高露, 王會瑩, 董學(xué)君△
circEPSTI1與惡性腫瘤關(guān)系的研究進展*
高露1, 王會瑩2, 董學(xué)君1△
(1浙江大學(xué)紹興醫(yī)院,浙江 紹興 312000;2紹興文理學(xué)院醫(yī)學(xué)院,浙江 紹興 312000)
環(huán)狀RNA;circEPSTI1;腫瘤
環(huán)狀RNA(circular RNA, circRNA)是一類具有共價閉合環(huán)狀結(jié)構(gòu)的內(nèi)源性非編碼RNA,不具有5'帽狀結(jié)構(gòu)和3'腺苷酸尾結(jié)構(gòu)。由于其閉合環(huán)狀結(jié)構(gòu)對核酸外切酶具有較高的耐受性,circRNA不易被降解,因此,可穩(wěn)定存在于真核生物細胞的細胞質(zhì)中。1976年,circRNA首次被Sanger等[1]發(fā)現(xiàn),最初認為是RNA錯誤剪接所產(chǎn)生的無功能產(chǎn)物。隨著生物信息學(xué)和高通量測序技術(shù)等的發(fā)展,大量研究報道circRNA在腫瘤中具有海綿化微小RNA(microRNA, miRNA)、翻譯蛋白、與蛋白質(zhì)結(jié)合及調(diào)控親本基因等功能[2-6]。乳腺癌[7]、肺癌[8]、頭頸部腫瘤[9]、結(jié)直腸癌[10-11]、卵巢癌[11]和子宮頸癌[12]等惡性腫瘤中均存在circRNA的異常表達,circRNA有望成為潛在的腫瘤診斷指標(biāo)和治療靶點。circEPSTI1(hsa_circRNA_000479; chr13: 43528083-43544806)首先在三陰性乳腺癌(triple-negative breast cancer, TNBC)中通過微陣列分析被發(fā)現(xiàn),隨后被證實在卵巢癌、骨肉瘤、非小細胞肺癌(non-small-cell lung cancer, NSCLC)、口腔鱗狀細胞癌(oral squamous cell carcinoma, OSCC)及宮頸癌等的發(fā)生發(fā)展中起著重要作用,有希望成為腫瘤治療靶點和預(yù)后生物標(biāo)志物。本文就circEPSTI1在腫瘤領(lǐng)域的研究進展作一綜述,旨在更加明確circEPSTI1在腫瘤中的作用。
circRNA由前體mRNA通過可變剪接產(chǎn)生。根據(jù)其在基因組中的來源及構(gòu)成序列不同,circRNA可分為外顯子circRNA(exonic circRNA, ecRNA)、內(nèi)含子circRNA(circular intronic RNA, ciRNA)和外顯子-內(nèi)含子circRNA(exon-intron circRNA, EIciRNA)[13-14]。大部分ecRNA位于細胞質(zhì),而EIciRNAs和ciRNA主要存在于細胞核內(nèi)[6, 15]。
circRNA在腫瘤中的作用機制主要有四種:(1)作為競爭性內(nèi)源RNA(competing endogenous RNA, ceRNA)或miRNA海綿調(diào)控mRNA的表達[2];(2)通過由內(nèi)部核糖體進入位點(internal ribosome entry site, IRES)驅(qū)動的開放閱讀框(open reading frame, ORF)以及6-甲基腺苷(6-methyladenosine, m6A)翻譯功能蛋白[3-4];(3)與RNA結(jié)合蛋白(RNA-binding protein, RBP)結(jié)合并調(diào)控其表達[5];(4)EIciRNA和ciRNA與RNA聚合酶II(RNA polymerase II, RNA Pol II)相互作用激活親本mRNA的轉(zhuǎn)錄[6]。
其中,海綿作用是circRNA目前研究較多的領(lǐng)域,miRNA被circRNA吸附,以減少其對靶基因的負調(diào)控,構(gòu)成調(diào)節(jié)性circRNA-miRNA-mRNA軸。一個circRNA上可有多個miRNA結(jié)合位點,一個miRNA也可以被多種circRNA所吸附,例如ciRS-7充當(dāng)miR-7和miR-876-5p等的海綿[16-17],而miR-7又可被circWHSC和circHIPK3等吸附[18-19]。
