国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于改進記分函數和累積前景理論的直覺模糊TOPSIS法

2022-05-30 20:32:49劉歡李昊
哈爾濱理工大學學報 2022年4期

劉歡 李昊

摘要:針對屬性值由直覺模糊數表示且屬性權重未知的多屬性決策問題,首先,提出一種改進的記分函數,通過證明其相關定理和與現(xiàn)有記分函數進行算例比較,驗證其正確性與優(yōu)越性,解決了現(xiàn)有記分函數需要二次比較和在某些情況下與客觀事實不符的缺陷。其次,引入累積前景理論,提出基于改進記分函數和累積前景理論的直覺模糊TOPSIS法,以正負理想方案為參考點,采用綜合前景值代替距離測度,有效地避免了忽略屬性間相關性的問題,通過計算各方案的相對貼近度對方案進行排序擇優(yōu)。最后,通過實例比較分析和仿真數據對比驗證所提記分函數和決策方法的可行性和有效性。

關鍵詞:直覺模糊數;多屬性決策;記分函數;累積前景理論

DOI:10.15938/j.jhust.2022.04.017

中圖分類號: O159; TP399

文獻標志碼: A

文章編號: 1007-2683(2022)04-0133-09

Intuitionistic Fuzzy TOPSIS Method Based on Improved

Score Function and Cumulative Prospect Theory

LIU Huan,LI Hao

(School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China)

Abstract:Aiming at the multi-attribute decision-making problem where the attribute value is represented by the intuitionistic fuzzy number and the attribute weight is unknown.?Firstly, an improved score function is proposed, its correctness and superiority are verified by proving its related theorems and comparing numerical examples with existing score functions.?It solves the defects that the existing score function requires secondary comparison and is inconsistent with objective facts in some cases.?Secondly, the cumulative prospect theory is introduced, and a TOPSIS method for intuitionistic fuzzy multi-attribute decision-making based on improved score function and cumulative prospect theory is proposed.?This method uses the positive and negative ideal alternatives as a reference point.?The comprehensive prospect value is used to replace the distance measure, which effectively avoids ignoring the correlation between attributes.?The order of alternatives is listed by calculating the relative closeness degree of each alternative.?Finally, the feasibility and effectiveness of the proposed score function and decision-making method are verified by comparing examples and simulation data with existing decision-making method.

Keywords:intuitionistic fuzzy number; multi-attribute decision making; score function; cumulative prospect theory

0引言

多屬性決策廣泛應用于社會治理、產業(yè)經濟、企業(yè)管理等多個領域,如風險評估[1]、供應商選擇[2]等。Atanassov[3]在1986年將非隸屬度引入模糊集,提出了直覺模糊集的概念,自此,對于直覺模糊多屬性決策的研究日益深入[4-5。為了方便直覺模糊數的計算和比較,學者們提出了以記分函數將直覺模糊數轉化成實數,其中Chen等[6]在1994年最先定義了記分函數的概念來處理直覺模糊數。后來,經過不斷研究和發(fā)展,許多學者對記分函數加以改進,例如文[7]針對Chen等[5]提出的記分函數的缺陷,提出了精確函數的概念,文[8-12]綜合考慮直覺模糊數的隸屬度、非隸屬度和猶豫度的影響,提出新的記分函數來比較直覺模糊數的大小。然而,目前的記分函數仍然存在一定的缺陷,比如文[6,9-10]中提出的記分函數在兩個直覺模糊數各自的隸屬度與非隸屬度相等情況下無法直接判斷兩個直覺模糊數的大小,還需要借助輔助函數對直覺模糊數進行二次比較;文[11-12]中提出的記分函數無法滿足人們通常更愿意選擇沒有人反對的結果這一客觀事實,文[9]無法滿足一般情況下人們普遍認為精確度和隸屬度越高,該直覺模糊數越優(yōu)的認知習慣。因此,記分函數的精確性和合理性仍然有待提升。

1992年,Kahneman和Tversky提出了累積前景理論[13]。累積前景理論相對于前景理論很好地解釋了隨機占優(yōu)等現(xiàn)象,因而被廣泛應用。TOPSIS法基本原理是通過計算備選方案與正負理想方案的距離來進行優(yōu)劣排序,最優(yōu)方案的選取應該是最貼近正理想方案同時離負理想方案又最遠,否則不為最佳[14-15]。由于TOPSIS 法中認為決策者是完全理性的,因此,學者們結合前景理論的特征,逐漸將前景理論引入到 TOPSIS 法中。比如,王娟等[16]將前景理論引入到三角猶豫模糊環(huán)境下的 TOPSIS 法中,陳六新等[17]將前景理論引入到勾股模糊環(huán)境下的TOPSIS法中,以反映決策者心理行為特征對決策的影響。

