朱珈葉 李丹丹 陳倩 印麗萍 郭水良
摘? 要: 以蝴蝶蘭( RcHb.F.)的“大辣椒”品種為對(duì)象,研究了不同高溫脅迫處理時(shí)間下的蝴蝶蘭形態(tài)、葉綠素?zé)晒鈪?shù)變化,并對(duì)處理過(guò)的蝴蝶蘭材料進(jìn)行了組織培養(yǎng).結(jié)果發(fā)現(xiàn):當(dāng)蝴蝶蘭“大辣椒”品種莖段的PSⅡ最大光化學(xué)量子產(chǎn)量(/)低于0.35時(shí),其無(wú)法作為外植體進(jìn)行組織培養(yǎng).與蝴蝶蘭葉片相比,莖段的/更能夠指示蝴蝶蘭組織培養(yǎng)的成功概率.
關(guān)鍵詞: 蝴蝶蘭; 莖段; 葉片; PSⅡ最大光化學(xué)量子產(chǎn)量(/); 組織培養(yǎng)
中圖分類(lèi)號(hào): Q 945??? 文獻(xiàn)標(biāo)志碼: A??? 文章編號(hào): 1000-5137(2022)02-0251-06
Potential evaluation of tissue culture for by using chlorophyll fluorescence parameters
ZHU JiayeLI DandanCHEN QianYIN LipingGUO Shuiliang
(1.College of Life Sciences, Shanghai Normal University, Shanghai 200234, China;2.Shanghai Entry-Exit Inspection and Quarantine Bureau, Shanghai 200315, China)
“Dalajiao” is a common variety of The individuals of the variety were cultured at a high temperature of 35 ℃, 14 h light/d with different durations. Throughout the treatment, their morphological changes were observed and the chlorophyll fluorescence parameters including the maximum quantum efficiency of photosystem II (PSⅡ) photochemistry(/), electron transfer rate under different light intensities were determined. Their corresponding explants were cultured to evaluate the potential for successful reproduction . We found that there existed a positive correlation between / of the stems and the successful rate of tissue culture with corresponding stems. When / of stems was less than or equal to 0.35, the stems were unable to be cultured because of lacking vitality. The / of the stems is better than that of the leaves in indicating their potential as explants for tissue culture.
; stem; leaf; photosystem Ⅱ (PSⅡ) photochemistry(/); tissue culture
蝴蝶蘭( RcHb.F.)是蘭科附生單莖性植物.由于其形態(tài)和結(jié)構(gòu)上均與眾不同,且外形具有娥蝶般的美麗,故以蝴蝶蘭來(lái)命名.蝴蝶蘭為多年生常綠草本,是熱帶/亞熱帶氣生蘭.中國(guó)云南南部、西藏南部、廣東南部、海南及臺(tái)灣為該屬植物的自然分布的北界.蝴蝶蘭在國(guó)內(nèi)外鮮花市場(chǎng)上深受歡迎,具有很高的觀賞價(jià)值和經(jīng)濟(jì)價(jià)值.
隨著蘭花種植業(yè)的發(fā)展,蝴蝶蘭的組織培養(yǎng)發(fā)展迅速.早在1949年,人們利用蝴蝶蘭花梗腋芽成功地進(jìn)行了組織培養(yǎng),正式提出了一種蝴蝶蘭屬植物營(yíng)養(yǎng)繁殖的方法,實(shí)現(xiàn)了蝴蝶蘭試管繁殖.蝴蝶蘭的莖尖、莖段和幼葉、花梗腋芽、花梗節(jié)間、根尖等部位都可做離體組織培養(yǎng)的外植體.但是葉片的誘導(dǎo)成功率很低.蝴蝶蘭不同外植體的成活率有差異,其中花梗側(cè)芽的成活率最高,達(dá)75.0%,其次為花梗,成活率為62.5%,葉片和根尖最差,分別為12.5%和7.5%.
