毛晉軒 劉 東 史鵬程 顏 春 祝穎丹
(1 江西理工大學(xué),贛州 341000)
(2 浙江省機(jī)器人與智能制造裝備技術(shù)重點(diǎn)實(shí)驗(yàn)室,中國科學(xué)院寧波材料技術(shù)與工程研究所,寧波 315201)
文 摘 連續(xù)纖維熱塑性復(fù)合材料(CFRTP)擁有優(yōu)異的力學(xué)性能、抗疲勞性和設(shè)計(jì)靈活性,在航空航天、汽車、能源和海洋工程等軍民領(lǐng)域具有廣泛應(yīng)用。為了滿足大規(guī)模高效低成本制造的需求,可在CFRTP 產(chǎn)品開發(fā)階段使用仿真模擬手段代替昂貴的“試錯(cuò)”實(shí)驗(yàn)。本文詳細(xì)概述了CFRTP 熱成型模擬仿真的各類仿真方法研究進(jìn)展,總結(jié)了各類方法的優(yōu)勢及其局限性。最后展望了CFRTP熱成型模擬仿真的國內(nèi)未來研究重點(diǎn)及發(fā)展趨勢。
根據(jù)樹脂基體類型的不同,連續(xù)纖維增強(qiáng)樹脂基復(fù)合材料可分為熱固性(CFRTS)和熱塑性(CFRTP)[1]兩種。相比前者,CFRTP 具有成型周期短、預(yù)浸料存儲條件簡單且保質(zhì)期長、易于回收等優(yōu)點(diǎn)[2-3]。當(dāng)前CFRTP 成型工藝類型主要有熱壓、樹脂傳遞模塑成型(T-RTM)、拉擠、纏繞和自動(dòng)鋪放等,其中熱壓成型是以熱塑復(fù)合材料預(yù)浸料或?qū)雍习鍨樵牧希?jīng)加熱軟化后在模具中快速熱壓成型,而TRTM 需要將干纖維預(yù)先鋪覆到模具中,然后進(jìn)行注膠、加熱,樹脂固結(jié)成型。上述過程中軟化材料的熱變形-固結(jié)行為以及纖維鋪覆預(yù)成型的質(zhì)量會對最終構(gòu)件的力學(xué)性能、尺寸精度和缺陷產(chǎn)生決定性影響。與傳統(tǒng)短纖、長纖增強(qiáng)熱塑性復(fù)合材料的成型工藝相比,由于連續(xù)纖維變形延展性不足、樹脂流變行為復(fù)雜等因素,CFRTP 的鋪覆預(yù)成型和熱壓熱成型階段會涉及復(fù)雜的變形機(jī)理,并導(dǎo)致一些典型缺陷,如翹曲、褶皺,甚至纖維斷裂等。而國內(nèi)外大多仍然采用昂貴的“試錯(cuò)”實(shí)驗(yàn)進(jìn)行產(chǎn)品開發(fā),缺乏有效的理論模型開展工藝及性能預(yù)測研究,嚴(yán)重影響產(chǎn)品質(zhì)量、研發(fā)周期和推廣應(yīng)用[4],因此開展有關(guān)CFRTP 成型過程仿真研究,準(zhǔn)確預(yù)測纖維變形、缺陷產(chǎn)生和殘余變形等行為,對于優(yōu)化CFRTP 成型工藝,提高制品質(zhì)量具有重要意義。
當(dāng)前用于CFRTP 成型仿真的方法大體上可以分為兩類:運(yùn)動(dòng)學(xué)法與力學(xué)法。本文將評述各種模擬仿真方法的發(fā)展歷程及近年來最新研究成果。
運(yùn)動(dòng)學(xué)法也被稱為映射法、漁網(wǎng)算法或銷釘連接法(pin-jointed net),基本原理是利用幾何投影的方法,將二維平面的織物投影至三維曲面表面[5]。C.Mack[6]最早建立了映射法的雛形,他忽略了紗線伸長和滑移帶來的影響,推導(dǎo)出了可預(yù)測可展曲面鋪覆效果的微分方程,并通過對球面進(jìn)行鋪覆實(shí)驗(yàn),驗(yàn)證了該方程。后續(xù)學(xué)者對于運(yùn)動(dòng)學(xué)法鋪覆變形的完善與拓展,普遍基于該模型。