癌癥是第二大死亡原因,是嚴(yán)重威脅人類(lèi)生命健康的主要疾病之一,2020年全球估計(jì)有1930萬(wàn)新發(fā)癌癥病例,近1000萬(wàn)人死于癌癥
.我國(guó)癌癥中心公布的數(shù)據(jù)顯示,惡性腫瘤死亡占居民全部死因的23.91%,而其中肝癌、胃癌等起源消化系統(tǒng)的癌癥仍是我國(guó)主要的惡性腫瘤,嚴(yán)重危害國(guó)民健康,帶來(lái)巨大的經(jīng)濟(jì)負(fù)擔(dān)
.鐵死亡(Ferroptosis)2012年首次由Brent R.Stockwell提出,以細(xì)胞內(nèi)還原鐵蓄積和脂質(zhì)過(guò)氧化物蓄積為特點(diǎn),是不同于凋亡、自噬的新型細(xì)胞程序性死亡(regulated cell death,RCD)方式
.研究表明
,鐵死亡參與神經(jīng)病變、缺血再灌注損傷、急性腎功能不全和惡性腫瘤等多種疾病的發(fā)生發(fā)展,但其確切的調(diào)控機(jī)制和生物學(xué)功能尚不明確,現(xiàn)就鐵死亡的抑癌機(jī)制作一綜述,探討鐵死亡在惡性腫瘤尤其是消化系統(tǒng)腫瘤治療中的潛力.
1.1 鐵死亡的特點(diǎn) 鐵死亡的主要特點(diǎn)是細(xì)胞內(nèi)Fe
與過(guò)氧化物發(fā)生芬頓反應(yīng)(Fenton chemistry)生成羥基自由基或烷氧基自由基等活性氧(reactive oxygen species,ROS),ROS在細(xì)胞內(nèi)蓄積與不飽和脂肪酸(polyunsaturated fatty acids,PUFAs)發(fā)生反應(yīng)形成脂質(zhì)過(guò)氧化物,而脂質(zhì)過(guò)氧化物又能夠在Fe
催化下生成脂質(zhì)自由基,最終導(dǎo)致細(xì)胞膜損傷從而誘發(fā)細(xì)胞死亡.不同于凋亡、自噬等壞死模式鐵死亡具有其獨(dú)特的表現(xiàn),在形態(tài)學(xué)方面可以觀察到線粒體萎縮,線粒體膜皺縮、破裂,細(xì)胞核正常但缺乏染色質(zhì)凝集;細(xì)胞代謝方面表現(xiàn)為細(xì)胞內(nèi)亞鐵離子和ROS聚集,發(fā)生顯著的磷脂過(guò)氧化(phospholipid peroxidation,pLPO)、脂質(zhì)過(guò)氧化物修復(fù)功能受損
.
1.2 鐵死亡的調(diào)控機(jī)制
1.2.2 NADH-FSP1-CoQ10通路:Conrad團(tuán)隊(duì)和Olzmann團(tuán)隊(duì)分別通過(guò)基因抑制劑和CRISPR-Cas9技術(shù)篩選出線粒體相關(guān)凋亡誘導(dǎo)因子2(apoptosis-inducing factor mitochondria-associated 2,
)基因,鑒定為非GPX4依賴(lài)的內(nèi)源性鐵死亡抑制因子,并將其重命名為鐵死亡抑制蛋白1(ferroptosis suppressor protein 1,FSP1)
.AIFM2最初描述為促凋亡基因,研究發(fā)現(xiàn)FSP1具有NADH依賴(lài)的泛醌氧化還原酶活性,能夠利用NADH將泛醌(CoQ
)還原為二氫泛醌(CoQ
-H2),而CoQ
-H2是一種親脂氧自由基清除劑
,進(jìn)而終止脂質(zhì)過(guò)氧化反應(yīng),在GPX4缺失的情況下抑制鐵死亡
.
1.2.4 DHOD H-Co Q H2通路:二氫乳清酸脫氫酶(dihydroorotate dehydrogenase,DHODH)是線粒體內(nèi)膜上的黃素依賴(lài)性酶,參與催化二氫乳清酸氧化為乳清酸.Mao等人發(fā)現(xiàn)
,抑制DHODH能夠在GPX4低表達(dá)的細(xì)胞系中誘發(fā)線粒體脂質(zhì)過(guò)氧化和鐵死亡,深入研究發(fā)現(xiàn),DHODH能夠催化線粒體膜上的CoQ
還原為抗氧化劑CoQH2,進(jìn)而抑制鐵死亡.因此,將DHODH鑒定為獨(dú)立于GXP4的另一個(gè)鐵死亡防御因子.
1.3 鐵死亡的誘導(dǎo)劑及抑制劑
那高中學(xué)生怎么利用元認(rèn)知策略來(lái)提高英語(yǔ)能力和成績(jī)呢?教師可以運(yùn)用元認(rèn)知策略理論的具體操作方法,教育學(xué)生了解自己認(rèn)知的能力、特點(diǎn)和基礎(chǔ),激發(fā)學(xué)生對(duì)學(xué)習(xí)英語(yǔ)的熱情;其次,培養(yǎng)學(xué)生熟悉認(rèn)知活動(dòng)任務(wù),規(guī)劃好長(zhǎng)期學(xué)習(xí)英語(yǔ)的目的、方向,以及短期學(xué)習(xí)任務(wù)的難度、性質(zhì)、所需時(shí)間長(zhǎng)短和難易程度等;再次,為了實(shí)現(xiàn)長(zhǎng)期學(xué)習(xí)目的和短期任務(wù),引導(dǎo)學(xué)生通過(guò)對(duì)時(shí)間的科學(xué)認(rèn)知和有效管理來(lái)提高學(xué)習(xí)的成效,提高英語(yǔ)學(xué)習(xí)的成績(jī);最后,對(duì)照規(guī)劃和目標(biāo),要求學(xué)生進(jìn)行認(rèn)知活動(dòng)的事后評(píng)估、改進(jìn)和提高。本文主要探討和研究高中學(xué)生學(xué)習(xí)英語(yǔ)可以采取的一種有效元認(rèn)知策略—GTD時(shí)間管理方式。
1.2.3 GCH1-BH4-DHFR通路:Kraft等人
通過(guò)基因技術(shù)篩選出鳥(niǎo)苷三磷酸環(huán)水解酶1(GTP cyclohydrolase-1,GCH1),發(fā)現(xiàn)過(guò)表達(dá)GCH1的細(xì)胞株能夠抵御GPX4缺失所誘發(fā)的鐵死亡,鑒定為獨(dú)立于GXP4的鐵死亡負(fù)調(diào)控因子.進(jìn)一步研究發(fā)現(xiàn)作為四氫生物蝶呤(tetrahydrobiopterin,BH4)合成的限速酶,GCH1過(guò)表達(dá)能夠促進(jìn)內(nèi)源性BH4的合成,而B(niǎo)H4本身是一種強(qiáng)效的親脂氧自由基清除劑,同時(shí)還參與CoQ
前體的合成,可以促進(jìn)可以抑制細(xì)胞內(nèi)脂質(zhì)過(guò)氧化,進(jìn)而阻止鐵死亡發(fā)生.另一團(tuán)隊(duì)研究發(fā)現(xiàn)
,除GCH1外二氫葉酸還原酶(dihydrofolate reductase,DHFR)作為二氫葉酸(dihydrofolate,BH2)合成BH4的關(guān)鍵酶,能夠使氧化的BH4再生,同樣是重要的鐵死亡負(fù)調(diào)控因子.
本篇包含了5個(gè)章節(jié),分別是自動(dòng)控制的基本概念、熱工對(duì)象的數(shù)學(xué)模型、控制器的動(dòng)態(tài)特性、單回路控制系統(tǒng)、復(fù)雜回路控制系統(tǒng)。按照知識(shí)點(diǎn)的內(nèi)在聯(lián)系,可以把內(nèi)容分成3類(lèi)進(jìn)行繪制。即將熱工對(duì)象的數(shù)學(xué)模型加入自動(dòng)控制的基本概念章節(jié)中。復(fù)雜控制系統(tǒng)則與單回路控制系統(tǒng)合并。然后選定核心詞進(jìn)行繪制,使內(nèi)容層次清晰,便于理解和記憶。由于種類(lèi)眾多且沒(méi)有統(tǒng)一的模型可以包含,故也使用思維導(dǎo)圖加超鏈接的模式。自動(dòng)控制基本概念思維導(dǎo)圖如圖1所示。
3.3 胃癌 胃癌是全球最常見(jiàn)的癌癥之一,在東亞、東歐和南美洲胃癌的發(fā)病率最高,手術(shù)是唯一有可能根治胃癌的方式,而基于5-氟尿嘧啶(5-FU)或順鉑的化療是晚期胃癌的患者最有效的治療方式,但化療毒性,腫瘤耐藥性等因素限制了最終療效
.
青蒿素是從青蒿中提取的天然化合物,是一種耐受性良好的抗瘧疾藥物,近年來(lái)青蒿素及其衍生物在腫瘤治療方面的應(yīng)用受到廣泛關(guān)注,并被證實(shí)對(duì)多種腫瘤細(xì)胞均具有細(xì)胞毒性作用
.Ooko等人
報(bào)道青蒿素衍生物能夠在非小細(xì)胞肺癌、白血病等多種腫瘤中誘導(dǎo)細(xì)胞死亡,而鐵死亡抑制劑能夠顯著降低青蒿素衍生物的細(xì)胞毒性.青蒿琥酯(artesunate,ART)是青蒿素的半合成衍生物,有文獻(xiàn)報(bào)道青蒿琥酯處理后卵巢癌HEY1和HEY2細(xì)胞增殖受到抑制,細(xì)胞中ROS水平明顯升高,而鐵死亡抑制劑能夠降低青蒿琥酯介導(dǎo)的細(xì)胞毒性
.Markowitsch和Wang團(tuán)隊(duì)
則分別證實(shí)ART能夠通過(guò)誘導(dǎo)鐵死亡抑制舒尼替尼耐藥的腎細(xì)胞癌細(xì)胞和Burkitt淋巴瘤細(xì)胞的生長(zhǎng),雙氫青蒿素 (dihydroartemisinin,DHA)作為青蒿素衍生物同樣被證實(shí)能夠在膠質(zhì)瘤細(xì)胞中誘導(dǎo)鐵死亡依賴(lài)的細(xì)胞死亡
.
