何宇杰 彭志勤 賈麗玲 夏潤濤 周旸 焦金鵬 黃駒
摘要: 穩(wěn)定同位素技術因具有示蹤指示、快速檢測及結(jié)果準確等優(yōu)點被應用于紡織品溯源。為了還原能追溯到產(chǎn)地的古代絲織品的同位素特征,研究老化過程中絲織品同位素的變化情況至關重要。本文通過對絲織品進行堿老化,觀測絲織品中絲纖維的形貌結(jié)構(gòu)變化和輕穩(wěn)定同位素比值變化。結(jié)果顯示,堿老化會使得絲織品中絲纖維的排列變得松散,表面變得粗糙并伴隨有斷裂現(xiàn)象,同時結(jié)晶度降低。這些現(xiàn)象伴隨著絲織品穩(wěn)定同位素的變化,發(fā)現(xiàn)老化絲織品中的氫、碳和氮的重同位素趨向富集,而氧穩(wěn)定同位素的變化及規(guī)律性相對不明顯。
關鍵詞: 絲織品;絲纖維;堿老化;同位素;結(jié)構(gòu);富集
中圖分類號: TS102.33文獻標志碼: A文章編號: 10017003(2022)05001406
引用頁碼: 051103DOI: 10.3969/j.issn.1001-7003.2022.05.003
中國有著悠久的絲織品文化歷史[1]。貫穿亞歐大陸的絲綢之路成為了東西方交流政治、經(jīng)濟、藝術和文化的橋梁,而絲織品則是最具代表性的商品之一[2-3]。在絲綢之路上出土的絲織品年代久遠、產(chǎn)地豐富、數(shù)量繁多。蠶絲纖維是絲織品的主要組成成分,這是一種動物蛋白質(zhì)纖維,極易受到墓葬中各種因素如光照、溫濕度、微生物、環(huán)境酸堿性等的影響[4-5],從而使得絲織品文物在出土時難以保存完整,大多以碎片、泥化、灰化等微痕跡的形式存在[6]。因此,對于如何鑒別絲織品文物,判斷其來源成為了亟待解決的難題。近年來,同位素技術發(fā)展迅速,逐漸成為紡織品溯源的主流技術之一[7-9]。
同位素技術已廣泛應用于生物學、食品科學、水文地質(zhì)學等研究領域[10-13],比如大米[14]、肉類[15-16]、海洋產(chǎn)品[17]等產(chǎn)地溯源。近年來,同位素技術已應用于紡織品考古領域。2009年Frei等[18]研究了鍶同位素在丹麥鐵器時代的紡織品文物中的應用,表明了鍶同位素示蹤系統(tǒng)作為一種獨特的方法可能適用于考古紡織品和其他有機物纖維的起源。2014年Knallar等[19]報道發(fā)現(xiàn)陜西法門寺出土的唐代絲織品文物輕穩(wěn)定同位素有差異,雖然文中不見具體數(shù)據(jù)分析,但他們認為結(jié)合歷史資料,可能可以用同位素技術判斷絲織品原料來自不同產(chǎn)地。2017年吳曼琳等[20]綜述了鍶同位素溯源在古代紡織品領域的應用,提出了鍶同位素溯源的局限性和不確定性。2018年韓麗華等[21]研究了穩(wěn)定同位素在蠶繭繭層及絲織品中的差異,發(fā)現(xiàn)光、濕老化會對絲織品中穩(wěn)定同位素比值產(chǎn)生影響。
埋藏環(huán)境中的酸堿性條件對于絲織品的存留具有較大的影響,其中,堿性溶液對于絲織品的破壞尤為嚴重。本文利用一定時間的強堿處理來人工加速老化絲織品,模擬絲織品文物長時間受較為緩和堿性條件影響下可能的狀態(tài),研究絲織品在強堿條件下老化至不同程度時的形貌結(jié)構(gòu)狀態(tài)及輕穩(wěn)定同位素比值變化情況。通過分析歸納堿老化影響下絲織品同位素的變化規(guī)律,可以為絲織品文物溯源時排除老化的影響、進行合理數(shù)據(jù)校正提供一定的科學依據(jù)。
1材料與方法
1.1實驗材料和主要儀器設備