circEPSTI1位于染色體13q14,來源于上皮基質(zhì)相互作用蛋白1(epithelial stromal interaction protein 1, EPSTI1)。EPSTI1對腫瘤細胞的上皮-充間質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition, EMT)具有促進作用[20-21],并且在多種腫瘤中過表達,參與腫瘤的侵襲和轉(zhuǎn)移[22-23]。circEPSTI1在腫瘤增殖、侵襲、轉(zhuǎn)移和EMT等過程發(fā)揮重要作用,由于其在不同腫瘤中的差異表達,可通過調(diào)控circEPSTI1-miRNA-mRNA軸,進而影響這些腫瘤的發(fā)生發(fā)展過程。
2.1乳腺癌乳腺癌是女性腫瘤死亡的第二大原因[24]。乳腺癌約占所有女性新發(fā)病例的31%,死亡人數(shù)占女性腫瘤死亡人數(shù)的15%,僅次于肺癌。此外,TNBC更是年輕女性因乳腺癌死亡的重要原因,TNBC是指雌激素受體(estrogen receptor, ER)、孕激素受體(progesterone receptor, PR)和人類表皮生長因子受體2(human epidermal growth factor receptor-2, Her-2)均為陰性的乳腺癌,約占所有乳腺癌病例的15%[25],具有較高的晚期診斷率和遠處轉(zhuǎn)移率,預(yù)后較差。因此,尋找能夠早期檢測TNBC的分子診斷標(biāo)志物成為當(dāng)今研究熱點。Chen等[26]分析了TNBC中circRNA的表達譜,發(fā)現(xiàn)173個circRNA的表達上調(diào),77個circRNA的表達下調(diào),且以外顯子為主,從中篩選出顯著上調(diào)的circEPSTI1進行研究,發(fā)現(xiàn)沉默circEPSTI1可抑制TNBC細胞系的生長增殖并誘導(dǎo)其凋亡;還證實了circEPSTI1對miR-4753和miR-6809具有海綿作用,且circEPSTI1表達與B細胞淋巴瘤/白血病因子11A(B-cell lymphoma/leukemia 11A,)的表達呈正相關(guān),通過circEPSTI1-miR-4753/6809-BCL11A軸影響體內(nèi)TNBC生長和增殖(圖1A)。此外,研究發(fā)現(xiàn)circEPSTI1與TNBC的腫瘤大小、浸潤淋巴結(jié)和TNM分期呈正相關(guān),隨后對患者無病生存期(disease-free survival, DFS)和總生存期(overall survival, OS)進行Kaplan-Meier生存分析,結(jié)果顯示,circEPSTI1和高表達的患者,DFS和OS均顯著降低。因此,circEPSTI1可作為TNBC預(yù)后的評價指標(biāo)。
2.2卵巢癌卵巢癌是女性腫瘤相關(guān)死亡率的第五大原因[24]。卵巢癌早期癥狀不明顯,或僅有較少的非特異性癥狀,大大增加了卵巢癌的診斷難度。大部分患者確診時已經(jīng)發(fā)展到晚期并擴散到骨盆以外,其5年生存率約為49%。由此可見,早期發(fā)現(xiàn)卵巢癌是降低其死亡率的關(guān)鍵,尋找能夠早期篩查卵巢癌的靈敏指標(biāo)是目前亟待解決的問題。Xie等[27]應(yīng)用qRT-PCR檢測了50對卵巢癌組織和鄰近正常組織的circEPSTI1,發(fā)現(xiàn)circEPSTI1在卵巢癌組織中高表達。隨后敲減卵巢癌細胞中的circEPSTI1,探索circEPSTI1在卵巢癌進展中的作用,結(jié)果顯示,體外抑制circEPSTI1可抑制細胞的增殖和侵襲,并誘導(dǎo)細胞凋亡。同時還進行了裸鼠荷瘤試驗,結(jié)果表明,抑制circEPSTI1可抑制體內(nèi)卵巢癌細胞的增殖和侵襲。接著,通過生物信息學(xué)分析在circEPSTI1序列中發(fā)現(xiàn)了miR-942的互補結(jié)合位點,推測miR-942的靶基因為。雙螢光素酶報告基因?qū)嶒炓沧C實了circEPSTI1可以與miR-942相互作用,而是miR-942的直接靶標(biāo)(圖1B)。此外,還檢測到miR-942在卵巢癌中表達下調(diào),而EPSTI1在卵巢癌組織中高表達,且EPSTI1的表達可以被miR-942抑制。將卵巢癌細胞中的circEPSTI1敲低后,EPSTI1的表達也降低,但抑制miR-942可使其逆轉(zhuǎn)。綜上所述,circEPSTI1作為ceRNA通過海綿化miR-942來調(diào)節(jié)的表達,有望成為卵巢癌的潛在生物標(biāo)志物和治療靶點。