轉(zhuǎn)錄激活因子-4(activating transcription factor 4,ATF4)在氨基酸消耗、氧化應(yīng)激等因素刺激下表達(dá)增加,研究發(fā)現(xiàn)ATF4在腫瘤組織中高表達(dá),并且能夠改善腫瘤細(xì)胞在缺氧和營(yíng)養(yǎng)缺乏的腫瘤微環(huán)境中的生存
.Chen等人
發(fā)現(xiàn)在膠質(zhì)瘤細(xì)胞中ATF4高表達(dá)促進(jìn)細(xì)胞增殖,而誘導(dǎo)鐵死亡可以減弱ATF4促進(jìn)增殖的效果,進(jìn)一步研究發(fā)現(xiàn),在過(guò)表達(dá)ATF4的膠質(zhì)瘤細(xì)胞中通過(guò)siRNA技術(shù)沉默xCT可以抑制細(xì)胞增殖,在敲低ATF的膠質(zhì)瘤細(xì)胞中過(guò)表達(dá)xCT則能夠有效促進(jìn)細(xì)胞增殖,推測(cè)ATF4正是通過(guò)靶向調(diào)控xCT進(jìn)而抑制鐵死亡從而達(dá)到促進(jìn)膠質(zhì)瘤細(xì)胞的增殖的作用.Bai等人
報(bào)道MicroRNA-214-3p能夠靶向抑制ATF4表達(dá),進(jìn)而誘導(dǎo)肝癌細(xì)胞發(fā)生鐵死亡依賴(lài)的細(xì)胞死亡.除此之外,Alvarez等
證實(shí)缺氧環(huán)境能夠上調(diào)鐵硫簇生物合成酶(NFS1)的表達(dá),而NFS1能夠保護(hù)細(xì)胞免于氧化損傷所誘發(fā)的鐵死亡,幫助肺腺癌細(xì)胞在低氧環(huán)境下存活.上述研究展示了鐵死亡在藥物、基因調(diào)控腫瘤細(xì)胞死亡中的作用,進(jìn)一步闡釋鐵死亡調(diào)控細(xì)胞死亡的機(jī)制,對(duì)于研發(fā)新的抗癌藥物有重大意義.
新媒體主要包括門(mén)戶(hù)網(wǎng)站、電子郵件、搜索引擎、虛擬社區(qū)、在線游戲、博客、播客、微信、手機(jī)短信、手機(jī)電視、互聯(lián)網(wǎng)電視,數(shù)字電視,手機(jī)報(bào),網(wǎng)絡(luò)雜志等類(lèi)型。其中,一些屬于新媒體形式,一些屬于新媒體軟件,另一些屬于新媒體硬件和新媒體服務(wù)。
2.2 鐵死亡與腫瘤化學(xué)治療 化療藥物是無(wú)法手術(shù)的腫瘤病人的主要治療方式之一,為改善病人預(yù)后做出巨大貢獻(xiàn),然而在化學(xué)治療過(guò)程中腫瘤細(xì)胞會(huì)對(duì)化療藥物產(chǎn)生抵抗性,這種現(xiàn)象被稱(chēng)為腫瘤的多藥耐藥性(multidrug resistance,MDR)
.MDR的形成可以大致分為兩種情況:(1)腫瘤在接受化學(xué)治療之前對(duì)該種化療藥物就具有抵抗性,稱(chēng)為固有抵抗;(2)在有效的化學(xué)治療后,腫瘤對(duì)化療藥物產(chǎn)生了抵抗,稱(chēng)為獲得性抵抗
.MDR的發(fā)生使得化療的臨床療效十分受限,因此研究腫瘤耐藥性的產(chǎn)生機(jī)制,尋求減弱藥物耐藥的方法對(duì)提高化療療效具有重要意義.
三磷酸腺苷結(jié)合基因(ATP-binding cassette subfamily B member 1,
)基因可以編碼多種轉(zhuǎn)運(yùn)蛋白和通道蛋白,將細(xì)胞內(nèi)的底物主動(dòng)泵出至細(xì)胞外,從而降低細(xì)胞內(nèi)藥物的蓄積
,研究表明ABCB1的過(guò)表達(dá)可以減少細(xì)胞內(nèi)化療藥物的積累,并導(dǎo)致蒽環(huán)類(lèi)(阿霉素),長(zhǎng)春花生物堿(長(zhǎng)春堿)等多種常用化療藥物產(chǎn)生耐藥性
.Zhou
等人發(fā)現(xiàn)ABCB1的過(guò)表達(dá)導(dǎo)致卵巢癌對(duì)多烯紫杉醇產(chǎn)生耐藥性,而Erastin能夠抑制ABCB1的藥物外排活性增強(qiáng)過(guò)表達(dá)ABCB1的卵巢癌細(xì)胞對(duì)多烯紫杉醇的敏感性.另外,研究表明作為鐵死亡的關(guān)鍵分子谷胱甘肽(GSH)能夠與順鉑的結(jié)合形成Pt(GS)2偶聯(lián)物,并通過(guò)多藥耐藥相關(guān)蛋白(multidrug-resistant-associated proteins,MRPs)轉(zhuǎn)運(yùn)至細(xì)胞外,降低細(xì)胞內(nèi)順鉑濃度,從而使細(xì)胞獲得順鉑耐藥性
.在急性白血病、非小細(xì)胞肺癌等多種腫瘤中所展開(kāi)的研究也證實(shí)了GSH水平升高是產(chǎn)生順鉑耐藥的主要因素
.Roh團(tuán)隊(duì)
和Zhang團(tuán)隊(duì)
通過(guò)體內(nèi)和體外實(shí)驗(yàn)同樣證實(shí)Erastin、柳氮磺吡啶等鐵死亡誘導(dǎo)劑或基因敲除xCT能有效誘導(dǎo)細(xì)胞發(fā)生鐵死亡,增強(qiáng)耐藥頭頸癌細(xì)胞系和舌鱗狀細(xì)胞癌對(duì)順鉑的敏感性,進(jìn)一步證實(shí)鐵死亡與腫瘤耐藥之間的潛在聯(lián)系.
調(diào)節(jié)細(xì)胞內(nèi)ROS水平也是逆轉(zhuǎn)藥物MDR的策略之一
,Gentric等人
通過(guò)蛋白質(zhì)組學(xué)、代謝組學(xué)和生物遺傳分析等技術(shù)將高度漿液性卵巢癌(High-grade serous ovarian cancer,HGSOC)分為高氧化磷酸化(high-OXPHOS)和低氧化磷酸化(low-OXPHOS)兩個(gè)亞群,并報(bào)道high-OXPHOS亞群能夠通過(guò)增加細(xì)胞內(nèi)ROS和Fe
水平,促進(jìn)脂質(zhì)過(guò)氧化,增強(qiáng)細(xì)胞對(duì)卡鉑和紫杉醇敏感性,提示鐵死亡可能起到關(guān)鍵作用.針對(duì)多形性膠質(zhì)母細(xì)胞瘤(glioblastoma multiforme,GBM)的研究表明過(guò)表達(dá)xCT能夠調(diào)節(jié)細(xì)胞氧化還原反應(yīng),降低細(xì)胞內(nèi)ROS水平,從而使GBM細(xì)胞對(duì)替莫唑胺敏感性下降
,而通過(guò)鐵死亡誘導(dǎo)劑Erastin或基因敲除抑制xCT表達(dá)均能夠促進(jìn)細(xì)胞ROS生成和谷胱甘肽(GSH)消耗,從而增強(qiáng)GBM細(xì)胞對(duì)替莫唑胺的敏感性
,提示增強(qiáng)鐵死亡是克服腫瘤MDR的潛在機(jī)制.
2.3 鐵死亡與腫瘤放射治療 放射治療是癌癥治療的重要方式之一,廣泛應(yīng)用于肺癌、食管癌、鼻咽癌等多種實(shí)體腫瘤的治療
,輻射造成的DNA損傷被認(rèn)為是放療的主要作用機(jī)制,而DNA損傷程度和修復(fù)速度被認(rèn)為是決定受輻射細(xì)胞死亡的關(guān)鍵因素2,因此過(guò)往放療抗性的研究主要涉及DNA修復(fù)激活和細(xì)胞凋亡抑制
.除DNA損傷外,輻射還會(huì)引起細(xì)胞中的脂質(zhì)過(guò)氧化
,隨著鐵死亡被人們所知,鐵死亡是否介導(dǎo)輻射誘導(dǎo)的細(xì)胞死亡,能否參與放療抗性調(diào)節(jié)也引起了廣泛關(guān)注.
Pan等人
發(fā)現(xiàn)Erastin聯(lián)合放療能夠增強(qiáng)放療對(duì)放療抗性的非小細(xì)胞肺癌細(xì)胞(non-small cell lung cancer,NSCLC)細(xì)胞的殺傷效果,而鐵死亡抑制劑去鐵胺(deferoxamine)可以緩解聯(lián)合治療誘導(dǎo)細(xì)胞死亡,而凋亡抑制劑和壞死抑制劑則沒(méi)有這樣的效果.Lei等人
的研究進(jìn)一步揭示放射治療可以通過(guò)上調(diào)ACSL4表達(dá)誘導(dǎo)非小細(xì)胞肺癌細(xì)胞發(fā)生鐵死亡依賴(lài)的細(xì)胞死亡,同時(shí)也能夠調(diào)控SLC7A11和GPX4表達(dá)并抑制放療所誘導(dǎo)的鐵死亡,進(jìn)而導(dǎo)致放療抵抗.而鐵死亡誘導(dǎo)劑(Erastin和RSL3)能夠提高耐輻射的癌細(xì)胞對(duì)放療的敏感性,并在動(dòng)物模型中證實(shí)鐵死亡誘導(dǎo)劑能夠有效增強(qiáng)非小細(xì)胞肺癌的放療敏感性.Ling的團(tuán)隊(duì)
同樣發(fā)現(xiàn)鐵死亡抑制劑而不是凋亡或壞死抑制劑能夠拮抗放療誘導(dǎo)的細(xì)胞死亡,而鐵死亡誘導(dǎo)劑與放療協(xié)同治療能夠增強(qiáng)細(xì)胞內(nèi)脂質(zhì)過(guò)氧化卻不增加細(xì)胞DNA損傷,并通過(guò)體外細(xì)胞模型和體內(nèi)小鼠移植瘤模型證實(shí)鐵死亡誘導(dǎo)劑能夠增強(qiáng)肺腺癌和神經(jīng)膠質(zhì)瘤對(duì)放療的敏感性.除此之外,Erastin、RSL3和柳氮磺胺吡啶等鐵死亡誘導(dǎo)劑還被證實(shí)能夠增強(qiáng)黑色素瘤、乳腺癌等惡性腫瘤對(duì)放療的敏感性
,進(jìn)一步揭示了鐵死亡有望成增強(qiáng)放療敏感性、改善放療療效的新方向.
