, DELSHADI R, JAFARI S M, et al. Nanoencapsulated nisin: an engineered natural antimicrobial system for the food industry[J]. Trends in Food Science and Technology, 2019, 94: 20-31. DOI:10.1016/j.tifs.2019.10.002.
[59] 程琳麗. 乳酸鏈球菌素的研究現(xiàn)狀及在食品中的應(yīng)用[J]. 食品安全質(zhì)量檢測學(xué)報, 2020, 11(11): 3581-3585. DOI:10.19812/j.cnki.jfsq11-5956/ts.2020.11.037.
[60] SHEN Chaoyi, CAO Yang, RAO Jingshan, et al. Application of solution blow spinning to rapidly fabricate natamycin-loaded gelatin/zein/polyurethane antimicrobial nanofibers for food packaging[J]. Food Packaging and Shelf Life, 2021, 29: 100721. DOI:10.1016/j.fpsl.2021.100721.
[61] TORRIJOS R, NAZARETH T M, CALPE J, et al. Antifungal activity of natamycin and development of an edible film based on hydroxyethylcellulose to avoid ?spp. growth on low-moisture mozzarella cheese[J]. LWT-Food Science and Technology, 2022, 154: 112795. DOI:10.1016/j.lwt.2021.112795.
[62] 陳方圓, 戴久竣, 徐家延, 等. 納他霉素抑菌機(jī)制及在食品保鮮中的應(yīng)用研究進(jìn)展[J]. 食品科技, 2021, 46(9): 47-51. DOI:10.13684/j.cnki.spkj.2021.09.010.
[63] 宋雪健, 張東杰, 王洪江, 等. 天然生物抗菌劑納他霉素在食品中的應(yīng)用及研究進(jìn)展[J]. 保鮮與加工, 2017, 17(5): 129-135. DOI:10.3969/j.issn.1009-6221.2017.05.022.
[64] DONSì F, FERRARI G. Essential oil nanoemulsions as antimicrobial agents in food[J]. Journal of Biotechnology, 2016, 233: 106-120. DOI:10.1016/j.jbiotec.2016.07.005.
[65] WANG Yanbo, CEN Congnan, CHEN Jian, et al. Nano-emulsification improves physical properties and bioactivities of litsea cubeba essential oil[J]. LWT-Food Science and Technology, 2021, 137: 110361. DOI:10.1016/j.lwt.2020.110361.
[66] MATé J, PERIAGO P M, PALOP A. When nanoemulsified, -limonene reduces ?heat resistance about one hundred times[J]. Food Control, 2016, 59: 824-828. DOI:10.1016/j.foodcont.2015.07.020.
[67]?LIU Xiaoli, CHEN Liuqing, KANG Yanan, et al. Cinnamon essential oil nanoemulsions by high-pressure homogenization: formulation, stability, and antimicrobial activity[J]. LWT-Food Science and Technology, 2021, 147: 111660. DOI:10.1016/j.lwt.2021.111660.
[68]?KREUTZ T, CARNEIRO S B, SOARES K D, et al. ?(Kunth) Mez essential oil-loaded nanoemulsion: improved stability of the main constituents and ?antichemotactic activity[J]. Industrial Crops and Products, 2021, 171: 113949. DOI:10.1016/j.indcrop.2021.113949.
[69] ZHENG Bingjing, ZHANG Zipei, CHEN Fang, et al. Impact of delivery system type on curcumin stability: comparison of curcumin degradation in aqueous solutions, emulsions, and hydrogel beads[J]. Food Hydrocolloids, 2017, 71: 187-197. DOI:10.1016/j.foodhyd.2017.05.022.
[70] CHEN Wenye, JU Xingrong, ALUKO R E, et al. Rice bran protein-based nanoemulsion carrier for improving stability and bioavailability of quercetin[J]. Food Hydrocolloids, 2020, 108: 106042. DOI:10.1016/j.foodhyd.2020.106042.
[71] KHARAT M, ZHANG Guodong, MCCLEMENTS D J. Stability of curcumin in oil-in-water emulsions: impact of emulsifier type and concentration on chemical degradation[J]. Food Research International, 2018, 111: 178-186. DOI:10.1016/j.foodres.2018.05.021.
[72]?AGRAWAL N, MADDIKERI G L, PANDIT A B. Sustained release formulations of citronella oil nanoemulsion using cavitational techniques[J]. Ultrasonics Sonochemistry, 2017, 36: 367-374. DOI:10.1016/j.ultsonch.2016.11.037.
[73] SYED I, BANERJEE P, SARKAR P. Oil-in-water emulsions of geraniol and carvacrol improve the antibacterial activity of these compounds on raw goat meat surface during extended storage at 4 ℃[J]. Food Control, 2020, 107: 106757. DOI:10.1016/j.foodcont.2019.106757.
[74]?ADJONU R, DORAN G, TORLEY P, et al. Whey protein peptides as components of nanoemulsions: a review of emulsifying and biological functionalities[J]. Journal of Food Engineering, 2014, 122: 15-27. DOI:10.1016/j.jfoodeng.2013.08.034.
[75] MAJEED H, LIU Fei, HATEGEKIMANA J, et al. Bactericidal action mechanism of negatively charged food grade clove oil nanoemulsions[J]. Food Chemistry, 2016, 197: 75-83. DOI:10.1016/j.foodchem.2015.10.015.