2.3骨肉瘤骨肉瘤是兒童和青壯年最常見的原發(fā)性骨惡性腫瘤,起源于原始間充質(zhì)細胞。約10%~20%的患者在發(fā)病時伴有轉(zhuǎn)移[28],最常見的是轉(zhuǎn)移到肺部。最初通過截肢控制疾病發(fā)展,然而,大多數(shù)患者在術(shù)后1年內(nèi)死亡,他們通常在確診時即存在肺微轉(zhuǎn)移。盡管后續(xù)研究出新輔助化療聯(lián)合手術(shù),極大改善了大部分患者的預(yù)后,但不能切除或復(fù)發(fā)的骨肉瘤患者,預(yù)后仍不理想。因此,在骨肉瘤轉(zhuǎn)移前的早期診斷,以及尋找更佳的治療方式,是目前研究的重點。Tan等[29]在50對相鄰正常組織和骨肉瘤組織中檢測了circEPSTI1的表達,發(fā)現(xiàn)其在骨肉瘤中顯著上調(diào);隨后的細胞實驗證實,敲減circEPSTI1在體外可抑制細胞的增殖、遷移和侵襲;進一步建立小鼠異種移植模型,檢測circEPSTI1在體內(nèi)的作用,發(fā)現(xiàn)circEPSTI1的抑制可導(dǎo)致腫瘤生長抑制并減少肺轉(zhuǎn)移結(jié)節(jié),即circEPSTI1在體內(nèi)可抑制骨肉瘤細胞的增殖和遷移。因此,circEPSTI1或許可以作為治療骨肉瘤的靶點和生物標(biāo)志物。此外,circEPSTI1通過海綿化miR-892b來調(diào)控髓樣細胞白血病1(myeloid cell leukemia 1,)的表達(圖1C),為骨肉瘤的治療拓展了新方向。
2.4NSCLC肺癌是腫瘤死亡的第一大原因[24],盡管由于腫瘤篩查普及和治療方案進步,肺癌死亡率在最近幾年有較為明顯的下降趨勢,但平均每天仍有約350人死亡。此外,肺癌的5年相對生存率為22%,僅次于胰腺癌、肝癌和食道癌。約85%的肺癌是NSCLC,因其易復(fù)發(fā)和轉(zhuǎn)移,NSCLC患者的預(yù)后較差。越來越多人致力于研究circRNA在NSCLC發(fā)生、侵襲和轉(zhuǎn)移過程中所扮演的角色,以尋求更為理想的治療措施。Xie等[30]證實,circEPSTI1在NSCLC中異常上調(diào),且其高表達與NSCLC患者的低生存率相關(guān);細胞實驗及動物實驗證實circEPSTI1在體內(nèi)和體外均可促進NSCLC的進展;進一步研究發(fā)現(xiàn),circEPSTI1在NSCLC細胞中充當(dāng)miR-145的海綿,而miR-145負調(diào)控高遷移率族盒蛋白3(high-mobility group box 3,);當(dāng)下調(diào)circEPSTI1時,NSCLC細胞的增殖、集落形成和轉(zhuǎn)移均受到抑制,而敲減miR-145或過表達可逆轉(zhuǎn)這個過程,提示circEPSTI1通過miR-145/HMGB3軸促進NSCLC的進展(圖1D)。Yang等[31]發(fā)現(xiàn),circEPSTI1作為miR-1248的海綿,可調(diào)控促腫瘤基因——含三聯(lián)基序蛋白24(tripartite motif-containing protein 24,);抑制miR-1248促進了NSCLC細胞的增殖和侵襲,并阻斷了circEPSTI1敲減介導(dǎo)的對NSCLC細胞增殖和侵襲的抑制作用(圖1E)。隨后的數(shù)據(jù)顯示,miR-1248負調(diào)控的表達,是NSCLC中已報道的致癌基因[32]。的上調(diào)顯著逆轉(zhuǎn)了circEPSTI1敲減或miR-1248過表達誘導(dǎo)的NSCLC細胞中的腫瘤抑制作用。以上結(jié)果表明,circEPSTI1在NSCLC的進展中起著關(guān)鍵作用,這為NSCLC的早期診斷和靶向治療藥物的研發(fā)提供了新思路。
2.5OSCCOSCC好發(fā)于口腔黏膜,惡性程度較高。除了吸煙、酗酒、人乳頭瘤病毒(human papilloma virus, HPV)感染等[33-35]危險因素外,由咀嚼檳榔引起的口腔黏膜下纖維化(oral submucous fibrosis, OSF)[36]是亞太國家OSCC發(fā)病率高的重要原因。而Yang等[38]發(fā)現(xiàn),在中國,具有OSF的OSCC患者的預(yù)后不如無OSF的OSCC患者。Wang等[29]發(fā)現(xiàn),circEPSTI1的表達在正常頰粘膜、OSF組織和OSCC組織中依次上調(diào),且circEPSTI1顯著促進OSCC細胞增殖和侵襲,circEPSTI1的下調(diào)可導(dǎo)致OSCC細胞G1期停滯。此外,circEPSTI1與OSCC較差的預(yù)后正相關(guān),可作為伴有OSF的OSCC的預(yù)后生物標(biāo)志物。