Bai等人報(bào)道
,氟哌啶醇可以促進(jìn)Fe2+的積累、脂質(zhì)過(guò)氧化和谷胱甘肽的消耗,進(jìn)而增強(qiáng)索拉非尼所誘導(dǎo)的細(xì)胞死亡,而鐵死亡抑制劑(ferrostatin-1)可以阻斷氟哌啶醇所增強(qiáng)的細(xì)胞死亡,但凋亡和壞死的抑制劑(ZVAD-FMK和necrosulfonamide)卻不能,證明氟哌啶醇能夠促進(jìn)HCC細(xì)胞發(fā)生鐵死亡,卻不會(huì)促進(jìn)細(xì)胞凋亡和壞死.Wen和Moss的研究團(tuán)隊(duì)報(bào)道
天然omega-3脂肪酸二十二碳六烯酸(LDL-DHA)重組的低密度脂蛋白納米顆??蛇x擇性地殺死肝癌細(xì)胞并減少大鼠原位肝腫瘤的生長(zhǎng),而凋亡、自噬和壞死抑制劑都不能阻止LDLDHA介導(dǎo)的肝癌細(xì)胞死亡.進(jìn)一步研究發(fā)現(xiàn),LDH-DHA處理后的HCC細(xì)胞中可以捕捉到顯著的脂質(zhì)過(guò)氧化物增加、谷胱甘肽消耗和GPX4失活,提示腫瘤細(xì)胞經(jīng)歷了鐵死亡依賴(lài)的細(xì)胞死亡
,提示誘導(dǎo)鐵死亡是研發(fā)新的抗肝癌藥物的新思路.
預(yù)算編制結(jié)果將直接影響預(yù)算執(zhí)行情況。因?yàn)樵谶M(jìn)行預(yù)算編制過(guò)程中,沒(méi)有從企業(yè)各個(gè)環(huán)節(jié)入手,導(dǎo)致預(yù)算活動(dòng)參與度相對(duì)不高。并且因?yàn)轭A(yù)算編制自身不具備嚴(yán)謹(jǐn)性和規(guī)范性,在執(zhí)行預(yù)算工作時(shí),時(shí)常和實(shí)際情況相背離,使得預(yù)算監(jiān)管存在盲區(qū),管理人員不能發(fā)揮自身?yè)?dān)具的監(jiān)管作用,從而使得預(yù)算編制結(jié)果差強(qiáng)人意。
腫瘤免疫治療可以激活腫瘤微環(huán)境的CD8
T細(xì)胞,并通過(guò)穿孔素-顆粒酶和Fas-Fas配體途徑誘導(dǎo)細(xì)胞死亡來(lái)清除腫瘤
.Wang等人
研究表明免疫療法激活的CD8
T細(xì)胞可以通過(guò)釋放干擾素-γ(Interferon-γ,IFN-γ)下調(diào) SLC3A2和SLC7A11表達(dá),抑制System X
-活性并誘導(dǎo)腫瘤細(xì)胞發(fā)生鐵死亡,而所誘導(dǎo)的鐵死亡又能夠增強(qiáng)CD8
T細(xì)胞對(duì)腫瘤細(xì)胞的損傷.同時(shí),他們通過(guò)回顧性分析發(fā)現(xiàn)xCT表達(dá)情況與CD8
T細(xì)胞、IFN-γ水平、免疫治療療效等呈負(fù)相關(guān),進(jìn)一步證實(shí)免疫治療期間CD8
T細(xì)胞促進(jìn)的腫瘤鐵死亡是一種抗腫瘤機(jī)制,是改善腫瘤免疫療法的潛在靶點(diǎn)
.Lang等發(fā)現(xiàn)
放射治療誘導(dǎo)的共濟(jì)失調(diào)毛細(xì)血管擴(kuò)張突變基因(ataxia telangiectasiamutated,ATM)及免疫治療激活的CD8
T細(xì)胞能夠協(xié)同抑制SLC7A11表達(dá)誘導(dǎo)鐵死亡發(fā)生,而抑制鐵死亡會(huì)減低放射治療及免疫治療的療效,提示鐵死亡誘導(dǎo)劑可以增強(qiáng)腫瘤細(xì)胞對(duì)放射治療和免疫治療的敏感性,同時(shí)能夠作為兩者協(xié)同作用的“橋梁”.
根據(jù)國(guó)際癌癥研究結(jié)構(gòu)公布的數(shù)據(jù),來(lái)源消化系統(tǒng)的結(jié)直腸癌、肝癌、胃癌是2020年全球癌癥相關(guān)死亡的主要原因,分別是位于全球癌癥死亡病因的第二、第三、第四位
.而在我國(guó),肝癌、胃癌等起源消化系統(tǒng)的惡性腫瘤仍是主要的惡性腫瘤
,研究消化系統(tǒng)腫瘤的發(fā)病機(jī)制,尋找新的治療方案有重大意義.本文對(duì)鐵死亡在消化系統(tǒng)腫瘤中的研究進(jìn)展進(jìn)行概述(表1),探討鐵死亡在消化系統(tǒng)腫瘤治療中的潛力,為研發(fā)新的治療方案提供新思路.
1.3.2 鐵死亡抑制劑:常見(jiàn)的鐵死亡抑制劑可分為以下幾類(lèi):第一類(lèi)以去鐵胺(deferoxamine,DFO)為代表的鐵螯合劑,通過(guò)與細(xì)胞內(nèi)Fe2+結(jié)合,降低細(xì)胞內(nèi)Fe2+水平抑制Fenton反應(yīng);第二類(lèi)包括Ferrostatin-1(Fer-1)和Liproxstatins,通過(guò)抑制脂質(zhì)過(guò)氧化,減少細(xì)胞內(nèi)ROS生成,從而抑制鐵死亡發(fā)生
.
3.1 肝癌 肝癌是世界范圍內(nèi)癌癥相關(guān)死亡的前幾位原因,由于慢性丙型肝炎病毒感染、非酒精性脂肪性肝病、飲酒等事件的增多,肝癌的發(fā)病率正在上升,雖然近年來(lái)肝動(dòng)脈靶向化療等治療的開(kāi)展為肝癌治療帶來(lái)顯著的變化,但目前仍缺乏有效的肝癌治療方案
.
肝癌的發(fā)生發(fā)展與抑癌基因失活息息相關(guān),視網(wǎng)膜母細(xì)胞瘤蛋白(retinoblastoma protein,Rb)功能缺失是肝細(xì)胞癌(hepatocellular carcinoma,HCC)發(fā)生發(fā)展過(guò)程中的一個(gè)重要事件
,Louandre等人
發(fā)現(xiàn)索拉非尼在低表達(dá)Rb的HCC細(xì)胞表現(xiàn)出更強(qiáng)的細(xì)胞殺傷效果,同時(shí)也誘導(dǎo)更強(qiáng)的鐵死亡反應(yīng),提示鐵死亡或與低表達(dá)Rb的肝癌細(xì)胞對(duì)索拉非尼更敏感有關(guān).p53是最重要的腫瘤抑制基因之一,Jennis等報(bào)道
P53密碼子第47位絲氨酸(TP53S47)在非洲人中存在多樣性,而S47突變可能增加非裔個(gè)體的患癌風(fēng)險(xiǎn).與野生型P53相比S47變體表現(xiàn)出顯著的順鉑耐藥性,并增加小鼠模型患肝癌的風(fēng)險(xiǎn),進(jìn)一步研究發(fā)現(xiàn)S47突變會(huì)減弱P53靶向抑制SLC7A11的能力,進(jìn)而抑制鐵死亡.上述研究提示,鐵死亡可能是Rb、P53等抑癌基因調(diào)控肝癌發(fā)生發(fā)展的潛在機(jī)制.
在本試驗(yàn)的4項(xiàng)試驗(yàn)指標(biāo)中,單粒率是最主要的,其次是雙粒率,再次是空穴率和損傷率。通過(guò)試驗(yàn)方案,對(duì)試驗(yàn)結(jié)果進(jìn)行分析:
家長(zhǎng)群的本質(zhì)是一種教學(xué)和家校溝通工具的延伸,但因?yàn)槿菏前腴_(kāi)放的空間,而且具有天然的社交屬性,所以常常會(huì)變味兒,很多家長(zhǎng)群事實(shí)上已成為信息過(guò)載的“負(fù)擔(dān)群”。怎樣在這樣一個(gè)虛擬的“小社會(huì)”里構(gòu)建合理的秩序呢?這又是另外一個(gè)復(fù)雜的話(huà)題。而我希望,不管是家長(zhǎng)還是老師都能在群里多一些理解和包容——至少不要一言不合就把人家給踢了出去。
索拉非尼是一種新型多靶向性抗癌藥物,能夠抑制多種激酶的活性,從而發(fā)揮廣泛的抗癌作用,被批準(zhǔn)用于晚期肝細(xì)胞肝癌的治療.Lachaier
發(fā)現(xiàn)索拉非尼能誘導(dǎo)肝癌、胰腺癌等多種癌細(xì)胞發(fā)生鐵死亡且索拉非尼的細(xì)胞毒性與鐵死亡呈正相關(guān),而吉非替尼、伊馬替尼等10種其他激酶抑制劑卻沒(méi)有顯示出鐵死亡誘導(dǎo)效應(yīng),進(jìn)一步研究發(fā)現(xiàn),索拉非尼可能通過(guò)抑制System X
-、促進(jìn)ROS生成發(fā)揮獨(dú)特的誘導(dǎo)鐵死亡效應(yīng)
.Louandre等
使用去鐵胺 (deferoxamine,DFX) 消耗細(xì)胞內(nèi)鐵儲(chǔ)存發(fā)現(xiàn)可以通過(guò)抑制氧化應(yīng)激反應(yīng)保護(hù)HCC 細(xì)胞免受索拉非尼的細(xì)胞毒性作用,但卻不會(huì)抑制索拉非尼誘導(dǎo)的細(xì)胞凋亡、自噬和激酶阻斷活性,由此證實(shí)索拉非尼能夠誘導(dǎo)HCC發(fā)生鐵死亡依賴(lài)的細(xì)胞死亡.金屬硫蛋白(metallothionein,MT)是一類(lèi)廣泛表達(dá)的金屬結(jié)合蛋白,近年來(lái)被證實(shí)與多種癌癥的發(fā)生發(fā)展及耐藥性相關(guān),常作為腫瘤的分子標(biāo)志物進(jìn)行研究
.Sun團(tuán)隊(duì)發(fā)現(xiàn)
索拉非尼同樣可以特異性上調(diào)MT-1G表達(dá),而通過(guò)基因技術(shù)敲低MT-1G,可以促進(jìn)HCC細(xì)胞內(nèi)谷胱甘肽消耗和脂質(zhì)過(guò)氧化,增強(qiáng)索拉非尼誘導(dǎo)的鐵死亡,同時(shí)增強(qiáng)HCC細(xì)胞以及移植瘤模型對(duì)索拉非尼的敏感性.上述研究提示鐵死亡有望成為改善索拉非尼療效的潛在靶點(diǎn).