Van Der WEE?N[7]認(rèn)為織物節(jié)點(diǎn)間的紗線投影到三維曲面上是測地線,研究了曲面上測地線的解法。BOROUCHAKI 等[8]提出了一種新的運(yùn)動(dòng)學(xué)模擬算法,該算法考慮了繪制在表面上的織物網(wǎng)格單元的真實(shí)幾何形狀。這樣的織物網(wǎng)格單元由曲線四邊形定義,該四邊形的邊緣是繪制在待鋪覆表面上具有相同長度的測地線。楊波等[9]提出了一種基于幾何信息的映射算法,該算法利用了相鄰節(jié)點(diǎn)處的曲率及切向量,確定該節(jié)點(diǎn)的位置,避免了高強(qiáng)度的迭代計(jì)算,提高了仿真效率。KAUFMANN 等[10]利用運(yùn)動(dòng)學(xué)法與其建立的鋪覆數(shù)據(jù)庫結(jié)合,從纖維角度偏差、余料和材料剪切角度等方面評估仿真種子點(diǎn)和參考角的組合,試圖在部件的結(jié)構(gòu)性能和制造成本之間找到平衡。
也有研究者另辟蹊徑,將運(yùn)動(dòng)學(xué)法與力學(xué)法相結(jié)合。SHARMA 等[11]提出了一種簡化的有限元模型來模擬鋪覆過程,其單胞模型如圖1所示。
該單胞由銷釘連接的剛性桁架網(wǎng)絡(luò)組成,通過對角單元引入剪切剛度,材料屬性可從拉伸試驗(yàn)獲取。該單元模型能夠代表平面內(nèi)力對剪切變形和纖維滑移的影響,同時(shí)作者預(yù)測該模型也適用于預(yù)浸料,因?yàn)樵撃P涂梢钥紤]結(jié)合預(yù)浸料的剪切響應(yīng)進(jìn)行模擬。
運(yùn)動(dòng)學(xué)法極大地提高了計(jì)算效率,然而這種模型做出的假設(shè)條件過于理想,未考慮載荷、邊界條件以及材料與模具之間的摩擦,缺乏預(yù)測褶皺的能力。因此,運(yùn)動(dòng)學(xué)法主要應(yīng)用于預(yù)浸料的手工鋪層與純纖維織物鋪覆性研究,或者在初步的設(shè)計(jì)階段,對最終的成型效果做簡單預(yù)估。
與運(yùn)動(dòng)學(xué)法相比,力學(xué)法有限元模擬仿真考慮了復(fù)合材料的力學(xué)性能,并且可以與成型的物理過程相耦合。用于模擬CFRTP 熱成型的力學(xué)模擬方法可分為三種:連續(xù)法、離散法以及半離散法。每種力學(xué)法耗費(fèi)的計(jì)算成本差別很大,連續(xù)法成本最低,而離散法最為昂貴,半離散法介于兩者之間[12]。
連續(xù)法適用于宏觀現(xiàn)象的模擬和全結(jié)構(gòu)問題的計(jì)算,離散法適用于模擬介觀尺度與微觀尺度的現(xiàn)象,而半離散法因其特性對所有尺度均可適用。圖2顯示了織物復(fù)合材料的三種不同的等級尺度。
連續(xù)法是在復(fù)合材料連續(xù)介質(zhì)力學(xué)的大框架下,假設(shè)復(fù)合材料是一個(gè)均質(zhì)化的連續(xù)體,這是目前為止研究最為廣泛的方法。因?yàn)樵撃P蛢H在材料行為方面與經(jīng)典連續(xù)結(jié)構(gòu)有所不同,所以對各類結(jié)構(gòu)具有良好的適用性[13]。連續(xù)法模擬仿真分析本質(zhì)上是金屬成形仿真過程中深拉伸的一種拓展,可采用經(jīng)典有限元軟件實(shí)現(xiàn)[14]。