進一步分析篩選出miR-942-5p,發(fā)現(xiàn)circEPSTI1通過充當(dāng)miR-942-5p的海綿來促進EMT并調(diào)節(jié)潛在轉(zhuǎn)化生長因子β結(jié)合蛋白2(latent transforming growth factor-β binding protein 2,)的表達(圖1F、K),從而促進OSCC細胞增殖和侵襲。此外,磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase, PI3K)/哺乳動物雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)雙重抑制劑BEZ235可減輕circEPSTI1過表達所誘導(dǎo)的OSCC細胞增殖和侵襲,使磷酸化PI3K(phosphorylated PI3K, p-PI3K)、磷酸化蛋白激酶B(phosphorylated protein kinase B, p-AKT)和磷酸化mTOR(phosphorylated mTOR, p-mTOR)蛋白水平的升高顯著減弱,厘清了circEPSTI1通過PI3K/AKT/mTOR信號通路成分的磷酸化促進OSCC發(fā)展的過程(圖1G),阻斷PI3K/AKT/mTOR信號通路可以逆轉(zhuǎn)circEPSTI1-miR-942-5p-LTBP2軸誘導(dǎo)的OSCC細胞增殖和侵襲。目前迫切需要在OSF背景下識別OSCC的診斷和治療生物標(biāo)志物,而circEPSTI1具有潛在價值。
2.6宮頸癌宮頸癌是婦科三大惡性腫瘤之一,甚至在20~39歲的女性中,宮頸癌是僅次于乳腺癌的第二大死亡原因[24]。據(jù)統(tǒng)計,2019年美國共有4 152名女性死于宮頸癌,其中一半年齡在50歲以下。盡管接種HPV疫苗可以預(yù)防宮頸癌發(fā)生,但由于接種率不理想,以及宮頸癌篩查項目不夠普及等,宮頸癌仍是目前女性尤其是青年女性需警惕的問題。彭芳等[39]發(fā)現(xiàn),circEPSTI1的表達水平與國際婦產(chǎn)科聯(lián)盟(Federation of Gynecology and Obstetrics, FIGO)分期、組織學(xué)分級和淋巴結(jié)轉(zhuǎn)移呈正相關(guān),與患者年齡、腫瘤大小、病理類型及HPV感染等因素則無關(guān)。后續(xù)實驗表明,敲減circEPSTI1在體內(nèi)外均對宮頸癌細胞的進展具有抑制作用。此外,敲減宮頸癌細胞中的circEPSTI1,則EPSTI1、Twist及Slug蛋白表達水平也顯著降低(圖1H),提示circEPSTI1對宮頸癌的促進作用可能是通過調(diào)控EPSTI1/Twist/Slug信號通路實現(xiàn)的。Wu等[40]發(fā)現(xiàn),circEPSTI1-miR-375/409-3p/515-5p-溶質(zhì)載體7家族成員11(solute carrier family 7 member 11, SLC7A11)軸通過ceRNA機制影響宮頸癌細胞的增殖(圖1I),并與鐵死亡相關(guān)(圖1J)。鐵死亡[41]不同于自噬、凋亡和壞死,是一種獨特的鐵依賴性非凋亡細胞死亡形式。它在生物化學(xué)和形態(tài)上均有所不同,是脂質(zhì)過氧化的獨特狀態(tài),導(dǎo)致活性氧(reactive oxygen species , ROS)積累。實驗結(jié)果顯示,沉默circEPSTI1抑制了SLC7A11的表達,而SLC7A11和SLC3A2組成了谷氨酸和胱氨酸逆向轉(zhuǎn)運體system xc-[42],參與谷胱甘肽(glutathione, GSH)的合成過程。GSH是重要的細胞內(nèi)抗氧化劑,通過減輕ROS的積累來保護細胞免受氧化應(yīng)激。沉默circEPSTI1可降低谷胱甘肽過氧化物酶4(glutathione peroxidase 4, GPX4)的表達,GPX4不能將GSH轉(zhuǎn)化為氧化型谷胱甘肽(oxidized glutathione, GSSG),最終演變?yōu)橹|(zhì)過氧化并誘導(dǎo)鐵死亡[43-44]。綜上所述,circEPSTI1可抑制鐵死亡,但仍需進一步深入研究來證實circEPSTI1是否可作為宮頸癌的治療靶點或生物標(biāo)志物。circEPSTI1在上述腫瘤中的表達情況及相關(guān)機制的總結(jié)見表1。
Figure 1. circEPSTI1 regulatory mechanisms in tumors (drawn by Figfraw).