34.45 g/m2真絲電力紡(杭州富絲工貿(mào)有限公司),分析純AR無水乙醇(杭州高晶精細化工有限公司),分析純AR氫氧化鈉(天津市永大化學試劑有限公司)。
MAT-253型穩(wěn)定同位素比質(zhì)譜儀、Flash 2000HT型元素分析儀(Thermo Scientific,USA),PHOENIX型熱表面電離質(zhì)譜儀(PHOENIX,German),TBS1-8D1基礎型實驗室純水機(濟南太平瑪環(huán)保設備有限公司),PHS-25臺式精密酸度計(上海雷磁儀器廠)。
1.2老化樣品制備
將絲織品裁剪成15 cm×15 cm的布塊,先用無水乙醇和水的混合溶液(體積比1︰1)浸泡清洗,隨后用去離子水清洗3次。將布塊浸泡在質(zhì)量分數(shù)為5%的NaOH溶液下,置于50 ℃、相對濕度50%的恒溫恒濕箱中。每隔1 h取出一次絲織品樣品,直至絲織品老化成碎片狀,然后在50 ℃的烘箱中低溫烘干,放在密封干燥的環(huán)境中待測。
1.3穩(wěn)定同位素比值的檢測
檢測前,對所有樣品進行預處理。用酒精消毒過的剪子,在布條上裁剪出2 mm×2 mm的小布塊。
碳氮穩(wěn)定同位素比值檢測:用鑷子夾取裁剪好的小布塊,封裝在錫杯中,在氦氣吹掃流量200 mL/min的條件下,樣品被載入960 ℃的燃燒爐中,樣品中的碳元素轉(zhuǎn)化為純凈的CO2,而氮元素會轉(zhuǎn)化為純凈的N2,再經(jīng)過恒溫50 ℃的氣相色譜柱和Conflo Ⅳ型稀釋儀,最后通過MAT-253型穩(wěn)定同位素比質(zhì)譜儀進行檢測。
氫氧穩(wěn)定同位素比值檢測:用鑷子夾取裁剪好的小布塊,緊密封裝在銀杯中,放置于Flash 2000HT型元素分析儀樣品盤中,樣品在1 380 ℃條件下裂解反應形成H2和CO,經(jīng)過恒溫50 ℃的氣相色譜柱分離,隨后經(jīng)過Conflo Ⅳ型稀釋儀,最后在MAT-253型穩(wěn)定同位素比質(zhì)譜儀進行檢測。在分析過程中,每8個樣品穿插1個實驗室標樣進行校正;儀器長期標準偏差為0.02‰。測試過程中的載氣為氦氣,載氣的流速為100 mL/min。碳氮穩(wěn)定同位素測試的參考氣體為CO2和N2,氫氧穩(wěn)定同位素測試的參考氣體為H2和CO。在分析過程中,采用國際標樣IAEA-CH7、IAEA-600、IAEA-601和IAEA-310。測試得到的數(shù)據(jù)按下式進行計算:
X/‰=(R樣品/R標準-1)×1 000 (1)
式中:X表示某一元素的重同位素原子豐度;R表示某種元素的重同位素豐度和輕同位素豐度之比,例如2H/1H、18O/16O、15N/14N和13C/12C。2H和18O的國際標準參考V-SMOW,13C和15N的國際標準參考V-PDB。
2結(jié)果與分析
2.1形貌變化
圖1為堿老化處理4 h的絲織品和未處理對照絲織品樣品的SEM圖。從圖1可以看出,未經(jīng)過處理的絲織品樣品在放大100倍的條件下,能清楚地看到絲纖維整齊而緊密交織在一起;放大2 000倍后,能看到絲纖維的表面十分光滑。經(jīng)過堿老化處理的絲織品樣品在放大100倍的條件下,可以看到絲纖維的排列變得松散;放大2 000倍后,發(fā)現(xiàn)絲纖維的表面被堿液腐蝕而變得粗糙,并且伴隨有嚴重的斷裂現(xiàn)象。這是由于絲纖維中蛋白質(zhì)分子中肽鏈受到堿液水解老化,導致絲纖維出現(xiàn)裂隙,嚴重時發(fā)生斷裂。
2.2紅外光譜分析