本文針對屬性值由直覺模糊數表示且屬性權重未知的多屬性決策問題,提出一種基于改進記分函數和累積前景理論的直覺模糊TOPSIS 法。首先,該方法針對現(xiàn)有記分函數存在的一些缺陷提出一種改進的記分函數;接著,綜合考慮主客觀因素,以屬性值總差異最大化且屬性權重差異最小化為目標建立優(yōu)化模型來確定屬性權重,即一方面為維護屬性權重的公平性,應使屬性權重的差異最小,另一方面為有利于方案的排序,應使屬性值的總差異最大;然后,引入累積前景理論,將正負理想方案作為參考點,計算各方案相對于參考點的損失值和收益值,并構建前景損失值矩陣和前景收益值矩陣;最后,計算各備選方案的綜合前景損失值和綜合前景收益值,進而計算各方案的相對貼近度,按相對貼近度以從大到小的順序對方案進行排序擇優(yōu)。本文通過實例比較和生成50組仿真數據來驗證該方法的可行性和有效性。

1預備知識

1.1直覺模糊集

1.2累積前景理論

2記分函數的提出

2.1現(xiàn)有記分函數分析

2.2改進的記分函數

2.3不同記分函數之間的比較分析

3基于改進記分函數和累積前景理論的直覺模糊TOPSIS 法

3.1問題描述

3.2屬性權重的確定

3.3方法步驟

4實例研究與比較分析

4.1實例研究

4.2比較分析

5結論

本文針對現(xiàn)有記分函數存在的一些缺陷,提出了一種改進的記分函數,改進的記分函數克服了已知記分函數存在的某些缺陷,即可以通過改進的記分函數來比較兩個各自的隸屬度與非隸屬度相等的直覺模糊數的大小,以及滿足人們更愿意選擇沒有人反對的結果這一客觀事實,還滿足人們普遍認為精確度和支持度越高的直覺模糊數越優(yōu)的認知習慣。針對屬性值為直覺模糊數的多屬性決策問題,提出了一種基于改進記分函數和累積前景理論的直覺模糊TOPSIS 法,該方法采用綜合前景損失值和綜合前景收益值代替各方案與正負理想方案之間的距離測度,有效地避免了忽略屬性間相關性的問題,另外還將該方法應用于實例與已知決策方法進行比較分析,并進行多組仿真數據對比,證明了該方法的可行性和有效性。

參 考 文 獻:

[1]王博, 王建玲. 企業(yè)財務管理風險的模糊多屬性評價法[J]. 統(tǒng)計與決策, 2019, 35(1): 186.WANG Bo, WANG Jianling. Fuzzy Multi-attribute Evaluation Method of Enterprise Financial Management Risk [J]. Statistics & Decision, 2019, 35(1): 186.

[2]王世磊, 屈紹建, 馬剛. 基于前景理論和模糊理論的在線多屬性采購拍賣供應商選擇決策[J]. 控制與決策, 2020, 35(11): 2637.WANG Shilei, QU Shaojian, MA Gang. Decision Method of Supplier Selection for Online Multi-attribute Procurement Auction Based on Prospect Theory and Fuzzy Theory [J]. Control and Decision, 2020, 35(11): 2637.

[3]ATANASSOV K. Intuitionistic Fuzzy Sets[J]. Fuzzy Sets & Systems, 1986, 20(1): 87.

[4]ZHANG Shuang, WANG Nianbin, LIU Huan, Approaches to Multiple Attribute Decision Making with the Intuitionistic Fuzzy Information and Their Applications to User Activities Reliability Evaluation[J]. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2018, 88(1): 90.

[5]WANG L. A Multi-criteria Group Decision Making Method and Its Applications Based on Improved Intuitionistic Fuzzy Entropy and Information Integration Operator[J]. International Journal of Information and Management Sciences, 2020, 31(4): 386.

[6]CHEN S M, TAN J M. Handing Multi-criteria Fuzzy Decision-making Problems Based on Vague Set Theory[J]. Fuzzy Sets & Systems, 1994, 67(2): 164.

[7]HONG D H, CHOI C H. Multi-criteria Fuzzy Decision-making Problems Based on Vague Set Theory[J]. Fuzzy Sets and Systems, 2000, 114(1): 105.