表1 circEPSTI1在腫瘤中的表達模式及臨床意義
盡管關(guān)于circRNA的研究已經(jīng)持續(xù)了幾十年,但大多數(shù)circRNA的生理功能及作用機制仍不清楚,甚至有部分circRNA在不同腫瘤中的表達趨勢也存在差異,例如circMTO1既可在某些腫瘤中上調(diào)發(fā)揮致癌作用,又能在另一些腫瘤中充當(dāng)抑癌因子?,F(xiàn)有的研究結(jié)果表明,circEPSTI1在各種腫瘤中的表達均為上調(diào),與腫瘤大小、淋巴結(jié)轉(zhuǎn)移、生存期、TNM分期及不良預(yù)后等顯著相關(guān),主要通過circRNA-miRNA-mRNA軸發(fā)揮作用,而circEPSTI1的表達變化及調(diào)控機制,是否可作為腫瘤診斷指標(biāo)及治療靶點等問題,還有待深入研究。
[1] Sanger HL, Klotz G, Riesner D, et al. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures[J]. Proc Natl Acad Sci U S A, 1976, 73(11):3852-3856.
[2] Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013, 495(7441):384-388.
[3] Legnini I, Di Timoteo G, Rossi F, et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis[J]. Mol Cell, 2017, 66(1):22-37.e9.
[4] Yang Y, Fan X, Mao M, et al. Extensive translation of circular RNAs driven by6-methyladenosine[J]. Cell Res, 2017, 27(5):626-641.
[5] Okholm TLH, Sathe S, Park SS, et al. Transcriptome-wide profiles of circular RNA and RNA-binding protein interactions reveal effects on circular RNA biogenesis and cancer pathway expression[J]. Genome Med, 2020, 12(1):112.
[6] Li Z, Huang C, Bao C, et al. Exon-intron circular RNAs regulate transcription in the nucleus[J]. Nat Struct Mol Biol, 2015, 22(3):256-264.
[7] Du WW, Yang W, Li X, et al. The Circular rna circska3 binds integrin beta1 to induce invadopodium formation enhancing breast cancer invasion [J]. Mol Ther, 2020, 28(5):1287-1298.
[8]李紀鵬, 王建華. circ_0000231在非小細胞肺癌中的表達及功能研究[J]. 中國病理生理雜志, 2020, 36(2):239-243.
Li J, Wang J. Expression and function of circular RNA_0000231 in non-small-cell lung cancer[J]. Chin J Pathophysiol, 2020, 36(2):239-243.
[9] Guo Y, Yang J, Huang Q, et al. Circular RNAs and their roles in head and neck cancers[J]. Mol Cancer, 2019, 18(1):44.
[10] Wang J, Zhang Y, Song H, et al. The circular RNA circSPARC enhances the migration and proliferation of colorectal cancer by regulating the JAK/STAT pathway[J]. Mol Cancer, 2021, 20(1):81.
[11] Li H, Luo F, Jiang X, et al. CircITGB6 promotes ovarian cancer cisplatin resistance by resetting tumor-associated macrophage polarization toward the M2 phenotype[J]. J Immunother Cancer, 2022, 10(3):e004029.