蠶絲纖維的紅外吸收峰目前已經(jīng)有了較為明確的歸屬,普遍認為在3 300~3 290 cm-1處有—NH伸縮振動產(chǎn)生的特征吸收譜帶;2 978 cm-1和2 930 cm-1附近處分別有—CH3和—CH2反對稱伸縮振動產(chǎn)生的特征吸收譜帶;1 690~1 600 cm-1處有CO伸縮振動所產(chǎn)生的特征吸收譜帶;1 516 cm-1和1 301~1 229 cm-1處有N—H彎曲和C—N伸縮振動所產(chǎn)生的特征吸收譜帶及825 cm-1附近處代表C—C伸縮振動所產(chǎn)生的特征吸收譜帶[22-23]。
從圖2堿老化處理4 h的絲織品和未處理對照絲織品樣品的FTIR圖譜可以看出,經(jīng)過堿老化處理后的絲織品與未處理的絲織品的紅外圖譜有較為明顯的不同,代表—NH伸縮振動的吸收峰3 298 cm-1,代表CO伸縮振動的吸收峰1 639 cm-1,代表N—H彎曲和C—N伸縮振動的吸收峰1 520 cm-1和1 230 cm-1,代表C—C伸縮振動的吸收峰825 cm-1未發(fā)生明顯的峰位移動,但是吸收峰的強度均有明顯的降低,說明在堿老化過程中,蠶絲蛋白質(zhì)內(nèi)部的肽鏈遭到破壞[24]。在肽鏈發(fā)生斷裂時,氨基酸序列重新排列,伴隨著大量的氫鍵和鹽式鍵的斷裂與重組,故紅外譜圖中形成各類鍵的吸收峰強度減弱。
2.3X-射線衍射分析
圖3是堿老化處理4 h的絲織品和未處理對照組絲織品樣品的XRD圖譜。從圖3可以看到,對照組和堿老化處理后的絲織品的晶體結(jié)構(gòu)都是以silk Ⅱ型為主,其衍射峰通常出現(xiàn)在9.1°、18.9°、20.7°和24.3°等處附近[25]。從圖3還可以發(fā)現(xiàn),對照組絲織品在9.7°、20.7°和24.7°處有較為明顯的衍射峰,而堿老化處理后的樣品的衍射峰位置并未發(fā)生明顯的變化,但是這三個位置的衍射峰強度變?nèi)?,衍射峰寬度變大,說明堿老化處理后的絲纖維結(jié)晶度發(fā)生了變化。這可能與絲織品經(jīng)過堿老化后,其中的氨基酸序列斷裂與重組引起的結(jié)構(gòu)變化有關。
2.4輕穩(wěn)定同位素比值分析
從堿老化處理后絲織品樣品中的輕穩(wěn)定同位素比值測試結(jié)果(表1)可以看到,本實驗研究絲織品的D變化范圍為-85.30‰~-59.32‰,其中未老化的絲織品的D值最低,為-85.30‰。所有經(jīng)過堿老化后的絲織品中D值都比未老化絲織品中的D值要高,其中最大相差26‰左右。說明絲織品堿老化過程中伴隨的涉及結(jié)構(gòu)變化(如紅外和XRD分析所反映)的老化反應會明顯影響絲纖維的重輕氫元素組成,其中重氫元素整體趨向富集。堿老化處理對絲織品樣品中的輕同位素比值影響大致是一個先增加后減小的過程,這符合動力學同位素分餾與反應程度的關系,即在反應的最初時刻,反應物優(yōu)先分離輕同位素組分,反應產(chǎn)物優(yōu)先富集輕同位素;隨著反應的繼續(xù),反應物中一些相對較重的同位素組分也逐步從反應物中進入到反應產(chǎn)物中[26]。未老化絲織品中的18O值為22.40‰,用堿老化方式老化一段時間后,到結(jié)束時絲織品中的18O值變化能達到0.29‰左右,堿老化處理對絲織品中氧同位素整體的變化規(guī)律影響并不明確。堿老化處理對絲織品中氮同位素的影響大致是一個同位素比值先增大后減小的過程,最終趨于重氮同位素富集的狀態(tài),這同樣符合動力學同位素分餾與反應程度的關系,但是堿老化后絲織品的氮同位素比值的變化程度較小,能達到0.10‰左右;而碳同位素比值整體呈增大的趨勢,整個堿老化過程中,13C變化程度能到達1.38‰左右。