蝴蝶蘭組培的基本培養(yǎng)基包括Murashige and Skoog (MS)培養(yǎng)基,1/2 MS培養(yǎng)基,Vacin and Went (VW)蘭科植物培養(yǎng)基,Gamborg’s B-5培養(yǎng)基,Knudson C (KC)培養(yǎng)基,Kyoto so1ution花肥培養(yǎng)基,花寶及其改良型等.但不同品種的蝴蝶蘭以及取用不同部位的外植體,最適培養(yǎng)基的選擇也有所不同.1/2MS或改良MS較MS效果好,減少M(fèi)S中大量元素和部分微量元素及有機(jī)成分,適當(dāng)增加少量的葉酸,有利于原球莖的增殖生長(zhǎng).植物組織培養(yǎng)中常添加一些天然有機(jī)物.如椰子汁、馬鈴薯汁和香蕉汁可提高蝴蝶蘭原球莖的增殖率.蝴蝶蘭組培中常用的細(xì)胞分裂素為6-BA,質(zhì)量濃度較高(1~8 mg?L)的6-BA能促進(jìn)蝴蝶蘭原球莖增殖,質(zhì)量濃度較低(0.1~0.5 mg?L)的6-BA能促進(jìn)原球莖分化.
蝴蝶蘭在生長(zhǎng)發(fā)育期對(duì)高溫敏感,在高溫脅迫下極易受到抑制和危害.其最適宜生長(zhǎng)的溫度是18~28 ℃.溫度過(guò)高會(huì)導(dǎo)致蝴蝶蘭細(xì)胞內(nèi)活性氧(ROS)大量積累,使其代謝紊亂,從而導(dǎo)致植株生長(zhǎng)緩慢甚至死亡.恒溫30 ℃處理24 h能顯著提高蝴蝶蘭抗氧化酶活性,然而40 ℃處理會(huì)破壞抗氧化酶系統(tǒng).關(guān)于蝴蝶蘭高溫脅迫方面的研究,主要集中在赤霉素、細(xì)胞分裂素與成花的關(guān)系,高溫脅迫下蝴蝶蘭的防御機(jī)制和傷害機(jī)理,蝴蝶蘭的高溫脫毒,以及耐熱性的誘導(dǎo)及抗熱害栽培等方面.
隨著中國(guó)對(duì)外交流的擴(kuò)大,園藝植物進(jìn)出口頻繁.目前國(guó)內(nèi)外對(duì)蝴蝶蘭的研究主要集中在組織快速繁殖體系的建立、滅菌方法、降低褐化,及對(duì)脅迫的生理響應(yīng)等方面,但很少有關(guān)于環(huán)境脅迫對(duì)蝴蝶蘭可組培性影響的研究.蝴蝶蘭作為蘭科珍貴的園藝種源,為防止其種源流失,同時(shí)也為利用境外蝴蝶蘭種源,建立對(duì)蝴蝶蘭植株活力的快速檢測(cè)方法,具有實(shí)際應(yīng)用價(jià)值.本研究分別以蝴蝶蘭無(wú)菌試管苗為材料,研究了高溫脅迫條件下蝴蝶蘭的葉綠素?zé)晒鈪?shù)變化,及其與蝴蝶蘭生長(zhǎng)繁殖潛力之間的關(guān)系,旨在建立蝴蝶蘭植株活力的快速檢測(cè)方法.
1? 材料與方法
培養(yǎng)材料為蝴蝶蘭“大辣椒”品種3個(gè)月組培苗,購(gòu)自濰坊市濰城區(qū)南關(guān)花卉市場(chǎng).
選取株齡、株高、生勢(shì)、葉色基本一致的3個(gè)月齡的蝴蝶蘭“大辣椒”組培苗植株,放置在無(wú)菌瓶中,每瓶一株,于光照培養(yǎng)箱中培養(yǎng).培養(yǎng)條件為:溫度35 ℃,光照12 h·d,空氣相對(duì)濕度70% RH,光照強(qiáng)度2 000 lx.對(duì)照的溫度為(25±2)℃,光照12 h·d.
每隔2 d取出高溫處理的蝴蝶蘭幼苗植株,暗適應(yīng)20 min后,采用便攜式調(diào)制葉綠素?zé)晒鈨xPAM,分別測(cè)定蝴蝶蘭兩個(gè)品種莖段和第二片葉的PSⅡ最大光化學(xué)量子產(chǎn)量(/).每個(gè)處理重復(fù)3次.同樣每隔2 d取出高溫處理的蝴蝶蘭幼苗植株進(jìn)行可組培性研究,切去根部和葉子,保留莖段部位進(jìn)行組培.