早期的連續(xù)法建模,采用了理想化的纖維增強(qiáng)體模型,假設(shè)單向或織物預(yù)浸料中的纖維為剛體,因此早期研究局限于成型主要的變形模式—面內(nèi)剪切。如HSIAO 等[15]基于均質(zhì)化假設(shè),假設(shè)在黏性樹脂流體中的是剛性纖維,對熱成型過程進(jìn)行了數(shù)值模擬,所提出的各向異性材料參數(shù)與溫度有關(guān)。該模型既能計(jì)算纖維取向,又能計(jì)算冷卻階段產(chǎn)生的殘余應(yīng)力。然而,理想化的纖維增強(qiáng)模型不僅給后續(xù)的二次開發(fā)帶來困難,也難以提高仿真精度。此后隨著研究者進(jìn)一步改良與有限元仿真技術(shù)發(fā)展,逐漸解決了有限元編程困難的問題。YU 等[16]提出了一種新的描述大變形下非正交材料行為的本構(gòu)模型,旨在更好地表征獨(dú)立于網(wǎng)格剪切的面內(nèi)正應(yīng)變。該模型能準(zhǔn)確捕捉材料在不同加載路徑下的響應(yīng),真實(shí)地反映復(fù)合材料中纖維重分布和重定向。Guzman-Maldonado 等[17]基于麥克斯韋流變模型的推廣建立了一個(gè)非線性粘-超彈性模型,該模型是通過迭代的熱分析和成型分析來實(shí)現(xiàn)的,保證了沖壓變形和溫度場之間的耦合。計(jì)算得到的剪切角與實(shí)驗(yàn)結(jié)果吻合較好,其模型的仿真結(jié)果如圖3所示。結(jié)果表明,在成型過程中溫度場發(fā)生了明顯的變化,單胞變形和模具接觸改變了局部熱性能和溫度,而由于溫度變化和高應(yīng)變率,面內(nèi)剪切剛度增加,導(dǎo)致了頻繁起皺。在實(shí)際的熱成型過程中,溫度對預(yù)浸料的機(jī)械性能有著極大的影響,由此可見熱力耦合模型對于提高CFRTP的熱成型仿真精度是不可或缺的。
隨著近年來研究者們證明了彎曲剛度對缺陷褶皺產(chǎn)生有著不可忽視的影響,尤其是在確定褶皺的形狀和大小方面之后[18-20],不少研究者都將彎曲剛度納入了本構(gòu)模型??紤]了彎曲剛度的本構(gòu)模型,仿真將更貼合實(shí)際情況,如圖4所示[21]。
DOMINIK 等[22]基于沃伊特-開爾文模型和廣義麥克斯韋模型提出了一種模擬單向或織物增強(qiáng)體的應(yīng)變速率彎曲行為模型,該模型考慮了平面剪切、拉伸、彎曲剛度等力學(xué)行為。根據(jù)熱塑性復(fù)合材料單向帶在加工條件下的熱表征結(jié)果,成功地對所提出的黏彈性模型進(jìn)行了參數(shù)化。研究表明,廣義麥克斯韋方法結(jié)合非線性粘彈性行為最適合預(yù)測褶皺的產(chǎn)生及發(fā)展過程。
在研究某些特定問題時(shí),除了考慮面內(nèi)剪切、拉伸、彎曲剛度等常用的力學(xué)行為之外,還會考慮其他力學(xué)因素,如SOULAT 等[23]研究成型過程中的孔隙率問題時(shí),為了避免在實(shí)際成型仿真過程中對層合板每層進(jìn)行單獨(dú)計(jì)算,開發(fā)了一種具有橫向應(yīng)力的殼單元,該殼單元增加了一個(gè)自由度,允許單元模擬厚度的變化,通過解耦彎曲和收縮應(yīng)變來避免體積鎖定現(xiàn)象。結(jié)果表明,所獲得的橫向正應(yīng)力與去除孔隙的結(jié)果非常吻合。
總體而言,考慮的力學(xué)行為越多,仿真模擬得到的結(jié)果會越接近實(shí)際情況,然而現(xiàn)實(shí)中我們卻不得不考慮計(jì)算成本,所以根據(jù)研究問題的實(shí)際需要,對力學(xué)行為進(jìn)行取舍,可以忽略對最終結(jié)果影響小的力學(xué)行為以提高計(jì)算效率。連續(xù)法建模時(shí)由于假設(shè)連續(xù)介質(zhì)代替了連續(xù)纖維,在這種情況下,建模的困難之處在于宏觀模型必須考慮到纖維材料的異質(zhì)性,特別是在纖維大變形情況下,否則仿真結(jié)果與實(shí)驗(yàn)結(jié)果將出現(xiàn)較大的偏差。因此,連續(xù)法要用相對復(fù)雜的計(jì)算策略來設(shè)置單元中的纖維方向。