分析認為,在堿老化過程中,絲纖維的非晶區(qū)先受到破壞,快速分解產(chǎn)生大量氨基酸基團。在分解肽鏈產(chǎn)生氨基酸的過程中,伴隨著氨基酸中氫鍵的斷裂與形成及鹽式鍵的生成與斷裂。氫、氧和氮元素是形成氫鍵的重要元素,由于氫元素的相對分子質(zhì)量較小,使得絲織品的氫穩(wěn)定同位素比值在堿老化過程中變化較大,而且因為同位素反應動力學原理,由輕同位素組成的鍵在這些老化反應過程中容易斷鍵解離,使得老化樣品中余下較多氫的重同位素,D值增大,呈富集狀態(tài)。而氧元素的相對分子質(zhì)量相對較大,變化一般不會如氫元素那樣明顯,又因為在堿處理過程中實際除了氫鍵的斷裂,還會有氫鍵的形成及鹽式鍵的形成與斷裂,這個過程對于氧的重、輕同位素的選擇反應會比較復雜,因此氧穩(wěn)定同位素比值的變化沒有明顯的規(guī)律,呈小的波動狀。氮穩(wěn)定同位素比值則出現(xiàn)了先變大再減小的小波動,但整體也呈重氮元素富集狀態(tài),符合反應動力學分餾規(guī)律。而碳元素是組成絲纖維的主要元素,隨著老化反應的進行,氨基酸基團中含碳鍵的輕碳同位素優(yōu)先斷裂,使得最終老化產(chǎn)物中碳的重同位素較多,13C變大,整體呈富集狀態(tài)。
這一結(jié)果與之前韓麗華等[21]所做的光、濕老化后絲織品的輕穩(wěn)定同位素比值的變化情況基本一致。經(jīng)過老化后,絲織品中氫和碳元素的重同位素均呈富集狀態(tài),整體的變化趨勢相同。但是實驗所選絲織品空白樣的氫、碳同位素比值并不相同,而且經(jīng)過光、濕老化后,絲織品同位素比值的變化程度相較于堿老化的要小,這可能與實驗研究條件有關,光、濕老化處理相較于堿老化處理而言,對絲織品結(jié)構(gòu)的影響程度較小。
3結(jié)論
堿老化處理對絲織品樣品的形貌結(jié)構(gòu)會產(chǎn)生較大的影響。堿老化處理后的絲織品樣品中的絲纖維排列變得松散,表面變得粗糙,并且伴隨著斷裂現(xiàn)象,結(jié)晶度變小,絲纖維中肽鏈發(fā)生斷裂,由于著氨基酸中氫鍵和鹽式鍵的斷裂與重組,引起最終老化絲織品中穩(wěn)定同位素比值發(fā)生變化。堿老化后的絲織品中氫、氮穩(wěn)定同位素比值出現(xiàn)先變大后減小的波動,重氫和重氮元素整體呈富集狀態(tài)。堿老化后的絲織品中碳的重同位素較多,13C變大,重碳元素呈富集狀態(tài)。絲織品在不同老化方式下,其中的同位素比值的整體變化趨勢相似,但是對同位素的影響程度不相同。
絲織品文物在埋藏過程中會受到酸堿性條件的影響,經(jīng)過較長時間,在反應程度較為緩和的條件下逐步老化。而堿老化的反應過程十分劇烈,可以在很短的時間內(nèi)達到明顯的老化效果。研究發(fā)現(xiàn),在堿老化這樣劇烈的條件下,碳、氮、氧三種同位素比值的變化程度都在1.5‰以內(nèi),說明老化對絲織品文物中同位素變化的影響有限,經(jīng)過一定的數(shù)據(jù)校正,利用同位素技術進行絲織品文物溯源是可行的,并提供了一個可供參考的大致數(shù)據(jù)校正范圍。
《絲綢》官網(wǎng)下載中國知網(wǎng)下載
參考文獻:
[1]許仲舉. 絲綢之路經(jīng)濟帶與多元文化認同的相互建構(gòu)及其發(fā)展路徑探析[J]. 榆林學院學報, 2021, 31(4): 52-55.XU Zhongju. The mutual construction and development path of Silk Road Economic Belt and multicultural identity[J]. Journal of Yulin University, 2021, 31(4): 52-55.
