国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

非小細(xì)胞肺癌EGFR-TKIs耐藥機(jī)制研究新進(jìn)展

2022-11-16 01:35黃國棟劉心寧曹玉風(fēng)姜婷鄭心
關(guān)鍵詞:奧希替尼外顯子耐藥性

黃國棟 劉心寧 曹玉風(fēng) 姜婷 鄭心

[摘要] 表皮生長因子受體酪氨酸激酶抑制劑(EGFR-TKIs)在治療非小細(xì)胞肺癌(NSCLC)中取得重大突破,但EGFR-TKIs耐藥已成為NSCLC靶向治療不可避免的難題。本文對EGFR-TKIs耐藥機(jī)制研究進(jìn)展進(jìn)行綜述,并總結(jié)近年來抗耐藥治療的潛在方法,以期為NSCLC的EGFR-TKIs抗耐藥治療提供啟示與新思路。

[關(guān)鍵詞] 癌,非小細(xì)胞肺;表皮生長因子受體酪氨酸激酶抑制劑;抗藥性,腫瘤;綜述

[中圖分類號] R743.2

[文獻(xiàn)標(biāo)志碼] A

[文章編號] 2096-5532(2022)05-0786-05doi:10.11712/jms.2096-5532.2022.58.160

[開放科學(xué)(資源服務(wù))標(biāo)識碼(OSID)]

[網(wǎng)絡(luò)出版] https://kns.cnki.net/kcms/detail/37.1517.R.20221025.1102.001.html;2022-10-26 11:10:58

PROGRESS ON THE MECHANISM OF EGFR-TKI RESISTANCE IN NON-SMALL CELL LUNG CANCER

HUANG Guodong, LIU Xinning, CAO Yufeng, JIANG Ting, ZHENG Xin

(Shandong University of Traditional Chinese Medicine, Jinan 250355, China)

[ABSTRACT] Significant breakthroughs have been made in the treatment of non-small cell lung cancer (NSCLC) with epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), but EGFR-TKIs resistance has become an inevitable problem in targeted therapy of NSCLC. In this paper, the mechanism of EGFR-TKIs resistance and the potential anti-resistance strategies developed in recent years were summarized, in order to provide enlightenment and new ideas to overcome EGFR-TKIs resis-tance in NSCLC treatment.

[KEY WORDS] carcinoma, non-small-cell lung; epidermal growth factor receptor tyrosine kinase inhibitors; drug resis-tance, neoplasm; review

2020年全球癌癥統(tǒng)計(jì)結(jié)果顯示,肺癌(LC)新發(fā)病人超過220萬人,死亡超過179萬人,已成為當(dāng)今全球致死人數(shù)最多的癌癥。非小細(xì)胞肺癌(NSCLC)占LC的85%,驅(qū)動基因的突變被認(rèn)為是導(dǎo)致NSCLC發(fā)生的主要致病機(jī)制之一,驅(qū)動基因在NSCLC細(xì)胞的生長、浸潤和轉(zhuǎn)移中起到重要推動作用。其中表皮生長因子受體(EGFR)被認(rèn)為是NSCLC中最常見的驅(qū)動基因,在臨床NSCLC病人中該基因突變率為41.7%~44.8%。EGFR酪氨酸激酶抑制劑(EGFR-TKIs)的出現(xiàn)為NSCLC病人的臨床治療帶來了希望,EGFR-TKIs主要通過特異性地與EGFR激酶功能區(qū)中的ATP結(jié)合位點(diǎn)競爭性結(jié)合,抑制激酶活性從而抑制EGFR蛋白的磷酸化,阻斷NSCLC細(xì)胞生長、增殖與轉(zhuǎn)移的相關(guān)信號通路而發(fā)揮作用。體內(nèi)外研究及臨床治療均證實(shí),EGFR-TKIs對于EGFR敏感突變的NSCLC病人較傳統(tǒng)化療有著更好的療效和安全性,已成為EGFR敏感突變型NSCLC病人的一線藥物,但在廣泛臨床應(yīng)用中,對其產(chǎn)生耐藥性的報(bào)道越來越多。本文從原發(fā)性耐藥、獲得性耐藥、適應(yīng)性耐藥3方面對近年來NSCLC的EGFR-TKIs耐藥機(jī)制和潛在用藥對策進(jìn)行綜述,以期為EGFR-TKIs耐藥機(jī)制和抗耐藥治療的進(jìn)一步研究提供參考。

1 EGFR-TKIs原發(fā)性耐藥

原發(fā)性耐藥是指基因突變發(fā)生在對藥物治療不敏感的位置,病人首次應(yīng)用EGFR-TKIs便無治療效果。主要突變?yōu)镋GFR基因20號外顯子插入突變、鼠類肉瘤病毒癌基因(KRAS)突變及10號染色體上磷酸酶與張力蛋白同源物基因(PTEN)缺失。