[12] Cen Y, Zhu T, Zhang Y, et al. hsa_circ_0005358 suppresses cervical cancer metastasis by interacting with PTBP1 protein to destabilize CDCP1 mRNA[J]. Mol Ther Nucleic Acids, 2022, 27:227-240.
[13] Kristensen LS, Andersen MS, Stagsted LVW, et al. The biogenesis, biology and characterization of circular RNAs[J]. Nat Rev Genet, 2019, 20(11):675-691.
[14] Xiao MS, Ai Y, Wilusz JE. Biogenesis and functions of circular rnas come into focus[J]. Trends Cell Biol, 2020, 30(3):226-240.
[15] Guo JU, Agarwal V, Guo H, et al. Expanded identification and characterization of mammalian circular RNAs[J]. Genome Biol, 2014, 15(7):409.
[16] Sang M, Meng L, Sang Y, et al. Circular RNA ciRS-7 accelerates ESCC progression through acting as a miR-876-5p sponge to enhance MAGE-A family expression[J]. Cancer Lett, 2018, 426:37-46.
[17] Huang H, Wei L, Qin T, et al. Circular RNA ciRS-7 triggers the migration and invasion of esophageal squamous cell carcinoma via miR-7/KLF4 and NF-κB signals[J]. Cancer Biol Ther, 2019, 20(1):73-80.
[18] Guan S, Li L, Chen WS, et al. Circular RNA WHSC1 exerts oncogenic properties by regulating miR-7/TAB2 in lung cancer[J]. J Cell Mol Med, 2021, 25(20):9784-9795.
[19] Gao M, Li X, Yang Z, et al. circHIPK3 regulates proliferation and differentiation of myoblast through the miR‐7/TCF12 pathway[J]. J Cell Physiol, 2021, 236(10):6793-6805.
[20] de Neergaard M, Kim J, Villadsen R, et al. Epithelial-stromal interaction 1 (EPSTI1) substitutes for peritumoral fibroblasts in the tumor microenvironment[J]. Am J Pathol, 2010, 176(3):1229-1240.
[21] Chen E, Yang F, He H, et al. Alteration of tumor suppressor BMP5 in sporadic colorectal cancer: a genomic and transcriptomic profiling based study[J]. Mol Cancer, 2018, 17(1):176.
[22] Tan YY, Xu XY, Wang JF, et al. MiR-654-5p attenuates breast cancer progression by targeting EPSTI1[J]. Am J Cancer Res, 2016, 6(2):522-532.
[23] Li T, Lu H, Shen C, et al. Identification of epithelial stromal interaction 1 as a novel effector downstream of Kruppel-like factor 8 in breast cancer invasion and metastasis[J]. Oncogene, 2014, 33(39):4746-4755.
[24] Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(1):7-33.
[25] Scott LC, Mobley LR, Kuo TM, et al. Update on triple-negative breast cancer disparities for the United States: A population-based study from the United States Cancer Statistics database, 2010 through 2014[J]. Cancer, 2019, 125(19):3412-3417.
[26] Chen B, Wei W, Huang X, et al. circEPSTI1 as a prognostic marker and mediator of triple-negative breast cancer progression[J]. Theranostics, 2018, 8(14):4003-4015.
[27] Xie J, Wang S, Li G, et al. circEPSTI1 regulates ovarian cancer progression via decoying miR-942[J]. J Cell Mol Med, 2019, 23(5):3597-3602.
[28] Luetke A, Meyers PA, Lewis I, et al. Osteosarcoma treatment - where do we stand? A state of the art review[J]. Cancer Treat Rev, 2014, 40(4):523-532.
[29] Tan X, Tan D, Li H, et al. circEPSTI1 acts as a ceRNA to regulate the progression of osteosarcoma[J]. Curr Cancer Drug Targets, 2020, 20(4):288-294.
[30] Xie Y, Wang L, Yang D. CircEPSTI1 promotes the progression of non-small cell lung cancer through miR-145/HMGB3 axis[J]. Cancer Manag Res, 2020, 12:6827-6836.
[31] Yang T, Li M, Li H, et al. Downregulation of circEPSTI1 represses the proliferation and invasion of non-small cell lung cancer by inhibiting TRIM24 via miR-1248 upregulation[J]. Biochem Biophys Res Commun, 2020, 530(1):348-354.
