国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

一類半線性隨機(jī)微分方程的均方漸近概自守溫和解

2022-05-30 20:32:49姚慧麗霍貴珍孫海彤王晶囡
關(guān)鍵詞:型函數(shù)均方線性

姚慧麗 霍貴珍 孫海彤 王晶囡

摘要:均方概自守型函數(shù)理論在隨機(jī)微分方程中的應(yīng)用越來越引起數(shù)學(xué)研究者的關(guān)注,這類方程的均方漸近概自守解比均方概自守解的應(yīng)用范圍更加廣泛。對一類半線性隨機(jī)微分方程的均方漸近概自守溫和解進(jìn)行探討。利用Banach壓縮映射原理,結(jié)合均方漸近概自守隨機(jī)過程的定義和性質(zhì)、Cauchy-Schwarz不等式、Lipschitz條件、It等距積分,討論了該類隨機(jī)微分方程的均方漸近概自守溫和解的存在唯一性。

關(guān)鍵詞:均方漸近概自守溫和解;半線性隨機(jī)微分方程;Banach壓縮映射原理

DOI:10.15938/j.jhust.2022.04.020

中圖分類號: O175

文獻(xiàn)標(biāo)志碼: A

文章編號: 1007-2683(2022)04-0154-07

Square-Mean Asymptotically Almost Automorphic Mild Solutions

to a Class of Semi-linear Stochastic Differential Equations

YAO Hui-li,HUO Gui-zhen,SUN Hai-tong,WANG Jing-nan

(School of Science,Harbin University of Science and Technology,Harbin 150080,China)

Abstract:The applications of the theories of square-mean almost automorphic type functions have attracted more and more attention by mathematics researchers, square-mean asymptotically almost automorphic solutions of this class of differential equations have a wider range of applications than square-mean almost automorphic solutions.Square-mean asymptotically almost automorphic mild solutions to a class of semi-linear stochastic differential equations are investigated. The existence and uniqueness of square-mean asymptotically almost automorphic mild solutions for this kind of equation are discussed by using the principle of Banach compressed image, combining with the definition and properties of square-mean asymptotically almost automorphic stochastic processes, Cauchy-Schwarz inequality, Lipschtiz conditions and Ito integrals isometry.

Keywords:square-mean asymptotically almost automorphic mild solutions; semi-linearstochastic differential equations; principle of Banach compressed image

0引言

概自守函數(shù)、漸近概自守函數(shù)以及偽概自守函數(shù)(統(tǒng)稱為概自守型函數(shù))的定義分別由BOCHNER S、N′GUEREKATA G M、XIAO T J, LIANG J, ZHANG J給出[1-3]。概自守型函數(shù)理論的產(chǎn)生推廣了概周期型函數(shù)的應(yīng)用范圍,并在各類方程中得到了應(yīng)用[4-10],為了更好的描述自然界中的隨機(jī)現(xiàn)象,2010年,F(xiàn)U M M, LIU Z X提出了均方概自守隨機(jī)過程的概念[11],這一概念是對概自守函數(shù)的推廣。之后,均方偽概守隨機(jī)過程和均方漸近概自守隨機(jī)過程的概念也相繼被給出[ 12-13 ] 。自均方概自守型隨機(jī)過程有關(guān)理論被提出以來,國內(nèi)外數(shù)學(xué)工作者將其應(yīng)用到一類將隨機(jī)性納入了數(shù)學(xué)描述中的模型中即隨機(jī)微分方程中,研究了此種方程的均方概自守解[14-16]和均方偽概自守解的存在及唯一性[17-18]。在文[14]中,CHANG Y K, ZHAO Z H, N′GUEREKATA G M.對下列一類半線性隨機(jī)微分方程

1預(yù)備知識

2主要結(jié)論

參 考 文 獻(xiàn):

[1]BOCHNER S. A New Approach to Almost Periodicity[J]. Proceedings of the National Academy of Sciences of the United States of America, 1962, 48(12):2039.

[2]N′GUEREKATA G M. Some Remarks on Asymptotically Almost Automorphic Function[J]. Rivista Di Matematica Della Università Di Parma, 1988, 13(4): 301.

[3]XIAO T J, LIANG J, ZHANG J. Pseudo Almost Automorphic Solutions to Semi-linear Differential Equations in Banach Spaces[J]. Semigroup Forum, 2008, 76(3): 518.

[4]GOLDSTEIN J A, N′GUEREKATA G M. Almost Automorphic Solution of Semi-linear Evolution Equations[J]. Proc.Amer.Math.Soc.133, 2005,2401.

[5]EZZINBI K, N′GUEREKATA G M. Massera Type Theorem for Almost Automorphic Solutions of Functional Differential Equations of Neutral Type[J]. Journal of Mathematical Analysis and Applications,2006, 316:707.

[6]DIAGANA T, N′GUEREKATA G M. Amost Automorphic Solutions to Some Classes of Partial Evolution Equations[J]. Applied.Mathematics Letters,2007,20(4):462.