[2]余建華. 古代絲綢之路與亞歐文明交流[J]. 歷史教學問題, 2015(1): 27-34.YU Jianhua. Ancient Silk Road and Asian-European civilization exchange[J]. History Research and Teaching, 2015(1): 27-34.
[3]鮑志成. 跨文化視域下絲綢之路的起源和歷史貢獻[J]. 絲綢, 2016, 53(1): 71-80.BAO Zhicheng. Origin and historical contributions of Silk Road from cross-cultural perspective[J]. Journal of Silk, 2016, 53(1): 71-80.
[4]GU J, LI Q, CHEN B, et al. Species identification of Bombyx mori and Antheraea pernyi silk via immunology and proteomics[J]. Scientific Reports, 2019, 9(1): 1-11.
[5]楊海亮, 汪自強, 王淑娟. 絲織品文物健康評測與跟蹤的實踐研究[J]. 絲綢, 2015, 52(8): 7-11.YANG Hailiang, WANG Ziqiang, WANG Shujuan. Practice study on current condition health assessment and tracking for ancient silk fabrics[J]. Journal of Silk, 2015, 52(8): 7-11.
[6]李寶才. 河北考古中的絲綢文物[N]. 中國文物報, 2020-12-04(004).LI Baocai. Silk cultural relics in Hebei archaeology[N]. China Culture Relics Newspaper, 2020-12-04(004).
[7]韓麗華, 彭志勤, 楊麗萍, 等. 茜草對絲織品穩(wěn)定同位素的影響[J]. 絲綢, 2018, 55(8): 1-6.HAN Lihua, PENG Zhiqin, YANG Liping, et al. Pilot study on the effect of madder on the stable isotopes of silk fabrics[J]. Journal of Silk, 2018, 55(8): 1-6.
[8]韓麗華. 穩(wěn)定同位素技術在桑蠶絲織溯源中的應用研究初探[D]. 杭州: 浙江理工大學, 2018.HAN Lihua. Pilot Study on Stable Isotope to Trace the Origin of Silk Fabrics[D]. Hangzhou: Zhejiang Sci-Tech University, 2018.
[9]SZPAK P, MILLAIRE J F, WHITE C D, et al. Stable isotope sourcing of wool from textiles at pacatnamu[J]. Archaeometry, 2018, 60(3): 612-627.
[10]BAUMANN E J, JR, CROWLEY B E. Stable isotopes reveal ecological differences amongst now-extinct proboscideans from the Cincinnati region[J]. Boreas, 2015, 44(1): 240-254.
[11]METCALFE J Z, LONGSTAFFE F J, JASS C N, et al. Taxonomy, location of origin and health status of proboscideans from Western Canada investigated using stable isotope analysis[J]. Journal of Quaternary Science, 2016, 31(2): 126-142.
[12]FREI K M, FREI R. The geographic distribution of strontium isotopes in Danish surface waters: A base for provenance studies in archaeology, hydrology and agriculture[J]. Applied Geochemistry, 2011, 26(3): 325-340.
[13]REES G, KELLY S D, CAIRNS P, et al. Verifying the geographical origin of poultry: The application of stable isotope and trace element (SITE) analysis[J]. Food Control, 2016, 67: 144-154.