接種培養(yǎng)基為:花寶1號(hào)(質(zhì)量濃度3 g?L)+6-BA(質(zhì)量濃度5.0 mg?L)+NAA(質(zhì)量濃度0.5 mg?L)+蔗糖(質(zhì)量濃度30 g?L)+椰汁(體積分?jǐn)?shù)200 mL?L)+瓊脂(質(zhì)量濃度6 g?L)+活性炭(質(zhì)量濃度1 g?L)+pH值6.0.接種后的莖段放置在無(wú)菌培養(yǎng)室中培養(yǎng),培養(yǎng)條件為(25±2)℃,光源為普通熒光燈,光照度約1 500~2 000 lx,光照時(shí)間為12 h?d.每個(gè)處理設(shè)5次重復(fù).培養(yǎng)75 d后觀測(cè)蝴蝶蘭成苗情況,以形成葉片、叢生芽為組培成功標(biāo)準(zhǔn).
2? 結(jié)果與分析
高溫脅迫下蝴蝶蘭“大辣椒”品種的形態(tài)變化
對(duì)照處理的蝴蝶蘭植株,在實(shí)驗(yàn)期間均保持良好生長(zhǎng)狀態(tài).高溫處理下,“大辣椒”品種在第10天開(kāi)始變黃,第22天大部分發(fā)黃枯萎(圖1).
高溫脅迫下蝴蝶蘭“大辣椒”品種葉片和莖段/值
高溫脅迫下,隨著處理時(shí)間的延長(zhǎng),蝴蝶蘭的葉片/值不斷下降,第21天后,該指標(biāo)急劇下降,到第24天時(shí)為0.與葉片相比,莖段的/值下降的相對(duì)平緩,到第24天時(shí)/值為0.35.
高溫脅迫處理下,隨著處理時(shí)間的延長(zhǎng),蝴蝶蘭莖段/值整體呈不斷下降的趨勢(shì),處理20 d后,/值為0.35,仍有一定活力.高溫脅迫下,莖段的最大量子產(chǎn)量下降程度弱于葉片(圖2).
測(cè)定不同波長(zhǎng)的光合有效輻射(PAR)下蝴蝶蘭的光合電子傳遞速率(ETR),得到快速光響應(yīng)曲線.發(fā)現(xiàn)在高溫脅迫處理下,隨著處理時(shí)間的延長(zhǎng),快速光響應(yīng)曲線整體呈不斷下降的趨勢(shì),第22天時(shí)光響應(yīng)曲線降到最低,但是仍然有一定活性,整體趨勢(shì)與高溫脅迫下“大辣椒”莖段/值的變化趨勢(shì)一致(圖3).
高溫脅迫下兩種蝴蝶品種葉片/值與可組培相關(guān)性
蝴蝶蘭“大辣椒”品種在高溫脅迫環(huán)境下14 d后,外植體組培成功率都為100%;第16天時(shí),組培成功率降到了67%;第22天時(shí)為33%;第24天以后為0.與“黃花紅心”品種相比,“大辣椒”品種在高溫脅迫下不管是/值變化,還是外植體的組培可繁育能力,相應(yīng)指標(biāo)下降的速率都更為緩慢.
高溫脅迫環(huán)境下蝴蝶蘭幼苗的可組培性與其葉片的/值正相關(guān).由于測(cè)量/值的部位為葉片,進(jìn)行可組培性探究的部位為莖段,莖段可組培性與其葉片的F/值對(duì)應(yīng)性不是很強(qiáng).
在高溫處理12 d后,“大辣椒”品種莖段的/值大于0.5,組培成功率都在80%以上;/值低于0.5以后,可組培成功率依次遞減;當(dāng)/值小于0.35時(shí),組培成功率均為0.由于組培部分用的是切掉根部和葉子的蝴蝶蘭莖段作外植體,高溫脅迫下蝴蝶蘭莖段的v/值與可組培相關(guān)性更為直接.蝴蝶蘭莖段是組培性探究的實(shí)驗(yàn)材料,直接測(cè)量莖段的葉綠素?zé)晒鈪?shù),特別是/值,能夠很好地指示蝴蝶蘭的可組織培養(yǎng)成功率(表1).