2.4 鐵死亡與腫瘤免疫治療 腫瘤發(fā)展的過(guò)程中腫瘤細(xì)胞能夠通過(guò)多種方式使人體免疫系統(tǒng)無(wú)法正常識(shí)別并清除腫瘤細(xì)胞,從而保障腫瘤的生存發(fā)展,這個(gè)過(guò)程被稱(chēng)為腫瘤免疫逃逸
.免疫治療就是通過(guò)調(diào)節(jié)免疫系統(tǒng)關(guān)鍵分子,以恢復(fù)免疫系統(tǒng)對(duì)腫瘤的正常監(jiān)視和清除功能
,而程序性細(xì)胞死亡1(programmed death 1,PD-1)/程序性死亡配體1(programmed death ligand 1,PD-L1)是最經(jīng)典的免疫治療靶點(diǎn)
.
3.2 胰腺癌 胰腺癌是最具侵襲性的惡性腫瘤之一,因其高侵襲性,早期轉(zhuǎn)移,對(duì)放化療反應(yīng)不佳的特點(diǎn),胰腺癌的5年生存率僅有5%左右.手術(shù)和以吉西他濱為主的化學(xué)治療是目前胰腺癌的主要治療方式,近年來(lái)雖有新的藥物用于胰腺癌治療,但均不能收獲良好的臨床療效
.
硬文化是指教室內(nèi)設(shè)置的英文標(biāo)語(yǔ)、英語(yǔ)墻報(bào)、英語(yǔ)畫(huà)刊等;校園里開(kāi)辦“英語(yǔ)角”,這些能夠體現(xiàn)和強(qiáng)化一種英語(yǔ)氛圍。
同樣的,社區(qū)內(nèi)的地租水平多元化也會(huì)影響不同人群的集聚。例如,如果地租水平整體過(guò)高,會(huì)導(dǎo)致高端品牌或者大量資本注入,市場(chǎng)會(huì)驅(qū)逐個(gè)體創(chuàng)意工作室的規(guī)?;纬?;而地租水平過(guò)低,大量無(wú)業(yè)游民、城市底層居民會(huì)選擇該區(qū)域居住,一定程度造成“不安全”的印象或者事實(shí),導(dǎo)致創(chuàng)意人群選擇搬離。因此,這要求城市在對(duì)房屋的改建中,要考慮到不同群體的需求,有計(jì)劃的進(jìn)行房屋改造計(jì)劃,才能保證文化發(fā)展人群的差異化和多樣性。
Lo等
報(bào)道xCT在胰腺癌中表達(dá)水平高于正常胰腺組織,進(jìn)一步研究發(fā)現(xiàn),過(guò)表達(dá)xCT的胰腺癌細(xì)胞表現(xiàn)出更強(qiáng)的吉西他濱耐藥性,而xCT特異性抑制劑處理后胰腺癌細(xì)胞的生長(zhǎng)受到顯著抑制,提示xCT與胰腺癌的增殖能力和耐藥性相關(guān).Daher等
同樣證實(shí)不論是通過(guò)基因技術(shù)敲低還是Erastin等抑制劑預(yù)處理來(lái)抑制xCT均可以增強(qiáng)胰腺癌細(xì)胞對(duì)吉西他濱和順鉑的敏感性.Zhu的團(tuán)隊(duì)報(bào)導(dǎo)
熱休克蛋白家族A成員5(heat shock 70kDa protein 5,HSPA5)能夠與GPX4蛋白結(jié)合并抑制其降解,從而抑制鐵死亡的發(fā)生.HSPA5或GPX4敲低的PDAC細(xì)胞中,吉西他濱能夠誘導(dǎo)更顯著的細(xì)胞死亡,而鐵死亡抑制劑能夠抑制吉西他濱誘導(dǎo)的細(xì)胞死亡,而凋亡和壞死抑制劑則沒(méi)有這樣的效果.
礦區(qū)巖漿巖較發(fā)育,主要有加里東期形成的變輝石巖燕山晚期形成的花崗巖株(脈)(γ53)及其附近產(chǎn)出石英斑巖脈、花崗斑巖脈、偉晶巖脈和石英脈等。
蓽拔酰胺(piperlongumine,PL)是一種天然產(chǎn)物,能夠在胰腺癌細(xì)胞中能發(fā)揮顯著的殺傷效果,且鐵死亡抑制劑和鐵螯合劑能夠抑制PL的細(xì)胞毒性,但不受凋亡抑制劑和壞死抑制劑的影響,提示PL主要通過(guò)增強(qiáng)鐵死亡誘導(dǎo)胰腺癌細(xì)胞死亡
.Cotylenin A(CN-A)是一種髓系白血病細(xì)胞分化誘導(dǎo)劑,在多種癌細(xì)胞中均表現(xiàn)出抑癌活性,Takashi等人報(bào)道CN-A聯(lián)合異硫氰酸苯乙酯(PEITC)能夠有效抑制胰腺癌細(xì)胞增殖,而ferrostatin-1、liproxstatin和去鐵胺作為鐵死亡抑制劑均能有效消除了這種協(xié)同作用,自噬抑制能夠部分消除,而凋亡和壞死的抑制劑沒(méi)有這種效果,提示CN-A與PEITC主要通過(guò)誘導(dǎo)鐵死亡發(fā)揮抗胰腺癌作用
.上述研究提示,鐵死亡能夠在改善吉西他濱等現(xiàn)役藥物的療效或是研發(fā)新的抗胰腺癌藥物方面作出貢獻(xiàn).
2.1 鐵死亡與腫瘤細(xì)胞死亡 正常細(xì)胞死亡對(duì)維持機(jī)體生理平衡和預(yù)防過(guò)度細(xì)胞增殖是至關(guān)重要的,而惡性腫瘤常表現(xiàn)為轉(zhuǎn)化細(xì)胞的不受控制地生長(zhǎng)和增殖
,因此誘發(fā)腫瘤細(xì)胞死亡是首先被考慮的癌癥治療策略.目前臨床上使用的抗癌藥物大多基于凋亡通路誘導(dǎo)癌細(xì)胞死亡
,但在使用過(guò)程中出現(xiàn)的藥物抗性性限制了相應(yīng)藥物的使用,使我們需要尋求新機(jī)制誘發(fā)癌細(xì)胞死亡.鐵死亡作為新發(fā)現(xiàn)的細(xì)胞程序性死亡模式,近年來(lái)被證實(shí)在殺傷腫瘤細(xì)胞方面起著關(guān)鍵性作用.
Zhang等
報(bào)道順鉑和紫杉醇能夠激活腫瘤相關(guān)成纖維細(xì)胞(cancer associated fibro-blasts,CAFs)并分泌外泌體miR-522抑制花生四烯酸脂氧合酶15(ALOX15)活性,減少細(xì)胞內(nèi)脂質(zhì)ROS積累,從而抑制胃癌細(xì)胞發(fā)生鐵死亡,最終導(dǎo)致化療敏感性下降.Wang
等發(fā)現(xiàn)順鉑耐藥的胃癌細(xì)胞具有xCT高表達(dá),并通過(guò)Kaplan-Meier生存分析發(fā)現(xiàn)xCT高表達(dá)是胃癌患者輔助化療的不良預(yù)后因素,進(jìn)一步研究發(fā)現(xiàn)線粒體功能障礙能夠增強(qiáng)順鉑耐藥性和促進(jìn)xCT表達(dá),而抑制xCT活性能夠部分逆轉(zhuǎn)胃癌細(xì)胞因線粒體功能障礙導(dǎo)致的順鉑耐藥性,進(jìn)一步證實(shí)提示鐵死亡可能是胃癌獲得性化療耐藥的新機(jī)制.
半胱氨酸雙加氧酶1(cysteine dioxygenase 1,CDO1)是一種含鐵金屬酶,參與半胱氨酸向?;撬岬霓D(zhuǎn)換,在結(jié)直腸癌、胃癌等多種腫瘤中發(fā)現(xiàn)CDO1啟動(dòng)子甲基化是腫瘤預(yù)后的獨(dú)立危險(xiǎn)因素,被認(rèn)為是新發(fā)現(xiàn)的抑癌基因
.Hao
等人發(fā)現(xiàn)鐵死亡誘導(dǎo)劑Erastin在胃癌細(xì)胞中能夠有效觸發(fā)鐵死亡依賴(lài)的細(xì)胞死亡,而敲低CDO1能夠有效抑制Erastin誘導(dǎo)的鐵死亡和細(xì)胞毒性,而過(guò)表達(dá)CDO1則有相反的結(jié)果,提示CDO1介導(dǎo)胃癌細(xì)胞中鐵死亡的調(diào)控.硬脂酰輔酶A去飽和酶1(stearoyl-CoA desaturase 1,SCD1)是一種重要的內(nèi)質(zhì)網(wǎng)相關(guān)脂肪合酶,可以促進(jìn)肺癌、卵巢癌多種癌癥的腫瘤發(fā)生
.Wang等
報(bào)道SCD1在胃癌中高表達(dá),且是胃癌的獨(dú)立預(yù)后危險(xiǎn)因素,高表達(dá) SCD1提示患者預(yù)后不佳,進(jìn)一步研究發(fā)現(xiàn)SCD1能夠促進(jìn)胃癌在體內(nèi)、體外的生長(zhǎng)和能力并保護(hù)胃癌細(xì)胞免于鐵死亡.上述研究提示鐵死亡可能是CDO1、SCD1等分子的潛在作用機(jī)制.
3.4 結(jié)直腸癌 結(jié)直腸癌(colorectal cancer,CRC)是消化道常見(jiàn)腫瘤之一,根據(jù)國(guó)際癌癥研究機(jī)構(gòu)公布的數(shù)據(jù),結(jié)直腸癌是2020年癌癥相關(guān)死亡的第二大病因,甚至超過(guò)了肝癌和胃癌,尋找有效的治療方案迫在眉睫.
結(jié)直腸癌常發(fā)生TP53缺失或突變
,Xie等報(bào)道
TP53缺失使CRC細(xì)胞對(duì)Erastin誘發(fā)的鐵死亡更敏感,提示TP53能夠抑制Erastin所誘導(dǎo)的鐵死亡依賴(lài)的細(xì)胞死亡,進(jìn)一步研究發(fā)現(xiàn)TP53能夠通過(guò)調(diào)控SLC7A11轉(zhuǎn)錄表達(dá)和促進(jìn)二肽基肽酶-4(dipeptidyl peptidase-4,DPP4)入核的雙層機(jī)制抑制CRC發(fā)生鐵死亡,提示抑癌基因TP53可能通過(guò)鐵死亡參與調(diào)控結(jié)直腸癌的發(fā)生發(fā)展.