[14]公維民, 馬麗娜, 王飛, 等. 我國大米碳氮穩(wěn)定同位素比率特征及溯源應用[J]. 農(nóng)產(chǎn)品質(zhì)量與安全, 2019(4): 9-12.GONG Weimin, MA Lina, WANG Fei, et al. Carbon and nitrogen stable isotope ratio characteristics of rice in China and its traceability application[J]. Quality and Safety of Agro-Products, 2019(4): 9-12.
[15]NHO E Y, CHOI J Y, LEE C M, et al. Origin authentication of pork fat via elemental composition, isotope ratios, and multivariate chemometric analyses[J]. Analytical Letters, 2019, 52(9): 1445-1461.
[16]李政, 趙姍姍, 郄夢潔, 等. 動物源性農(nóng)產(chǎn)品產(chǎn)地溯源技術研究[J]. 農(nóng)產(chǎn)品質(zhì)量與安全, 2019(3): 57-64.LI Zheng, ZHAO Shanshan, QIE Mengjie, et al. Study on origin traceability technology of animal origin agricultural products[J]. Quality and Safety of Agro-Products, 2019(3): 57-64.
[17]ZHANG X, CHENG J, HAN D, et al. Geographical origin traceability and species identification of three scallops (Patinopecten yessoensis, Chlamys farreri, and Argopecten irradians) using stable isotope analysis[J]. Food Chemistry, 2019, 299: 1-8.
[18]FREI K M, BERGHE I V, FERI R. Removal of natural organic dyes from wool-implications for ancient textile provenance studies[J]. Journal of Archaeological Science, 2010, 37(9): 2136-2145.
[19]KNALLER R, STROEBELE F. The heritage of Tang Dynasty textiles from the Famen Temple, Shaanxi, China: Technological and stable isotope studies[J]. Studies in Conservation, 2014, 59: 62-65.
[20]吳曼琳, 楊小明. 鍶同位素溯源法在古代紡織品研究中的應用[J]. 絲綢, 2017, 54(5): 51-54.WU Manlin, YANG Xiaoming. Application of strontium isotope tracing method in archaeological textile research[J]. Journal of Silk, 2017, 54(5): 51-54.
[21]韓麗華, 彭志勤, 周旸, 等. 老化蠶絲纖維形貌結(jié)構(gòu)和輕穩(wěn)定同位素比值變化的觀測分析[J]. 蠶業(yè)科學, 2018, 44(3): 413-418.HAN Lihua, PENG Zhiqin, ZHOU Yang, et al. An observation and analysis on morphological structure and light stable isotope ratio variation of aging cocoons and silk fabrics[J]. Science of Sericulture, 2018, 44(3): 413-418.
[22]張曉梅, 原思訓. 老化絲織品的紅外光譜分析研究[J]. 光譜學與光譜分析, 2004(12): 1528-1532.ZHANG Xiaomei, YUAN Sixun. Research on the infrared spectrometry of aging silk fabrics[J]. Spectroscopy and Spectral Analysis, 2004(12): 1528-1532.
[23]王敏. 紅外光譜對混紡纖維的定性和定量方法研究[D]. 杭州: 浙江理工大學, 2014.WANG Min. Study on Qualitative and Quantitative Method of Blended Fiber in Infrared Spectrum[D]. Hangzhou: Zhejiang Sci-Tech University, 2014.
[24]李歡歡. 絲纖維老化過程中一級和二級結(jié)構(gòu)變化研究[D]. 北京: 北京服裝學院, 2012.LI Huanhuan. The Study of Aging Process on the First and Secondary Structure of Silk Fiber[D]. Beijing: Beijing Institute of Fashion Technology, 2012.
[25]FANG G, SAPRU S, BEHERA S, et al. Exploration of the tight structural-mechanical relationship in mulberry and non-mulberry silkworm silks[J]. Journal of Materials Chemistry B, 2016, 4(24): 4337-4347.
[26]尹觀, 倪師軍. 同位素地球化學[M]. 北京: 地質(zhì)出版社, 2009.YIN Guan, NI Shijun. Isotope Geochemistry[M]. Beijing: Geological Publishing House, 2009.