[8]YE J. Improved Method of Multi-?criteria Fuzzy Decision-making Based on Vague Sets[J]. Computer-Aided Design, 2007, 39(2): 165.

[9]王堅強, 李婧婧. 基于記分函數的直覺隨機多準則決策方法[J]. 控制與決策, 2010, 25(9): 1299.WANG Jianqiang, LI Jingjing. Intuitionistic Random Multi-criteria Decision-making Approach Based on Score Functions[J]. Control and Decision, 2010, 25(9): 1299.

[10]李鵬, 劉思峰, 朱建軍. 基于前景理論的隨機直覺模糊決策方法[J]. 控制與決策, 2012, 27(11): 1603.LI Peng, LIU Sifeng, ZHU Jianjun. Intuitionistic Fuzzy Stochastic Multi-criteria Decision-making Methods Based on Prospect theory[J]. Control and Decision, 2012, 27(11): 1603.

[11]NAYAGAM VLG, JEEVARAI S, SIVARAMAN G. Total Ordering Defined on the Set of All Intuitionistic Fuzzy Numbers[J]. Journal of Intelligent and Fuzzy Systems, 2016, 30(4): 3.

[12]高建偉, 郭奉佳. 基于改進前景理論的直覺模糊隨機多準則決策方法[J].控制與決策, 2019,34(2):317.GAO Jianwei, GUO Fengjia. Intuitionistic Fuzzy Stochastic Multi-criteria Decision-making Method Based on Modified Prospect Theory[J]. Control and Decision, 2019, 34(2): 320.

[13]TVERSKYD, KAHNEMAN A. Advances in Prospect Theory: Cumulative Representation of Uncertainty[J]. Journal of Risk and Uncertainty, 1992, 5(4): 297.

[14]陳志霞, 徐杰. 基于TOPSIS與灰色關聯(lián)分析的城市幸福指數評價[J]. 統(tǒng)計與決策, 2021, 37(9): 59.CHEN Zhixia, XU Jie. Urban Happiness Index Evaluation Based on TOPSIS and Grey Correlation Analysis[J]. Statistics & Decision, 2021, 37(9):59.

[15]SHA X Y, YIN C C, XU Z S, et al. Probabilistic Hesitant Fuzzy TOPSIS Emergency Decision-making Method Based on the Cumulative Prospect Theory[J]. Journal of Intelligent & Fuzzy Systems, 2021, 40(3): 4367.

[16]王娟, 金智新, 鄧存寶, 等. 基于前景理論的三角猶豫模糊多屬性決策方法[J]. 運籌與管理, 2019, 28(7): 26.WANG Juan, JIN Zhixin, DENG Cunbao, et al. Multiple Attribute Decision Making Method for Hesitant Triangular Fuzzy Based on Prospect Theory[J]. Operations Research and Management Science, 2019, 28(7): 26.

[17]陳六新, 羅南方. 基于前景理論的勾股模糊多屬性決策[J]. 系統(tǒng)工程理論與實踐, 2020, 40(3): 726.CHEN Liuxin, LUO Nanfang. Pythagorean Fuzzy Multi-criteria Decision-making Based on Prospect Theory[J]. Systems Engineering-Theory & Practice, 2020, 40(3): 726.

[18]MUHAM T, KIRAN S, RIDA I, et al. Evaluation Model for Manufacturing Plants with Linguistic Information in Terms of Three Trapezoidal Fuzzy Numbers[J]. Journal of Intelligent & Fuzzy Systems, 2020, 38(5): 5970.

[19]WANG J, WEI G W, WEI C,et al. Maximizing Deviation Method for Multiple Attribute Decision Making Under Q-rung Orthopair Fuzzy Environment[J]. Defence Technology, 2020, 16(5): 1075.

[20]HADI-VENCHEH A, MIRJABERI M. Fuzzy Inferior Ratio Method for Multiple Attribute Decision Making Problems[J]. Information Sciences, 2014, 277: 265.

(編輯:溫澤宇)

怀柔区| 措美县| 赣州市| 平阴县| 灵宝市| 阜宁县| 离岛区| 丹寨县| 桦甸市| 南昌县| 周至县| 延吉市| 宣威市| 平山县| 开封市| 连平县| 福建省| 嘉兴市| 隆化县| 孙吴县| 汾阳市| 杭锦旗| 泾阳县| 新田县| 福泉市| 红原县| 广昌县| 高邮市| 贵南县| 肇庆市| 烟台市| 临沧市| 将乐县| 广安市| 武乡县| 南召县| 海口市| 双桥区| 宁南县| 榆林市| 伽师县|