以鉑為基礎(chǔ)的化療廣泛應(yīng)用于各種惡性腫瘤的治療,但是耐藥性的產(chǎn)生卻極大限制了順鉑等藥物在臨床上的應(yīng)用,過(guò)去的研究已經(jīng)證實(shí),細(xì)胞內(nèi)GSH高水平是產(chǎn)生順鉑耐藥的主要因素
.System X
-能夠調(diào)節(jié)胱氨酸的攝取對(duì)GSH合成至關(guān)重要,抑制System X
-可以抑制細(xì)胞內(nèi)GSH的合成.Sugano等人
檢測(cè)了304例結(jié)直腸癌組織標(biāo)本中xCT蛋白的表達(dá)水平,發(fā)現(xiàn)其中208例組織中xCT表達(dá)呈陽(yáng)性,而這部分患者術(shù)后復(fù)發(fā)風(fēng)險(xiǎn)顯著高于xCT表達(dá)陰性的患者,提示xCT表達(dá)增加是結(jié)直腸癌復(fù)發(fā)的獨(dú)立預(yù)測(cè)因子.另一研究團(tuán)隊(duì)
同樣報(bào)道了xCT高表達(dá)于結(jié)直腸癌組織,同時(shí)他們還發(fā)現(xiàn)柳氮磺胺吡啶(Sulfasalazine,SSZ)-xCT的有效抑制劑
,能夠有效消耗CRC細(xì)胞內(nèi)GSH并誘導(dǎo)ROS積累,但在正常結(jié)腸組織中卻沒(méi)有如此顯著的效果.進(jìn)一步研究發(fā)現(xiàn),SSZ聯(lián)合順鉑能夠顯著提高CRC細(xì)胞內(nèi)鉑濃度,與順鉑產(chǎn)生協(xié)同的細(xì)胞毒性作用.GPX4作為鐵死亡的關(guān)鍵調(diào)節(jié)分子,同樣被發(fā)現(xiàn)在結(jié)直腸癌等癌組織中的表達(dá)高于正常組織,并且與患者的預(yù)后呈負(fù)相關(guān),通過(guò)RSL3抑制GPX4可以增強(qiáng)順鉑在體外和體內(nèi)的抗癌作用
.上述研究揭示,鐵死亡可能是結(jié)直腸癌耐藥的潛在機(jī)制.
3.5 食管癌 食管癌是最具侵襲性的胃腸道惡性腫瘤之一,盡管目前有手術(shù)、放化療等方式可用于食管癌治療,但由于藥物副作用等原因上述治療方式未能收獲很好的療效,食管癌的5年總生存率仍然很低
.
萜類(lèi)化合物是一類(lèi)具有抗癌作用的天然化合物,Zhang等人報(bào)道
冬凌草甲素(oridonin,Ori)能夠誘導(dǎo)食管癌細(xì)胞發(fā)生顯著的細(xì)胞死亡,同時(shí)檢測(cè)到細(xì)胞內(nèi)Fe
、丙二醛和ROS水平升高,而鐵死亡抑制劑能夠干擾Ori的作用,說(shuō)明Ori在食管癌細(xì)胞中誘導(dǎo)鐵死亡依賴(lài)的細(xì)胞死亡.深入研究發(fā)現(xiàn)Ori能夠抑制γ-谷酰胺轉(zhuǎn)酞酶(gamma-glutamyl transpeptidase 1,GGT1)和谷氨酸半胱氨酸連接酶催化亞基(glutamate cysteine ligase catalytic subunit,GCLC)的活性,導(dǎo)致GHS合成減少,降低細(xì)胞內(nèi)GSH水平,進(jìn)而抑制GPX4活性,最終觸發(fā)鐵死亡發(fā)揮抗癌活性.異土木香內(nèi)酯(Isoalantolactone)同屬于萜類(lèi)化合物,Lu等人
報(bào)道異土木香內(nèi)酯處理后食管癌細(xì)胞可以觀察到顯著的細(xì)胞內(nèi)ROS升高和細(xì)胞增殖受抑,而異土木香內(nèi)酯對(duì)食管癌細(xì)胞的細(xì)胞毒性能夠被凋亡和鐵死亡抑制劑逆轉(zhuǎn).上述研究提示,萜類(lèi)化合物在食管癌中發(fā)揮鐵死亡依賴(lài)的殺傷效果.
異檸檬酸脫氫酶1(isocitrate dehydrogenase 1,IDH1)是三羧酸循環(huán)的關(guān)鍵酶,近年來(lái)在膽管癌、骨肉瘤
等多種惡性腫瘤中均有報(bào)道IDH1突變.Wang等人
發(fā)現(xiàn)IDH1
突變可以增強(qiáng)Erastin在食管癌細(xì)胞中誘導(dǎo)的鐵死亡,進(jìn)一步研究發(fā)現(xiàn)IDH1
突變能夠通過(guò)靶向調(diào)節(jié)GPX4的蛋白質(zhì)水平增強(qiáng)細(xì)胞對(duì)鐵死亡的敏感性,提示鐵死亡可能是IDH1突變的潛在作用機(jī)制.
圖13-圖15所示的是小曲拐應(yīng)力、應(yīng)變最大的節(jié)點(diǎn)1 703(從圖7-圖9可以看出3個(gè)小曲拐的發(fā)生最大應(yīng)力、應(yīng)變的節(jié)點(diǎn)編號(hào)均為1 703)的應(yīng)力、應(yīng)變隨主軸轉(zhuǎn)動(dòng)一周的變化情況。由圖中可以看出,3個(gè)小曲拐應(yīng)力應(yīng)變的變化規(guī)律基本一致,進(jìn)一步說(shuō)明了渦旋壓縮機(jī)3個(gè)小曲拐受力情況與運(yùn)動(dòng)規(guī)律基本相同,符合小曲拐平面四桿機(jī)構(gòu)的運(yùn)動(dòng)規(guī)律。由于渦旋壓縮機(jī)電動(dòng)機(jī)剛開(kāi)始驅(qū)動(dòng),因此圖中剛開(kāi)始會(huì)出現(xiàn)一個(gè)突變狀況,由圖中看出3個(gè)小曲拐的最大應(yīng)力約為11N/mm2,而最大應(yīng)變約為7×10-5mm。由此可見(jiàn),小曲拐的變形還很小的,因此選擇的小曲拐符合渦旋壓縮機(jī)防自轉(zhuǎn)的要求,并為小曲拐的進(jìn)一步優(yōu)化設(shè)計(jì)提供重要的參考。
自鐵死亡被報(bào)道以來(lái)就受到了廣泛的關(guān)注,并被證實(shí)與多種疾病的發(fā)生發(fā)展具有相關(guān)性,但其確切的調(diào)控機(jī)制和生物學(xué)功能尚不明確,本文通過(guò)回顧鐵死亡與腫瘤相關(guān)研究,對(duì)鐵死亡抑制惡性腫瘤尤其是消化系統(tǒng)腫瘤的機(jī)制作一綜述.本如本文所述,誘導(dǎo)鐵死亡能夠通過(guò)促進(jìn)腫瘤細(xì)胞死亡、增強(qiáng)腫瘤對(duì)放化療敏感性、調(diào)節(jié)腫瘤對(duì)免疫治療的反應(yīng)等方式發(fā)揮抗癌作用,然而鐵死亡在腫瘤侵襲性、腫瘤能量代謝、腫瘤微環(huán)境等方面中的作用還鮮為人知,有待進(jìn)一步完善相關(guān)研究.在消化系統(tǒng)腫瘤中,鐵死亡參與TP53、Rb、CDO1等癌癥相關(guān)基因以及索拉非尼、順鉑、蓽拔酰胺等藥物調(diào)控腫瘤發(fā)生發(fā)展的過(guò)程,但是上述基因和藥物調(diào)控鐵死亡的具體靶點(diǎn)仍是未知數(shù),有待從基因突變、表觀遺傳學(xué)等角度進(jìn)一步研究分析.總的來(lái)說(shuō),作為新發(fā)現(xiàn)的細(xì)胞程序性死亡方式,鐵死亡展示出強(qiáng)大的抗癌潛力,深入研究消化道腫瘤中鐵死亡的分子機(jī)制,有助于研發(fā)新的治療方式以改善消化道腫瘤的預(yù)后.
1 Sung H,Ferlay J,Siegel RL,Laversanne M,Soerjomataram I,Jemal A,Bray F.Global Cancer Statistics 2020:GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.
2021;71:209-249 [PMID:33538338 DOI:10.3322/caac.21660]
2 孫可欣,鄭榮壽,張思維,曾紅梅,鄒小農(nóng),陳茹,顧秀瑛,魏文強(qiáng),赫捷.2015年中國(guó)分地區(qū)惡性腫瘤發(fā)病和死亡分析.中國(guó)腫瘤2019;28:1-11 [DOI:10.3760/cma.j.issn.0253-3766.2019.01.005]
3 Dixon SJ,Lemberg KM,Lamprecht MR,Skouta R,Zaitsev EM,Gleason CE,Patel DN,Bauer AJ,Cantley AM,Yang WS,Morrison B 3rd,Stockwell BR.Ferroptosis:an iron-dependent form of nonapoptotic cell death.
2012;149:1060-1072 [PMID:22632970 DOI:10.1016/j.cell.2012.03.042]
4 Skouta R,Dixon SJ,Wang J,Dunn DE,Orman M,Shimada K,Rosenberg PA,Lo DC,Weinberg JM,Linkermann A,Stockwell BR.Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models.
2014;136:4551-4556[PMID:24592866 DOI:10.1021/ja411006a]
5 Gao M,Monian P,Quadri N,Ramasamy R,Jiang X.Glutaminolysis and Transferrin Regulate Ferroptosis.
2015;59:298-308[PMID:26166707 DOI:10.1016/j.molcel.2015.06.011]
6 Friedmann Angeli JP,Schneider M,Proneth B,Tyurina YY,Tyurin VA,Hammond VJ,Herbach N,Aichler M,Walch A,Eggenhofer E,Basavarajappa D,R?dmark O,Kobayashi S,Seibt T,Beck H,Neff F,Esposito I,Wanke R,F?rster H,Yefremova O,Heinrichmeyer M,Bornkamm GW,Geissler EK,Thomas SB,Stockwell BR,O’Donnell VB,Kagan VE,Schick JA,Conrad M.Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice.
2014;16:1180-1191 [PMID:25402683 DOI:10.1038/ncb3064]
7 Yang WS,Stockwell BR.Ferroptosis:Death by Lipid Peroxidation.
2016;26:165-176 [PMID:26653790 DOI:10.1016/j.tcb.2015.10.014]
8 Sato H,Tamba M,Ishii T,Bannai S.Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins.
1999;274:11455-11458 [PMID:10206947 DOI:10.1074/jbc.274.17.11455]
9 Xie Y,Hou W,Song X,Yu Y,Huang J,Sun X,Kang R,Tang D.Ferroptosis:process and function.
2016;23:369-379 [PMID:26794443 DOI:10.1038/cdd.2015.158]
10 Yang WS,SriRamaratnam R,Welsch ME,Shimada K,Skouta R,Viswanathan VS,Cheah JH,Clemons PA,Shamji AF,Clish CB,Brown LM,Girotti AW,Cornish VW,Schreiber SL,Stockwell BR.Regulation of ferroptotic cancer cell death by GPX4.