[76] CHEN Zhang, SHU Gaofeng, TAARJI N, et al. Gypenosides as natural emulsifiers for oil-in-water nanoemulsions loaded with astaxanthin: insights of formulation, stability and release properties[J]. Food Chemistry, 2018, 261: 322-328. DOI:10.1016/j.foodchem.2018.04.054.
[77] 李其軒, 扈瑩瑩, 孔保華. 動物蛋白質(zhì)可食性涂膜降低深度油炸食品油脂含量的研究進(jìn)展[J]. 中國食品學(xué)報, 2021, 21(4): 384-393. DOI:10.16429/j.1009-7848.2021.04.045.
[78] XIONG Yun, LI Shumin, WARNER R D, et al. Effect of oregano essential oil and resveratrol nanoemulsion loaded pectin edible coating on the preservation of pork loin in modified atmosphere packaging[J]. Food Control, 2020, 114: 107226. DOI:10.1016/j.foodcont.2020.107226.
[79] WANG Lei, LIU Ting, LIU Liu, et al. Impacts of chitosan nanoemulsions with thymol or thyme essential oil on volatile compounds and microbial diversity of refrigerated pork meat[J]. Meat Science, 2022, 185: 108706. DOI:10.1016/j.meatsci.2021.108706.
[80] ABDOU E S, GALHOUM G F, MOHAMED E N. Curcumin loaded nanoemulsions/pectin coatings for refrigerated chicken fillets[J]. Food Hydrocolloids, 2018, 83: 445-453. DOI:10.1016/j.foodhyd.2018.05.026.
[81] SHOKRI S, PARASTOUEI K, TAGHDIR M, et al. Application an edible active coating based on chitosan-?essential oil nanoemulsion to shelf life extension of rainbow trout fillets stored at 4 ℃[J]. International Journal of Biological Macromolecules, 2020, 153: 846-854. DOI:10.1016/j.ijbiomac.2020.03.080.
[82] HUANG Mingyuan, WANG Huhu, XU Xinglian, et al. Effects of nanoemulsion-based edible coatings with composite mixture of rosemary extract and -poly--lysine on the shelf life of ready-to-eat carbonado chicken[J]. Food Hydrocolloids, 2020, 102: 105576. DOI:10.1016/j.foodhyd.2019.105576.
[83] SUN Yanan, ZHANG Min, BHANDARI B, et al. Nanoemulsion-based edible coatings loaded with fennel essential oil/cinnamaldehyde: characterization, antimicrobial property and advantages in pork meat patties application[J]. Food Control, 2021, 127: 108151. DOI:10.1016/j.foodcont.2021.108151.
[84] LIU Qiong, ZHANG Min, BHANDARI B, et al. Effects of nanoemulsion-based active coatings with composite mixture of star anise essential oil, polylysine, and nisin on the quality and shelf life of ready-to-eat Yao meat products[J]. Food Control, 2020, 107: 106771. DOI:10.1016/j.foodcont.2019.106771.
[85] 侯曉陽. 新型食品包裝材料的發(fā)展概況及趨勢[J]. 食品安全質(zhì)量檢測學(xué)報, 2018, 9(24): 6400-6405. DOI:10.3969/j.issn.2095-0381.2018.24.010.
[86] ZHANG Xinhui, LIU Donghong, JIN T Z, et al. Preparation and characterization of gellan gum-chitosan polyelectrolyte complex films with the incorporation of thyme essential oil nanoemulsion[J]. Food Hydrocolloids, 2021, 114(1): 106570. DOI:10.1016/j.foodhyd.2020.106570.
[87] HASHEMINYA S M, DEHGHANNYA J. Development and characterization of novel edible films based on gum incorporated with ?essential oil nanoemulsion[J]. Carbohydrate Polymers, 2021, 257: 117606. DOI:10.1016/j.carbpol.2020.117606.
[88] 雷凱. 香芹酚納米乳-羧甲基殼聚糖復(fù)合食品包裝膜的制備與性能研究[D]. 楊凌:?西北農(nóng)林科技大學(xué), 2019: 20-21.
[89] AMIRI E, AMINZARE M, AZAR H H, et al. Combined antioxidant and sensory effects of corn starch films with nanoemulsion of ?essential oil fortified with cinnamaldehyde on fresh ground beef patties[J]. Meat Science, 2019, 153: 66-74. DOI:10.1016/j.meatsci.2019.03.004.
[90] ANSARIAN E, AMINZARE M, AZAR H H, et al. Nanoemulsion-based basil seed gum edible film containing resveratrol and clove essential oil: ?antioxidant properties and its effect on oxidative stability and sensory characteristic of camel meat during refrigeration storage[J]. Meat Science, 2022, 185: 108716. DOI:10.1016/j.meatsci.2021.108716.
[91] FENG Xiao, TJIA J Y Y, ZHOU Yige, et al. Effects of tocopherol nanoemulsion addition on fish sausage properties and fatty acid oxidation[J]. LWT-Food Science and Technology, 2020, 118: 108737. DOI:10.1016/j.lwt.2019.108737.
[92] MORAES-LOVISON M, MAROSTEGAN L, PERES M S, et al. Nanoemulsions encapsulating oregano essential oil: production, stability, antibacterial activity and incorporation in chicken pté[J]. LWT-Food Science and Technology, 2017, 77: 233-240. DOI:10.1016/j.lwt.2016.11.061.
[93] PINELLI J J, MARTINS H, GUIMAR?ES A S, et al. Essential oil nanoemulsions for the control of ?in cooked meat product: an alternative?[J]. LWT-Food Science and Technology, 2021, 143: 111123. DOI:10.1016/j.lwt.2021.111123.