離散法將纖維增強(qiáng)相在介觀尺度下看作一系列的離散單元,該方法下的有限元模型由桁架、梁、殼或膜的網(wǎng)格單元組成。相比于連續(xù)法,這種模型的主要優(yōu)點(diǎn)是直接考慮了材料的異質(zhì)性,不需要復(fù)雜的計(jì)算策略來設(shè)置單元中的纖維方向,即可很清晰地描述纖維增強(qiáng)體內(nèi)部結(jié)構(gòu)[24]。
一般情況下,使用離散模型來模擬復(fù)合材料成型過程的研究目的是預(yù)測無褶皺成型結(jié)構(gòu),最基本的模型僅考慮了變形過程中纖維方向的計(jì)算。例如SIDHU 等[25]提出了一種棋盤模型,該模型使用三維桁架單元和三維殼單元來模擬織物復(fù)合材料預(yù)制體的成型,其模型單胞如圖5所示。
該模型考慮了纖維間摩擦、絲束干擾和纖維滑移。結(jié)果表明,大變形過程中隨著剪切角的變化,紗線間出現(xiàn)明顯的滑移。JAUFFRèS 等[26]提出了一種基于亞彈性描述的顯式有限元公式離散模型,紗線的拉伸行為由桁架、梁等一維單元模擬,織物的剪切行為由殼或薄膜單元模擬,該模型有限元分析結(jié)果與實(shí)驗(yàn)數(shù)據(jù)基本一致。SHERWOOD 等[27]在該模型的框架下,考慮了復(fù)合材料熱沖壓過程中模具與織物之間摩擦,使用恒定和可變摩擦因數(shù)做對比實(shí)驗(yàn),進(jìn)行半球沖壓模擬。結(jié)果表明提高沖壓速度會導(dǎo)致模具與織物界面的摩擦力增加,從而增加了纖維的拉伸應(yīng)力,且沖壓力與沖壓速度無關(guān)。HARRISON等[28]提出了一個(gè)多尺度能量模型,使用桁架和殼單元來模擬黏性織物復(fù)合材料的熱成型,通過將多尺度能量模型與宏觀尺度模型相結(jié)合,使得該模型能夠預(yù)測復(fù)合材料成型過程中的剪切應(yīng)力-剪切角-剪切速率行為,適用于在不同剪切速率下的成型模擬。
此外,離散法的特性允許模型更容易預(yù)測一些細(xì)觀現(xiàn)象,如BOISSE 等[29-30]基于纖維增強(qiáng)體離散模型的宏觀成型,預(yù)測了纖維之間的大滑移現(xiàn)象。在該模型中每個(gè)織物單元被模擬為一組非常簡化的殼單元,在保證自由度很低的情況下,還能描述纖維之間的摩擦接觸,如圖6所示。
離散法所耗費(fèi)的計(jì)算資源巨大,計(jì)算效率低,RAMGULAM 等[31]認(rèn)為,雖然詳細(xì)的有限元分析對最終方案必不可少,但近似的力分析有利于在工藝優(yōu)化過程中快速篩選大量的鋪層方案。因此,他提出了一種快速計(jì)算織物褶皺的近似力學(xué)分析方法。利用一種基于微分幾何的鋪覆算法,如公式(1)、(2)所示,獲得了織物在曲面上變形后的紗線取向。
式中,K是高斯曲率,α、β為織物內(nèi)角。通過調(diào)整外部載荷和給定織物的剪切性能,可以快速確定織物鋪覆時(shí)出現(xiàn)問題的區(qū)域。此外,壓力分布可用于計(jì)算層間摩擦力。這種計(jì)算效率高的力/褶皺方法還可用于擴(kuò)展運(yùn)動(dòng)學(xué)褶皺模型的能力,以補(bǔ)充全尺度有限元分析。