2014;156:317-331 [PMID:24439385 DOI:10.1016/j.cell.2013.12.010]
11 Bersuker K,Hendricks JM,Li Z,Magtanong L,Ford B,Tang PH,Roberts MA,Tong B,Maimone TJ,Zoncu R,Bassik MC,Nomura DK,Dixon SJ,Olzmann JA.The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis.
2019;575:688-692 [PMID:31634900 DOI:10.1038/s41586-019-1705-2]
12 Frei B,Kim MC,Ames BN.Ubiquinol-10 is an effective lipidsoluble antioxidant at physiological concentrations.
1990;87:4879-4883 [PMID:2352956 DOI:10.1073/pnas.87.12.4879]
13 Doll S,Freitas FP,Shah R,Aldrovandi M,da Silva MC,Ingold I,Goya Grocin A,Xavier da Silva TN,Panzilius E,Scheel CH,Mour?o A,Buday K,Sato M,Wanninger J,Vignane T,Mohana V,Rehberg M,Flatley A,Schepers A,Kurz A,White D,Sauer M,Sattler M,Tate EW,Schmitz W,Schulze A,O’Donnell V,Proneth B,Popowicz GM,Pratt DA,Angeli JPF,Conrad M.FSP1 is a glutathione-independent ferroptosis suppressor.
2019;575:693-698 [PMID:31634899 DOI:10.1038/s41586-019-1707-0]
14 Kraft VAN,Bezjian CT,Pfeiffer S,Ringelstetter L,Müller C,Zandkarimi F,Merl-Pham J,Bao X,Anastasov N,K?ssl J,Brandner S,Daniels JD,Schmitt-Kopplin P,Hauck SM,Stockwell BR,Hadian K,Schick JA.GTP Cyclohydrolase 1/Tetrahydrobiopterin Counteract Ferroptosis through Lipid Remodeling.
2020;6:41-53 [PMID:31989025 DOI:10.1021/acscentsci.9b01063]
15 Soula M,Weber RA,Zilka O,Alwaseem H,La K,Yen F,Molina H,Garcia-Bermudez J,Pratt DA,Birsoy K.Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers.
2020;16:1351-1360 [PMID:32778843 DOI:10.1038/s41589-020-0613-y]
16 Mao C,Liu X,Zhang Y,Lei G,Yan Y,Lee H,Koppula P,Wu S,Zhuang L,Fang B,Poyurovsky MV,Olszewski K,Gan B.DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer.
2021;593:586-590 [PMID:33981038 DOI:10.1038/s41586-021-03539-7]
17 Feng H,Stockwell BR.Unsolved mysteries:How does lipid peroxidation cause ferroptosis?
2018;16:e2006203[PMID:29795546 DOI:10.1371/journal.pbio.2006203]
18 Shimada K,Skouta R,Kaplan A,Yang WS,Hayano M,Dixon SJ,Brown LM,Valenzuela CA,Wolpaw AJ,Stockwell BR.Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis.
2016;12:497-503 [PMID:27159577 DOI:10.1038/nchembio.2079]
19 Roquette R,Painho M,Nunes B.Spatial epidemiology of cancer:a review of data sources,methods and risk factors.
2017;12:504 [PMID:28555468 DOI:10.4081/gh.2017.504]
20 Pistritto G,Trisciuoglio D,Ceci C,Garufi A,D’Orazi G.Apoptosis as anticancer mechanism:function and dysfunction of its modulators and targeted therapeutic strategies.
2016;8:603-619 [PMID:27019364 DOI:10.18632/aging.100934]
21 Efferth T.Willmar Schwabe Award 2006:antiplasmodial and antitumor activity of artemisinin--from bench to bedside.
2007;73:299-309 [PMID:17354163 DOI:10.1055/s-2007-967138]
22 Ooko E,Saeed ME,Kadioglu O,Sarvi S,Colak M,Elmasaoudi K,Janah R,Greten HJ,Efferth T.Artemisinin derivatives induce iron-dependent cell death (ferroptosis) in tumor cells.
2015;22:1045-1054 [PMID:26407947 DOI:10.1016/j.phymed.2015.08.002]
23 Greenshields AL,Shepherd TG,Hoskin DW.Contribution of reactive oxygen species to ovarian cancer cell growth arrest and killing by the anti-malarial drug artesunate.
2017;56:75-93 [PMID:26878598 DOI:10.1002/mc.22474]
24 Markowitsch SD,Schupp P,Lauckner J,Vakhrusheva O,Slade KS,Mager R,Efferth T,Haferkamp A,Juengel E.Artesunate Inhibits Growth of Sunitinib-Resistant Renal Cell Carcinoma Cells through Cell Cycle Arrest and Induction of Ferroptosis.
2020;12 [PMID:33121039 DOI:10.3390/cancers12113150]
25 Wang N,Zeng GZ,Yin JL,Bian ZX.Artesunate activates the ATF4-CHOP-CHAC1 pathway and affects ferroptosis in Burkitt’s Lymphoma.
2019;519:533-539 [PMID:31537387 DOI:10.1016/j.bbrc.2019.09.023]
26 Chen Y,Mi Y,Zhang X,Ma Q,Song Y,Zhang L,Wang D,Xing J,Hou B,Li H,Jin H,Du W,Zou Z.Dihydroartemisinin-induced unfolded protein response feedback attenuates ferroptosis via PERK/ATF4/HSPA5 pathway in glioma cells.
2019;38:402 [PMID:31519193 DOI:10.1186/s13046-019-1413-7]
27 Bi M,Naczki C,Koritzinsky M,Fels D,Blais J,Hu N,Harding H,Novoa I,Varia M,Raleigh J,Scheuner D,Kaufman RJ,Bell J,Ron D,Wouters BG,Koumenis C.ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth.
2005;24:3470-3481 [PMID:16148948 DOI:10.1038/sj.emboj.7600777]
28 Ameri K,Lewis CE,Raida M,Sowter H,Hai T,Harris AL.Anoxic induction of ATF-4 through HIF-1-independent pathways of protein stabilization in human cancer cells.
2004;103:1876-1882 [PMID:14604972 DOI:10.1182/blood-2003-06-1859]
29 Chen D,Fan Z,Rauh M,Buchfelder M,Eyupoglu IY,Savaskan N.ATF4 promotes angiogenesis and neuronal cell death and confers ferroptosis in a xCT-dependent manner.
2017;36:5593-5608 [PMID:28553953 DOI:10.1038/onc.2017.146]
30 Bai T,Liang R,Zhu R,Wang W,Zhou L,Sun Y.MicroRNA-214-3p enhances erastin-induced ferroptosis by targeting ATF4 in hepatoma cells.
2020;235:5637-5648 [PMID:31960438 DOI:10.1002/jcp.29496]
31 Alvarez SW,Sviderskiy VO,Terzi EM,Papagiannakopoulos T,Moreira AL,Adams S,Sabatini DM,Birsoy K,Possemato R.NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis.
2017;551:639-643 [PMID:29168506 DOI:10.1038/nature24637]
32 Pérez-Tomás R.Multidrug resistance:retrospect and prospects in anti-cancer drug treatment.
2006;13:1859-1876[PMID:16842198 DOI:10.2174/092986706777585077]
33 Nikolaou M,Pavlopoulou A,Georgakilas AG,Kyrodimos E.The challenge of drug resistance in cancer treatment:a current overview.
2018;35:309-318 [PMID:29799080 DOI:10.1007/s10585-018-9903-0]
34 Nanayakkara AK,Follit CA,Chen G,Williams NS,Vogel PD,Wise JG.Targeted inhibitors of P-glycoprotein increase chemotherapeutic-induced mortality of multidrug resistant tumor cells.
2018;8:967 [PMID:29343829 DOI:10.1038/s41598-018-19325-x]
35 Schinkel AH,Jonker JW.Mammalian drug efflux transporters of the ATP binding cassette (ABC) family:an overview.
2003;55:3-29 [PMID:12535572 DOI:10.1016/s0169-409x(02)00169-2]
36 Viswanathan VS,Ryan MJ,Dhruv HD,Gill S,Eichhoff OM,Seashore-Ludlow B,Kaffenberger SD,Eaton JK,Shimada K,Aguirre AJ,Viswanathan SR,Chattopadhyay S,Tamayo P,Yang WS,Rees MG,Chen S,Boskovic ZV,Javaid S,Huang C,Wu X,Tseng YY,Roider EM,Gao D,Cleary JM,Wolpin BM,Mesirov JP,Haber DA,Engelman JA,Boehm JS,Kotz JD,Hon CS,Chen Y,Hahn WC,Levesque MP,Doench JG,Berens ME,Shamji AF,Clemons PA,Stockwell BR,Schreiber SL.Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway.
2017;547:453-457 [PMID:28678785 DOI:10.1038/nature23007]
37 Zhou HH,Chen X,Cai LY,Nan XW,Chen JH,Chen XX,Yang Y,Xing ZH,Wei MN,Li Y,Wang ST,Liu K,Shi Z,Yan XJ.Erastin Reverses ABCB1-Mediated Docetaxel Resistance in Ovarian Cancer.
2019;9:1398 [PMID:31921655 DOI:10.3389/fonc.2019.01398]
38 Cui Y,K?nig J,Buchholz JK,Spring H,Leier I,Keppler D.Drug resistance and ATP-dependent conjugate transport mediated by the apical multidrug resistance protein,MRP2,permanently expressed in human and canine cells.
1999;55:929-937 [PMID:10220572]
39 Chen HH,Kuo MT.Role of glutathione in the regulation of Cisplatin resistance in cancer chemotherapy.
2010;2010 [PMID:20885916 DOI:10.1155/2010/430939]
40 Wu WJ,Zhang Y,Zeng ZL,Li XB,Hu KS,Luo HY,Yang J,Huang P,Xu RH.β-phenylethyl isothiocyanate reverses platinum resistance by a GSH-dependent mechanism in cancer cells with epithelial-mesenchymal transition phenotype.
2013;85:486-496 [PMID:23219523 DOI:10.1016/j.bcp.2012.11.017]
41 Di Pasqua AJ,Hong C,Wu MY,McCracken E,Wang X,Mi L,Chung FL.Sensitization of non-small cell lung cancer cells to cisplatin by naturally occurring isothiocyanates.
2010;23:1307-1309 [PMID:20707406 DOI:10.1021/tx100187f]
42 Dedoussis GV,Andrikopoulos NK.Glutathione depletion restores the susceptibility of cisplatin-resistant chronic myelogenous leukemia cell lines to Natural Killer cell-mediated cell death via necrosis rather than apoptosis.
2001;80:608-614 [PMID:11675936 DOI:10.1078/0171-9335-00193]
43 Roh JL,Kim EH,Jang HJ,Park JY,Shin D.Induction of ferroptotic cell death for overcoming cisplatin resistance of head and neck cancer.
2016;381:96-103 [PMID:27477897 DOI:10.1016/j.canlet.2016.07.035]
44 Zhang P,Wang W,Wei Z,Xu LI,Yang X,DU Y.xCT expression modulates cisplatin resistance in Tca8113 tongue carcinoma cells.