[7]M′HAMDI M S. Pseudo Almost Automorphic Solutions for Multidirectional Associative Memory Neural Network with Mixed Delays[J]. Neural processing letters, 2019, 49(3): 1567.

[8]AOUITI C, DRIDI F. Weighted Pseudo Almost Automorphic Solutions for Neutral Type Fuzzy Cellular Neural Networks with Mixed Delays and D Operator in Clifford Algebra[J]. International Journal of Systems Science, 2020(3): 1.

[9]ZABSONRE I, MBAINADJI D. Pseudo Almost Automorphic Solutions of Class r in α-norm under the Light of Measure Theory[J]. Nonautonomous Dynamical Systems, 2020, 7(1): 81.

[10]AOUITI C, M′HAMDI M S, TOUATI A. Pseudo Almost Automorphic Solutions of Recurrent Neural Networks with Time-Varying Coefficients and Mixed Delays[J]. Neural Processing Letters, 2016, 45(1):1.

[11]FU M M, LIU Z X. Square-mean Almost Automorphic Solutions for Some Stochastic Differential Equations[J]. Proc.Amer.Math.Soc, 2010,138(10):3689.

[12]CHEN Z, LIN W. Square-mean Pseudo Almost Automorphic Process and Its Application to Stochastic evolution Equations[J]. Journal of Functional Analysis,2011,261(1):69.

[13]YAN Z, ZHANG H W.Square-mean Asymptotically Almost Automorphic Solutions for Non-local Neutral Stochastic Functional Integro-differential Equations in Hilbert Spaces[J]. Electronic Journal of Mathematical Analysis and Applications,2013,1(1):15.

[14]CHANG Y K, ZHAO Z H, N′GUEREKATA G M. Square-mean Almost Automorphic Mild Solutions to Non-autonomous Stochastic Differential Equations in Hilbert Spaces[J]. Advances in Difference Equations, 2011, 61(2): 384.

[15]XI L,HAN Y L, LIU B F. Square-mean Almost Automorphic Solutions to Some Stochastic Evolution Equations I: Autonomous Case[J]. Acta Mathematicae Applicatae Sinica, English Series, 2015, 31(3): 577.

[16]LI L J. Existence of Square-Mean Almost Automorphic Solutions to Stochastic Functional Integro-differential Equations in Hilbert Spaces[J]. Abstract and Applied Analysis, 2014: 1.

[17]GU Y, REN Y, SAKTHIVEL R. Square-mean Pseudo Almost Automorphic Mild Solutions for Stochastic Evolution Equations Driven by G-Brownian Motion[J]. Stochastic Analysis & Applications, 2016, 34(3):528.

[18]YAN Z M, ZHANG H W. Existence of Stepanov-Like Square-Mean Pseudo Almost Periodic Solutions to Partial Stochastic Neutral Differential Equations[J]. Annals of Functional Analysis, 2015, 6(1): 116.

[19]張著洪.關(guān)于閉算子及其共軛的分?jǐn)?shù)次冪的評注[J].貴州大學(xué)學(xué)報(自然科學(xué)版),1997(4):202.ZHANG Zhuhong. Comments on the Fractional Power of Closed Operators and Their Conjugates[J].Journal of Guizhou University (Natural Sciences),1997(4):202.

[20]姚慧麗, 劉婷, 張士晶. 一類隨機(jī)微分方程的均方漸近概自守溫和解[J]. 哈爾濱理工大學(xué)學(xué)報, 2016, 21(3): 114.YAO Huili, LIU Ting, ZHANG Shijing. Square-mean Asymptotically Almost Automorphic Mild Solutions for a Class of Stochastic Differential Equations[J]. Journal of Harbin University of Science and Technology, 2016, 21(3): 114.

(編輯:溫澤宇)

猜你喜歡
型函數(shù)均方線性
一類隨機(jī)積分微分方程的均方漸近概周期解
漸近線性Klein-Gordon-Maxwell系統(tǒng)正解的存在性
線性回歸方程的求解與應(yīng)用
幾類“對勾”型函數(shù)最值問題的解法
Beidou, le système de navigation par satellite compatible et interopérable
二階線性微分方程的解法
Orlicz Sylvester Busemann型函數(shù)的極值研究
基于抗差最小均方估計(jì)的輸電線路參數(shù)辨識
基于隨機(jī)牽制控制的復(fù)雜網(wǎng)絡(luò)均方簇同步
V-型函數(shù)的周期點(diǎn)
永川市| 四川省| 洪洞县| 昭平县| 安陆市| 镇江市| 宣化县| 镇安县| 宜都市| 江陵县| 万山特区| 塔河县| 丹棱县| 六安市| 绵竹市| 伊宁市| 西乌珠穆沁旗| 饶平县| 安顺市| 镇安县| 大方县| 沿河| 甘肃省| 湾仔区| 洛南县| 新晃| 朝阳区| 盐源县| 莒南县| 襄城县| 霍邱县| 湄潭县| 扬州市| 礼泉县| 乌兰浩特市| 和田市| 溧阳市| 增城市| 永平县| 洛隆县| 永德县|