離散法主要的局限性在于因?yàn)閷⒚扛w維看作獨(dú)立單元,所以必須考慮大量纖維復(fù)雜的機(jī)械性能以及它們之間的相互作用,且平面內(nèi)剪切和拉伸之間是相互依賴的,很難考慮剛度之間的耦合。離散法通常只用在介觀尺度上分析小數(shù)量的單元,并且這個(gè)級別一般不適合分析整個(gè)成型模擬過程[32]。因此,離散法建模時(shí)需要在單胞模型的準(zhǔn)確性和自由度總數(shù)之間進(jìn)行折中。單胞的建模必須足夠準(zhǔn)確才能獲得正確的整體宏觀力學(xué)行為,且每個(gè)單胞的自由度數(shù)要盡量小,以便計(jì)算成千上萬個(gè)單胞的成型過程[33]。
半離散法是在介觀尺度上構(gòu)建的特定有限元。一方面,與離散法一樣,材料的力學(xué)行為被拆分,僅考慮主要?jiǎng)偠龋ㄈ缋?、面?nèi)剪切或面外彎曲);另一方面,用與連續(xù)法相同的方式,將所有剛度都視為在半離散單元內(nèi)部,可以很容易地將剛度參數(shù)傳遞到宏觀模型的半離散單元中[34]。
HAMILA 等[35]提出了一種考慮拉伸和面內(nèi)剪切行為的三結(jié)點(diǎn)單元。經(jīng)紗和緯紗方向相對于單元側(cè)面是任意的,材料參數(shù)是通過標(biāo)準(zhǔn)拉伸和偏軸拉伸試驗(yàn)確定。而后續(xù)HAMILA 等[36]改良了這種半離散三角形單元,除了考慮拉伸剛度和平面內(nèi)剪切剛度之外,還考慮了彎曲剛度。彎曲行為由懸臂彎曲試驗(yàn)給出,半離散單元的彎曲曲率由相鄰單元的位移得到,就鋪覆過程中褶皺的出現(xiàn)和發(fā)展分析了所考慮的三種剛度的影響。CHEN 等[37]集中研究了熱成型過程中CFRTP 的層間剪切行為,提出了一種層合板粘彈性模型,其模型示意如圖7所示。該模型應(yīng)用了具有八個(gè)節(jié)點(diǎn)的大位移三維內(nèi)聚單元,研究織物熱塑性復(fù)合材料的層間剪切機(jī)理。模型考慮了不同加工溫度和不同應(yīng)變速率下的拉伸、壓縮和面內(nèi)剪切行為。通過該模型,可以模擬溫度對應(yīng)變率的影響規(guī)律。WANG 等[38]在該模型的基礎(chǔ)上考慮了熔點(diǎn)附近不同溫度下鋪層的張力、面內(nèi)剪切和彎曲剛度,模擬了多層CFRTP 熱成型過程中的接觸摩擦,并使用拉格朗日乘子法進(jìn)行計(jì)算,仿真得到的成型剪切角和起皺角與熱成型實(shí)驗(yàn)結(jié)果吻合較好。
半離散法旨在避免使用應(yīng)力張量,僅通過張力以及面內(nèi)剪切和彎曲剛度直接定義單元上的載荷。這些量簡單地定義在一個(gè)單胞上,而且這些材料參數(shù)可以通過復(fù)合材料的標(biāo)準(zhǔn)測試直接獲得。半離散法也可以與經(jīng)典有限元技術(shù)一起使用,并且通過對特定有限元單元進(jìn)行定義考慮纖維的異質(zhì)性,進(jìn)而提高計(jì)算精度。
目前,在CFRTP 成型模擬仿真領(lǐng)域仍存在一些重要的科學(xué)問題有待解決,例如沒有一種較為系統(tǒng)的流固熱力耦合分析模型,缺少針對成型缺陷成因機(jī)理的探索,只是簡單的定性分析。同時(shí),在介觀與宏觀尺度建模的相關(guān)文獻(xiàn)中可以看出,開發(fā)一個(gè)同步的多尺度模型來模擬仿真成型過程仍然是一個(gè)巨大挑戰(zhàn)。
總體而言,我國CFRTP 成型的模擬仿真仍停留在實(shí)驗(yàn)室階段,尚不能夠滿足實(shí)際生產(chǎn)的需求。為了解決高性能CFRTP 大批量生產(chǎn)所需求的高效低成本、穩(wěn)定可靠的制造工藝,對CFRTP 成型的模擬仿真依然是未來樹脂基復(fù)合材料領(lǐng)域的重要研究方向之一,值得進(jìn)一步深入研究。