2016;12:307-314 [PMID:27347143 DOI:10.3892/ol.2016.4571]
45 Cui Q,Wang JQ,Assaraf YG,Ren L,Gupta P,Wei L,Ashby CR Jr,Yang DH,Chen ZS.Modulating ROS to overcome multidrug resistance in cancer.
2018;41:1-25 [PMID:30471641 DOI:10.1016/j.drup.2018.11.001]
46 Gentric G,Kieffer Y,Mieulet V,Goundiam O,Bonneau C,Nemati F,Hurbain I,Raposo G,Popova T,Stern MH,Lallemand-Breitenbach V,Müller S,Ca?eque T,Rodriguez R,Vincent-Salomon A,de Thé H,Rossignol R,Mechta-Grigoriou F.PML-Regulated Mitochondrial Metabolism Enhances Chemosensitivity in Human Ovarian Cancers.
2019;29:156-173.e10 [PMID:30244973 DOI:10.1016/j.cmet.2018.09.002]
47 Polewski MD,Reveron-Thornton RF,Cherryholmes GA,Marinov GK,Cassady K,Aboody KS.Increased Expression of System xc-in Glioblastoma Confers an Altered Metabolic State and Temozolomide Resistance.
2016;14:1229-1242 [PMID:27658422 DOI:10.1158/1541-7786.MCR-16-0028]
48 Chen L,Li X,Liu L,Yu B,Xue Y,Liu Y.Erastin sensitizes glioblastoma cells to temozolomide by restraining xCT and cystathionine-γ-lyase function.
2015;33:1465-1474[PMID:25585997 DOI:10.3892/or.2015.3712]
49 Tafreshi NK,Doligalski ML,Tichacek CJ,Pandya DN,Budzevich MM,El-Haddad G,Khushalani NI,Moros EG,McLaughlin ML,Wadas TJ,Morse DL.Development of Targeted Alpha Particle Therapy for Solid Tumors.
2019;24 [PMID:31779154 DOI:10.3390/molecules24234314]
50 Goldstein M,Kastan MB.The DNA damage response:implications for tumor responses to radiation and chemotherapy.
2015;66:129-143 [PMID:25423595 DOI:10.1146/annurev-med-081313-121208]
51 Kim BM,Hong Y,Lee S,Liu P,Lim JH,Lee YH,Lee TH,Chang KT,Hong Y.Therapeutic Implications for Overcoming Radiation Resistance in Cancer Therapy.
2015;16:26880-26913[PMID:26569225 DOI:10.3390/ijms161125991]
52 Morgan MA,Lawrence TS.Molecular Pathways:Overcoming Radiation Resistance by Targeting DNA Damage Response Pathways.
2015;21:2898-2904 [PMID:26133775 DOI:10.1158/1078-0432.CCR-13-3229]
53 Waldenjr TL,Hughes HN,Prostaglandin and lipid metabolism in radiation injury,prostaglandin and lipid metabolism in radiation.
1987
54 Pan X,Lin Z,Jiang D,Yu Y,Yang D,Zhou H,Zhan D,Liu S,Peng G,Chen Z,Yu Z.Erastin decreases radioresistance of NSCLC cells partially by inducing GPX4-mediated ferroptosis.
2019;17:3001-3008 [PMID:30854078 DOI:10.3892/ol.2019.9888]
55 Lei G,Zhang Y,Koppula P,Liu X,Zhang J,Lin SH,Ajani JA,Xiao Q,Liao Z,Wang H,Gan B.The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression.
2020;30:146-162 [PMID:31949285 DOI:10.1038/s41422-019-0263-3]
56 Ye LF,Chaudhary KR,Zandkarimi F,Harken AD,Kinslow CJ,Upadhyayula PS,Dovas A,Higgins DM,Tan H,Zhang Y,Buonanno M,Wang TJC,Hei TK,Bruce JN,Canoll PD,Cheng SK,Stockwell BR.Radiation-Induced Lipid Peroxidation Triggers Ferroptosis and Synergizes with Ferroptosis Inducers.
2020;15:469-484 [PMID:31899616 DOI:10.1021/acschembio.9b00939]
57 Nagane M,Kanai E,Shibata Y,Shimizu T,Yoshioka C,Maruo T,Yamashita T.Sulfasalazine,an inhibitor of the cystineglutamate antiporter,reduces DNA damage repair and enhances radiosensitivity in murine B16F10 melanoma.
2018;13:e0195151 [PMID:29649284 DOI:10.1371/journal.pone.0195151]
58 Shibata Y,Yasui H,Higashikawa K,Miyamoto N,Kuge Y.Erastin,a ferroptosis-inducing agent,sensitized cancer cells to X-ray irradiation via glutathione starvation in vitro and in vivo.
2019;14:e0225931 [PMID:31800616 DOI:10.1371/journal.pone.0225931]
59 Sleire L,Skeie BS,Netland IA,F?rde HE,Dodoo E,Selheim F,Leiss L,Heggdal JI,Pedersen PH,Wang J,Enger P?.Drug repurposing:sulfasalazine sensitizes gliomas to gamma knife radiosurgery by blocking cystine uptake through system Xc-,leading to glutathione depletion.
2015;34:5951-5959[PMID:25798841 DOI:10.1038/onc.2015.60]
60 de Visser KE,Eichten A,Coussens LM.Paradoxical roles of the immune system during cancer development.
2006;6:24-37 [PMID:16397525 DOI:10.1038/nrc1782]
61 Lin Y,Okada H.Cellular immunotherapy for malignant gliomas.
2016;16:1265-1275 [PMID:27434205 DOI:10.1080/14712598.2016.1214266]
62 Golstein P,Griffiths GM.An early history of T cell-mediated cytotoxicity.
2018;18:527-535 [PMID:29662120 DOI:10.1038/s41577-018-0009-3]
63 Khalil DN,Smith EL,Brentjens RJ,Wolchok JD.The future of cancer treatment:immunomodulation,CARs and combination immunotherapy.
2016;13:273-290 [PMID:26977780 DOI:10.1038/nrclinonc.2016.25]
64 Wang W,Green M,Choi JE,Gijón M,Kennedy PD,Johnson JK,Liao P,Lang X,Kryczek I,Sell A,Xia H,Zhou J,Li G,Li J,Li W,Wei S,Vatan L,Zhang H,Szeliga W,Gu W,Liu R,Lawrence TS,Lamb C,Tanno Y,Cieslik M,Stone E,Georgiou G,Chan TA,Chinnaiyan A,Zou W.CD8
T cells regulate tumour ferroptosis during cancer immunotherapy.
2019;569:270-274 [PMID:31043744 DOI:10.1038/s41586-019-1170-y]
65 Lang X,Green MD,Wang W,Yu J,Choi JE,Jiang L,Liao P,Zhou J,Zhang Q,Dow A,Saripalli AL,Kryczek I,Wei S,Szeliga W,Vatan L,Stone EM,Georgiou G,Cieslik M,Wahl DR,Morgan MA,Chinnaiyan AM,Lawrence TS,Zou W.Radiotherapy and Immunotherapy Promote Tumoral Lipid Oxidation and Ferroptosis via Synergistic Repression of SLC7A11.
2019;9:1673-1685 [PMID:31554642 DOI:10.1158/2159-8290.CD-19-0338]
66 Llovet JM,Kelley RK,Villanueva A,Singal AG,Pikarsky E,Roayaie S,Lencioni R,Koike K,Zucman-Rossi J,Finn RS.Hepatocellular carcinoma.
2021;7:6 [PMID:33479224 DOI:10.1038/s41572-020-00240-3]
67 Anwar SL,Krech T,Hasemeier B,Schipper E,Schweitzer N,Vogel A,Kreipe H,Lehmann U.Deregulation of RB1 expression by loss of imprinting in human hepatocellular carcinoma.
2014;233:392-401 [PMID:24838394 DOI:10.1002/path.4376]
68 Laurent-Puig P,Zucman-Rossi J.Genetics of hepatocellular tumors.
2006;25:3778-3786 [PMID:16799619 DOI:10.1038/sj.onc.1209547]
69 Louandre C,Marcq I,Bouhlal H,Lachaier E,Godin C,Saidak Z,Fran?ois C,Chatelain D,Debuysscher V,Barbare JC,Chauffert B,Galmiche A.The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells.
2015;356:971-977 [PMID:25444922 DOI:10.1016/j.canlet.2014.11.014]
70 Jennis M,Kung CP,Basu S,Budina-Kolomets A,Leu JI,Khaku S,Scott JP,Cai KQ,Campbell MR,Porter DK,Wang X,Bell DA,Li X,Garlick DS,Liu Q,Hollstein M,George DL,Murphy ME.An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model.
2016;30:918-930 [PMID:27034505 DOI:10.1101/gad.275891.115]
71 Lachaier E,Louandre C,Godin C,Saidak Z,Baert M,Diouf M,Chauffert B,Galmiche A.Sorafenib induces ferroptosis in human cancer cell lines originating from different solid tumors.
2014;34:6417-6422 [PMID:25368241]
72 Dixon SJ,Patel DN,Welsch M,Skouta R,Lee ED,Hayano M,Thomas AG,Gleason CE,Tatonetti NP,Slusher BS,Stockwell BR.Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis.
2014;3:e02523 [PMID:24844246 DOI:10.7554/eLife.02523]
73 Coriat R,Nicco C,Chéreau C,Mir O,Alexandre J,Ropert S,Weill B,Chaussade S,Goldwasser F,Batteux F.Sorafenib-induced hepatocellular carcinoma cell death depends on reactive oxygen species production in vitro and in vivo.
2012;11:2284-2293 [PMID:22902857 DOI:10.1158/1535-7163.MCT-12-0093]
74 Louandre C,Ezzoukhry Z,Godin C,Barbare JC,Mazière JC,Chauffert B,Galmiche A.Iron-dependent cell death of hepatocellular carcinoma cells exposed to sorafenib.
2013;133:1732-1742 [PMID:23505071 DOI:10.1002/ijc.28159]
75 Chun JH,Kim HK,Kim E,Kim IH,Kim JH,Chang HJ,Choi IJ,Lim HS,Kim IJ,Kang HC,Park JH,Bae JM,Park JG.Increased expression of metallothionein is associated with irinotecan resistance in gastric cancer.
2004;64:4703-4706 [PMID:15256434 DOI:10.1158/0008-5472.CAN-04-1063]
76 Gumulec J,Raudenska M,Adam V,Kizek R,Masarik M.Metallothionein -immunohistochemical cancer biomarker:a meta-analysis.
2014;9:e85346 [PMID:24416395 DOI:10.1371/journal.pone.0085346]
77 Sun X,Niu X,Chen R,He W,Chen D,Kang R,Tang D.Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis.
2016;64:488-500 [PMID:27015352 DOI:10.1002/hep.28574]
78 Bai T,Wang S,Zhao Y,Zhu R,Wang W,Sun Y.Haloperidol,a sigma receptor 1 antagonist,promotes ferroptosis in hepatocellular carcinoma cells.