[32] Appikonda S, Thakkar KN, Barton MC. Regulation of gene expression in human cancers by TRIM24[J]. Drug Discov Today Technol, 2016, 19:57-63.
[33] Ko YC, Huang YL, Lee CH, et al. Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan[J]. Oral Pathol Med, 1995, 24(10):450-453.
[34] Lee SU, Moon SH, Choi SW, et al. Prognostic significance of smoking and alcohol history in young age oral cavity cancer[J]. Oral Dis, 2020, 26(7):1440-1448.
[35] Ramqvist T, Dalianis T. An epidemic of oropharyngeal squamous cell carcinoma (oscc) due to human papillomavirus (HPV) infection and aspects of treatment and prevention[J]. Anticancer Res, 2011, 31(5):1515-1519.
[36] Shen YW, Shih YH, Fuh LJ, et al. Oral submucous fibrosis: a review on biomarkers, pathogenic mechanisms, and treatments[J]. Int J Mol Sci, 2020, 21(19):7231-7249.
[37] Yang J, Wang ZY, Huang L, et al. Do betel quid and areca nut chewing deteriorate prognosis of oral cancer? A systematic review, meta-analysis, and research agenda[J]. Oral Dis, 2021, 27(6):1366-1375.
[38] Wang J, Jiang C, Li N, et al. The circEPSTI1/mir-942-5p/LTBP2 axis regulates the progression of OSCC in the background of OSF via EMT and the PI3K/Akt/mTOR pathway[J]. Cell Death Dis, 2020, 11(8):682.
[39] 彭芳, 丁向東, 周揚帆, 等. 環(huán)狀RNA-circEPSTI1在子宮頸癌生長與侵襲中的作用及機制[J]. 臨床與實驗病理學(xué)雜志, 2020, 36(4):390-396.
Peng F, Ding X, Zhou Y, et al. Role and mechanism of circular RNA-circEPSTI1 in the growth and invasion of cervical cancer[J]. Chin J Clin Exp Pathol, 2020, 36(4):390-396.
[40] Wu P, Li C, Ye DM, et al. Circular RNA circEPSTI1 accelerates cervical cancer progression via miR-375/409-3P/515-5p-SLC7A11 axis[J]. Aging (Albany NY), 2021, 13(3):4663-4673.
[41] Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5):1060-1072.
[42] Lewerenz J, Hewett SJ, Huang Y, et al. The cystine/glutamate antiporter system xc- in health and disease: from molecular mechanisms to novel therapeutic opportunities[J]. Antioxid Redox Signal, 2013, 18(5):522-555.
[43] Yang WS, SriRamaratnam R, Welsch ME, et al. Regulation of ferroptotic cancer cell death by GPX4[J]. Cell, 2014, 156(1/2):317-331.
[44] Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018[J]. Cell Death Differ, 2018, 25(3):486-541.
Progress in relationship between circEPSTI1 and malignant tumors
GAO Lu1, WANG Hui-ying2, DONG Xue-jun1△
(1,312000,;2,312000,)
Circular RNAs (circRNAs) are formed by reverse shearing of progenitor messenger RNA. The 3'and 5' clipping domains are long circular non-coding RNAs linked by covalent bonds. circRNAs are not easily degraded by the exonuclease. Motifs of circRNAs have demonstrated sequence conservation and tissue-specific properties. Studies in recent years have shown that the abnormal expression of circRNAs can affect the occurrence and development of various malignant tumors. circEPSTI1 is a member of circRNA, which is identified as a up-regulated circRNA in triple-negative breast cancer by microarray analysis. circEPSTI1 is differentially expressed in ovarian cancer, osteosarcoma, non-small-cell lung cancer, oral squamous cell carcinoma and cervical cancer compared with normal tissues, and is closely related to tumor occurrence and development. It can be a potential target for tumor treatment and prognostic biomarkers. This paper reviews the molecular mechanism of circEPSTI1 in tumors and its related roles in tumor initiation and progression.
Circular RNA; circEPSTI1; Tumor
1000-4718(2022)09-1716-06
2022-04-26
2022-07-04
13357596668; E-mail: dxj9666@163.com
R730.2; R363
A
10.3969/j.issn.1000-4718.2022.09.023
[基金項目]紹興市公益性技術(shù)應(yīng)用研究計劃項目(No. 2020A13007);浙江省醫(yī)藥衛(wèi)生科研計劃項目(No. 2022KY1284)
(責(zé)任編輯:林白霜,李淑媛)