Effect of alkali aging on the structure and stable isotope ratios of silk fabrics
HE Yujie PENG Zhiqin JIA Liling XIA Runtao ZHOU Yang JIAO Jinpeng HUANG Ju(1a.School of Materials Science & Engineering; 1b.National & Local United Engineering Laboratory on Textile
Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China;
2.China National Silk Museum, Hangzhou 310002, China)
Abstract: Silk fabrics are a symbol of ancient Chinese culture. The Silk Road running through the Eurasian continent is a bridge for political, economic and cultural exchanges between the East and the West, and the silk fabrics unearthed from places along the Silk Road boast a long history, and are rich in origin and abundant in quantity. Silk fabrics are mostly composed of sericin (a linear and water-insoluble polymer protein) and fibroin (a globular and water-soluble glycoprotein). Due to its protein component, silk fabrics are susceptive to degradation caused by light, temperature & humidity, microorganisms, acid and alkali, etc. It is often impossible for silk cultural relics to be preserved intactly when unearthed. Due to the artistic and cultural value of silk cultural relics, historians and archaeologists have been searching for a way to accurately determine the origin of silk cultural relics. Recently, the stable isotope technique has been applied to the traceability of ancient textiles due to its advantages of tracing indication, fast detection and accurate results. In order to restore the isotopic values of ancient silk fabrics which help to trace their provenance, it is very important to explore the isotopic changes of silk fabrics during aging.
Acidity and alkalinity of soil in burial environment, especially the later, have great impact on preservation of silk fabrics. In this study, silk fabrics were dissolved with 5% NaOH solutions for a period of time to simulate the possible state of silk cultural relics under the influence of mild alkaline conditions. These silk fabric samples were incubated in a constant temperature and humidity test chamber at 50 ℃ with 50% relative humidity. And these samples were taken once an hour until they were aged into pieces. Then they were dried at 50 ℃ for one hour and stored in a desiccator for further identification. The morphology and chemical structure of the samples after alkaline aging treatment were detected via SEM and ATR-FTIF. XRD was then employed to study the crystallinity of silk fabrics aged to different degrees under strong alkali condition. Stable isotope testing was conducted on the samples after alkaline aging treatment. Based on the above, by analyzing and summarizing the relationship between the change of silk fiber morphology and structure and the change of light stable isotope ratio under the influence of alkali aging, as well as the change law of silk isotope, this paper can provide a certain scientific basis for eliminating the influence of aging and basic data for tracing the provenance of silk cultural relics. It was found that alkali aging treatment had a great influence on the morphology and structure of silk fabric samples. Aged silk fibers tended to loosen and their surfaces tended to be rough accompanied with fractures, while their crystallinity decreased. Both samples displayed absorption peaks at 1 639 cm-1, 1 520 cm-1 and 1 230 cm-1, which corresponded to CO stretching (amide Ⅰ), N—H bending (amide Ⅱ) and C—H bending, respectively. However, the peak intensities of the aged samples at 1 639 cm-1, 1 520 cm-1 and 1 230 cm-1 were all decreased. The peptide chains in silk fibers broke down accompanied with breaking and recombination of hydrogen bonds and salt bonds in amino acids. And these phenomena were accompanied by changes in stable isotopes of silk fabrics. We found that heavy hydrogen and nitrogen stable isotopes in aged silk fabrics were enriched. After alkaline aging, there were more heavy isotopes of carbon in silk fabrics. δ13C values increased and the heavy carbon stable isotopes were also enriched. The variation of oxygen stable isotope was not obvious. The isotope value changes of silk fabrics after light and wet aging treatment showed the same rules as alkaline aging treatment. The overall trends of isotopic values of silk fabrics under different aging treatments were similar, but the influences on isotopic values were different.
The relationship between silk fabric after alkaline aging treatment and isotope values changes can bring inspiration for the traceability of silk cultural relic origin. Changes of carbon, nitrogen and oxygen isotopes values in silk fiber are within 1.5‰ under such an intense alkali condition, which means alkaline aging has limited influence on isotope variation in silk fabrics. It is feasible for isotope technology to trace silk relic origin after reasonable data correction and we provide a general data correction range for reference.
Key words: silk fabrics; silk fiber; alkaline aging; stable isotope; structure; enrichment