3? 討論
高溫脅迫下,蝴蝶蘭幼苗PSⅡ反應(yīng)中心出現(xiàn)了可逆或不可逆失活,降低了原初光能轉(zhuǎn)換效率,對(duì)光合機(jī)構(gòu)和光合色素產(chǎn)生光氧化破壞.不同的蝴蝶蘭品種對(duì)高溫脅迫處理的耐受性不同,由于“大辣椒”品種的葉片比較肥厚,蘊(yùn)藏水分比較多,在高溫脅迫下的耐受力比其他品種更強(qiáng).今后將在更多的蝴蝶蘭品種中開(kāi)展實(shí)驗(yàn)研究,以評(píng)估不同品種對(duì)高溫脅迫的耐受力.
隨著高溫脅迫處理時(shí)間的延長(zhǎng),蝴蝶蘭莖段/值整體也呈不斷下降的趨勢(shì),與高溫處理蝴蝶蘭葉片相比,莖段的/值變化較緩,而且其與蝴蝶蘭的組培成功率之間的相關(guān)性更加緊密和直接.高溫處理20 d后,蝴蝶蘭“大辣椒”莖段的/值下降為0.35,此種情況下莖段已經(jīng)失去進(jìn)行擴(kuò)繁的活力.因此,蝴蝶蘭莖段/值0.35可以作為一個(gè)判別莖段是否能夠成為外植體進(jìn)行組培擴(kuò)繁的閾值.研究蝴蝶蘭幼苗在高溫脅迫環(huán)境下的葉綠素?zé)晒鈪?shù)的變化與其可組培性的關(guān)系,不僅可以為蝴蝶蘭規(guī)?;a(chǎn)提供實(shí)質(zhì)性的參考建議,更能為海關(guān)檢驗(yàn)檢疫局管控蝴蝶蘭出入境情況提供幫助.
參考文獻(xiàn):
[1]? MCWILLIAMS E L. Comparative rates of dark CO uptake and acidification in the Bromeliaceae, Orchidaceae, and Euphorbiaceae [J]. Botanical Gazette,1970,131(4):285-290.
[2]? CHRISTENSON E A. : A Monograph [M]. Portland, Oregon (U.S.A.): Timber Press,2001.
[3]? WANG L M, WANG S Q, YANG Y F. Germ plasm resources and breeding of orchids [J]. Journal of Anyang Institute of Technology,2005,2:4-10.
[4]? LI Z H, JIA Y. Rapid Reproduction and Conservation of Rare Orchids [M]. Shanghai: Shanghai Publisher of Science and Technology,2006:3-5.
[5]? ROTOR G J. A method of vegetative propagation of species and hybrids [J]. Proceedings American Society for Horticultural Science,1950,55:434.
[6]? INTUWONG O, SAGAWA Y. Clonal propagation of by shoot tip culture [J]. American Orchid Society Bulletin,1974,93:893-895.
[7]? TAN W C, DAI C G. Tissue Culture Methods for Ornamental Plants [M]. Beijing: China Forestry Publishing House,1991.
[8]? PENG L X, WANG S, MENG G Y. Study on tissue culture and rapid propagation of [J]. Tianjin Agricultural Sciences,1999,5(2):27-29.
[9]? LI J, HUANG M R, WANG M X. Plantlets regeneration from leaf explants of [J]. Journal of Nanjing Forestry University (Natural Sciences Edition),2005,29(3):28-32.
[10] TANAKA M, SAKANISHI Y. Clonal propagation of by leaf tissue culture [J]. American Orchid Society Bulletin,1977,46:73-737.
[11] LU X H, GUO W J, XU L H, et al. The preliminary research on the rapid propagation of by using the joint-points of flower-stems as explants [J]. Acta Horticulturae Sinica,2002,29(5):491-492.