2017;491:919-925 [PMID:28756230 DOI:10.1016/j.bbrc.2017.07.136]
79 Wen X,Reynolds L,Mulik RS,Kim SY,Van Treuren T,Nguyen LH,Zhu H,Corbin IR.Hepatic Arterial Infusion of Low-Density Lipoprotein Docosahexaenoic Acid Nanoparticles Selectively Disrupts Redox Balance in Hepatoma Cells and Reduces Growth of Orthotopic Liver Tumors in Rats.
2016;150:488-498 [PMID:26484708 DOI:10.1053/j.gastro.2015.10.008]
80 Moss LR,Mulik RS,Van Treuren T,Kim SY,Corbin IR.Investigation into the distinct subcellular effects of docosahexaenoic acid loaded low-density lipoprotein nanoparticles in normal and malignant murine liver cells.
2016;1860:2363-2376 [PMID:27418237 DOI:10.1016/j.bbagen.2016.07.004]
81 Ou W,Mulik RS,Anwar A,McDonald JG,He X,Corbin IR.Low-density lipoprotein docosahexaenoic acid nanoparticles induce ferroptotic cell death in hepatocellular carcinoma.
2017;112:597-607 [PMID:28893626 DOI:10.1016/j.freeradbiomed.2017.09.002]
82 Vincent A,Herman J,Schulick R,Hruban RH,Goggins M.Pancreatic cancer.
2011;378:607-620 [PMID:21620466 DOI:10.1016/S0140-6736(10)62307-0]
83 Lo M,Ling V,Wang YZ,Gout PW.The xc-cystine/glutamate antiporter:a mediator of pancreatic cancer growth with a role in drug resistance.
2008;99:464-472 [PMID:18648370 DOI:10.1038/sj.bjc.6604485]
84 Daher B,Parks SK,Durivault J,Cormerais Y,Baidarjad H,Tambutte E,Pouysségur J,Vu?eti? M.Genetic Ablation of the Cystine Transporter xCT in PDAC Cells Inhibits mTORC1,Growth,Survival,and Tumor Formation via Nutrient and Oxidative Stresses.
2019;79:3877-3890 [PMID:31175120 DOI:10.1158/0008-5472.CAN-18-3855]
85 Zhu S,Zhang Q,Sun X,Zeh HJ 3rd,Lotze MT,Kang R,Tang D.HSPA5 Regulates Ferroptotic Cell Death in Cancer Cells.
2017;77:2064-2077 [PMID:28130223 DOI:10.1158/0008-5472.CAN-16-1979]
86 Yamaguchi Y,Kasukabe T,Kumakura S.Piperlongumine rapidly induces the death of human pancreatic cancer cells mainly through the induction of ferroptosis.
2018;52:1011-1022 [PMID:29393418 DOI:10.3892/ijo.2018.4259]
87 Kasukabe T,Honma Y,Okabe-Kado J,Higuchi Y,Kato N,Kumakura S.Combined treatment with cotylenin A and phenethyl isothiocyanate induces strong antitumor activity mainly through the induction of ferroptotic cell death in human pancreatic cancer cells.
2016;36:968-976 [PMID:27375275 DOI:10.3892/or.2016.4867]
88 Wagner AD,Grothe W,Haerting J,Kleber G,Grothey A,Fleig WE.Chemotherapy in advanced gastric cancer:a systematic review and meta-analysis based on aggregate data.
2006;24:2903-2909 [PMID:16782930 DOI:10.1200/JCO.2005.05.0245]
89 Zhang H,Deng T,Liu R,Ning T,Yang H,Liu D,Zhang Q,Lin D,Ge S,Bai M,Wang X,Zhang L,Li H,Yang Y,Ji Z,Wang H,Ying G,Ba Y.CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer.
2020;19:43 [PMID:32106859 DOI:10.1186/s12943-020-01168-8]
90 Wang SF,Chen MS,Chou YC,Ueng YF,Yin PH,Yeh TS,Lee HC.Mitochondrial dysfunction enhances cisplatin resistance in human gastric cancer cells via the ROS-activated GCN2-eIF2α-ATF4-xCT pathway.
2016;7:74132-74151 [PMID:27708226 DOI:10.18632/oncotarget.12356]
91 Brait M,Ling S,Nagpal JK,Chang X,Park HL,Lee J,Okamura J,Yamashita K,Sidransky D,Kim MS.Cysteine dioxygenase 1 is a tumor suppressor gene silenced by promoter methylation in multiple human cancers.
2012;7:e44951 [PMID:23028699 DOI:10.1371/journal.pone.0044951]
92 Yamashita K,Hosoda K,Nishizawa N,Katoh H,Watanabe M.Epigenetic biomarkers of promoter DNA methylation in the new era of cancer treatment.
2018;109:3695-3706 [PMID:30264476 DOI:10.1111/cas.13812]
93 Hao S,Yu J,He W,Huang Q,Zhao Y,Liang B,Zhang S,Wen Z,Dong S,Rao J,Liao W,Shi M.Cysteine Dioxygenase 1 Mediates Erastin-Induced Ferroptosis in Human Gastric Cancer Cells.
2017;19:1022-1032 [PMID:29144989 DOI:10.1016/j.neo.2017.10.005]
94 She K,Fang S,Du W,Fan X,He J,Pan H,Huang L,He P,Huang J.SCD1 is required for EGFR-targeting cancer therapy of lung cancer via re-activation of EGFR/PI3K/AKT signals.
2019;19:103 [PMID:31019378 DOI:10.1186/s12935-019-0809-y]
95 Tesfay L,Paul BT,Konstorum A,Deng Z,Cox AO,Lee J,Furdui CM,Hegde P,Torti FM,Torti SV.Stearoyl-CoA Desaturase 1 Protects Ovarian Cancer Cells from Ferroptotic Cell Death.
2019;79:5355-5366 [PMID:31270077 DOI:10.1158/0008-5472.CAN-19-0369]
96 Wang C,Shi M,Ji J,Cai Q,Zhao Q,Jiang J,Liu J,Zhang H,Zhu Z,Zhang J.Stearoyl-CoA desaturase 1 (SCD1) facilitates the growth and anti-ferroptosis of gastric cancer cells and predicts poor prognosis of gastric cancer.
2020;12:15374-15391 [PMID:32726752 DOI:10.18632/aging.103598]
97 Fearon ER.Molecular genetics of colorectal cancer.
2011;6:479-507 [DOI:10.1146/annurevpathol-011110-130235]
98 Xie Y,Zhu S,Song X,Sun X,Fan Y,Liu J,Zhong M,Yuan H,Zhang L,Billiar TR,Lotze MT,Zeh HJ 3rd,Kang R,Kroemer G,Tang D.The Tumor Suppressor p53 Limits Ferroptosis by Blocking DPP4 Activity.
2017;20:1692-1704 [PMID:28813679 DOI:10.1016/j.celrep.2017.07.055]
99 Sugano K,Maeda K,Ohtani H,Nagahara H,Shibutani M,Hirakawa K.Expression of xCT as a predictor of disease recurrence in patients with colorectal cancer.
2015;35:677-682 [PMID:25667445]
100 Ma MZ,Chen G,Wang P,Lu WH,Zhu CF,Song M,Yang J,Wen S,Xu RH,Hu Y,Huang P.Xc-inhibitor sulfasalazine sensitizes colorectal cancer to cisplatin by a GSH-dependent mechanism.
2015;368:88-96 [PMID:26254540 DOI:10.1016/j.canlet.2015.07.031]
101 Zhang W,Trachootham D,Liu J,Chen G,Pelicano H,Garcia-Prieto C,Lu W,Burger JA,Croce CM,Plunkett W,Keating MJ,Huang P.Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukaemia.
2012;14:276-286 [PMID:22344033 DOI:10.1038/ncb2432]
102 Doxsee DW,Gout PW,Kurita T,Lo M,Buckley AR,Wang Y,Xue H,Karp CM,Cutz JC,Cunha GR,Wang YZ.Sulfasalazineinduced cystine starvation:potential use for prostate cancer therapy.
2007;67:162-171 [PMID:17075799 DOI:10.1002/pros.20508]
103 Zhang X,Sui S,Wang L,Li H,Zhang L,Xu S,Zheng X.Inhibition of tumor propellant glutathione peroxidase 4 induces ferroptosis in cancer cells and enhances anticancer effect of cisplatin.
2020;235:3425-3437 [PMID:31556117 DOI:10.1002/jcp.29232]
104 Ohashi S,Miyamoto S,Kikuchi O,Goto T,Amanuma Y,Muto M.Recent Advances From Basic and Clinical Studies of Esophageal Squamous Cell Carcinoma.
2015;149:1700-1715[PMID:26376349 DOI:10.1053/j.gastro.2015.08.054]
105 Zhang J,Wang N,Zhou Y,Wang K,Sun Y,Yan H,Han W,Wang X,Wei B,Ke Y,Xu X.Oridonin induces ferroptosis by inhibiting gamma-glutamyl cycle in TE1 cells.
2021;35:494-503 [PMID:32869425 DOI:10.1002/ptr.6829]
106 Lu Z,Zhang G,Zhang Y,Hua P,Fang M,Wu M,Liu T.Isoalantolactone induces apoptosis through reactive oxygen species-dependent upregulation of death receptor 5 in human esophageal cancer cells.
2018;352:46-58[PMID:29800641 DOI:10.1016/j.taap.2018.05.026]
107 Wang P,Dong Q,Zhang C,Kuan PF,Liu Y,Jeck WR,Andersen JB,Jiang W,Savich GL,Tan TX,Auman JT,Hoskins JM,Misher AD,Moser CD,Yourstone SM,Kim JW,Cibulskis K,Getz G,Hunt HV,Thorgeirsson SS,Roberts LR,Ye D,Guan KL,Xiong Y,Qin LX,Chiang DY.Mutations in isocitrate dehydrogenase 1 and 2 occur frequently in intrahepatic cholangiocarcinomas and share hypermethylation targets with glioblastomas.
2013;32:3091-3100 [PMID:22824796 DOI:10.1038/onc.2012.315]
108 Amary MF,Bacsi K,Maggiani F,Damato S,Halai D,Berisha F,Pollock R,O’Donnell P,Grigoriadis A,Diss T,Eskandarpour M,Presneau N,Hogendoorn PC,Futreal A,Tirabosco R,Flanagan AM.IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours.
2011;224:334-343 [PMID:21598255 DOI:10.1002/path.2913]
109 Wang TX,Liang JY,Zhang C,Xiong Y,Guan KL,Yuan HX.The oncometabolite 2-hydroxyglutarate produced by mutant IDH1 sensitizes cells to ferroptosis.
2019;10:755 [PMID:31591388 DOI:10.1038/s41419-019-1984-4]