[12] LI J J, LIAO J J, KE W L. Tissue culture using root segment for [J]. Plant Physiology Communications,2000,36(1):209.
[13] GU W M, CAO C Y, DING S M, et al. On tissue culture and rapid propagation for [J]. Journal of Shandong Forestry Science and Technology,2004(5): 47-48.
[14] LI C H. Study on micropropagation of species [D]. Yangzhou: Yangzhou University,2004.
[15] REN Q P. New technology of tissue culture and rapid propagation for [J]. Practical Forestry Technology,2007(12):9-13.
[16] PAN X F, WANG A S, LI H Z. A review on the progress of rapid propagation through tissue culture [J]. Tropical Forestry,2005,33(1):45-47.
[17] LI J M. Tutorials in Plant Tissue Culture [M]. Beijing: China Agricultural University Press,2002:4-5.
[18] ZHU Z Q. Plant Cell Engineering [M]. Beijing: Chemical Industry Press,2003.
[19] CHEN Z L, YE X L, LIANG C Y. culture of the inflorescence of [J]. Acta Horticulturae Sinica,2003,30(2):242-244.
[20] SUN L. Demonstration and application of rapid propagation technique in tissue culture of Orchidaceae [D]. Yangzhou: Yangzhou University,2009.
[21] LIU X Y, XIANG Q Y, LIU L L, et al. The effect of basic culture media and additional compounds on the propagation of PLB [J]. Seed,2005,24(6):18-20.
[22] HE S L, WANG X, LU L, et al. The effect of culture media and organic compounds on the differentiation of PLB [J]. Journal of Central South Forestry University,2003,23(5):11-13.
[23] CHEN Y, LIN K X, WANG J H. Studies on rapid propagation and large-scale planting of hybrids [J]. Journal of Zhejiang University (Sciences Edition),2004,31(1):84-88.
[24] WANG L, CHEN F D, CHEN F, et al. Effects of different media and additions on proliferation and growth of pedicel buds for [J]. Jiangsu Agricultural Sciences,2013,41(1):56-57,103.
[25] BHATTARCHARJEE S.Effect of growth regulating substance on seed germination of hybrid [J]. Indian Agriculturist,1999,43(1/2):79-83.
[26] YANG H G, YAN S L, CHEN H J, et al. Effect of exogenous methyl jasmonate, calcium and salicylic acid on the heat tolerance in seedlings under high temperature stress [J]. Chinese Agricultural Science Bulletin,2011,27(28):150-157.
[27] YANG H G, YANG Y M, LIAO H N, et al. The inducing effect of chitosan on heat resistance of seedlings [J]. Chinese Journal of Ecology,2015,34(12):3430-3437.
[28] ZHOU L L. Establishment of rapid propagation system for tissue cultures [D]. Hangzhou: Zhejiang Agriculture and Forestry University,2007.
[29] LIU L F, WANG J X. Study on rapid reproduction technology in hybrid species [J]. Journal of Anhui Agricultural Sciences,2013,41(29):11601-11603.
[30] ZENG D H, YU P Y, CHEN W Y, et al. Study on rapid propagation of Red Sky tissue culture [J]. Tropical Forestry,2014,42(1):32,46-49.
[31] CHEN L, PAN R Z, CHEN R M. Effects of media, growth regulators and dividing on the growth of protocorms cultured [J]. Journal of Tropical and Subtropical Botany,1999,7(1): 59-64.
[32] HUANG S Q, LI Y T, LV C T, et al. Changes in carbohydrates distribution in leaves and axillary buds during floral induction [J]. Acta Horticulturae Sinica,2007,34(6):1515-1519.
[33] HE J, WANG G D, WU Z. Effects of heat stress on morphological and antioxidant characteristics of seedlings [J]. Jiangsu Agricultural Sciences,2011(1):192-196.
[34] YANG H G. Effect of high temperature stress on chlorophyll and its fluorescence parameters in seedlings [J]. Chinese Agricultural Science Bulletin,2012,28(19):177-183.
(責(zé)任編輯:顧浩然)
上海師范大學(xué)學(xué)報(bào)·自然科學(xué)版2022年2期