1.1 EGFR基因20號外顯子插入突變

20號外顯子插入突變占EGFR基因相關(guān)突變的4%~12%。當(dāng)突變發(fā)生時(shí),腫瘤細(xì)胞可不受EGFR-TKIs的影響,繼續(xù)激活EGFR相關(guān)通路。在EGFR基因常見外顯子突變亞型中,19號及21號外顯子突變對EGFR-TKIs的治療表現(xiàn)出敏感,但20號外顯子的插入突變對3代EGFR-TKIs的靶向治療均不敏感。但值得注意的是,20號外顯子突變的少數(shù)亞型EGFR A763_Y764insFQEA可被厄洛替尼抑制,D770delinsGY亞型對達(dá)克替尼表現(xiàn)出敏感,因此辨別其突變亞型具有重要臨床意義。20號外顯子插入突變并非提示完全耐藥,插入突變?nèi)舭l(fā)生在20號外顯子前端則提示對EGFR-TKIs敏感,若發(fā)生在后端則提示耐藥,此規(guī)律值得進(jìn)一步探索和驗(yàn)證。

1.2 KRAS基因突變

文獻(xiàn)報(bào)道,NSCLC病人KRAS基因突變的發(fā)生率約為11%,KRAS基因發(fā)生突變時(shí),會導(dǎo)致KRAS蛋白的結(jié)構(gòu)發(fā)生改變并一直處于激活狀態(tài),進(jìn)而持續(xù)激動EGFR非依賴性RAS/RAF/MEK/MAPK通路,使其不再受上游EGFR信號的影響。ZHANG等研究發(fā)現(xiàn),對KRAS基因突變的NSCLC病人使用EGFR-TKIs治療,其客觀緩解率僅為9.5%,中位無進(jìn)展生存期(mPFS)僅為1個(gè)月。因此,在選用EGFR-TKIs治療前進(jìn)行KRAS基因檢測有重要意義。目前針對KRAS基因突變的首款靶向藥物sotorasib(AMG510)已被FDA批準(zhǔn)上市,國內(nèi)對于KRAS抑制劑的研究也已進(jìn)入到臨床階段。

1.3 10號染色體上PTEN缺失

PTEN基因缺失在NSCLC病人中發(fā)生率較低,約為3.0%。PTEN基因是首個(gè)被發(fā)現(xiàn)具有磷酸酶活性的抑癌基因,主要通過負(fù)調(diào)節(jié)PI3K/mTOR/Akt通路發(fā)揮抗癌作用。PTEN缺失可導(dǎo)致EGFR及Akt的激活,降低厄洛替尼誘導(dǎo)的細(xì)胞凋亡。研究發(fā)現(xiàn),在EGFR-TKIs治療病人中,存在PTEN缺失的病人無進(jìn)展生存期及總生存期更短。目前,PTEN缺失已成為EGFR-TKIs原發(fā)性耐藥的重要機(jī)制之一,提高PTEN的表達(dá)水平可提高EGFR-TKIs的敏感性,而調(diào)節(jié)microRNA-21、microRNA-25-3p、microRNA-103a-3p等靶向PTEN的microRNA可提高PTEN的表達(dá)水平。

2 EGFR-TKIs獲得性耐藥

獲得性耐藥是指在EGFR-TKIs治療過程中,對NSCLC細(xì)胞中已存在基因改變的進(jìn)一步選擇以及在藥物的選擇壓力下基因產(chǎn)生新的突變或異常表達(dá)而顯現(xiàn)出的耐藥性。

2.1 T790M突變

在EGFR-TKIs治療出現(xiàn)獲得性耐藥的病人中,約50%的病人出現(xiàn)了T790M突變,T790M突變是指EGFR基因20號外顯子發(fā)生了二次突變,導(dǎo)致位于EGFR的第790位的蘇氨酸(T)被取代為甲硫氨酸(M)。其引發(fā)獲得性耐藥的可能機(jī)制為 :①突變使EGFR與ATP的親和力大幅增加,從而抑制了EGFR-TKIs對ATP的競爭;②蘇氨酸被體積較大的甲硫氨酸取代后,甲硫氨酸的一條側(cè)鏈通過位阻效應(yīng)阻礙EGFR與EGFR-TKIs的結(jié)合。第三代EGFR-TKIs奧希替尼可與胞內(nèi)EGFR中的C797氨基酸共價(jià)結(jié)合,抑制EGFR的磷酸化及其下游信號的激活。目前,奧希替尼對于初次治療病人的mPFS可達(dá)20個(gè)月,對于已經(jīng)過前代EGFR-TKIs治療病人的mPFS可達(dá)10個(gè)月,但在治療后部分病人會出現(xiàn)C797S突變而再次耐藥。

2.2 C797S突變

C797S突變即奧希替尼作用的EGFR第797位氨基酸結(jié)合位點(diǎn)由半胱氨酸(C)突變?yōu)榻z氨酸(S),從而阻礙奧希替尼與Cys797氨基酸殘基的共價(jià)結(jié)合,引發(fā)耐藥。T790M突變與C797S突變同時(shí)存在反式突變和順式突變:發(fā)生反式突變時(shí)肺癌細(xì)胞雖然對第三代EGFR-TKIs具有耐藥性,但仍對第一、三代EGFR-TKIs聯(lián)合療法敏感;發(fā)生順式突變時(shí)肺癌細(xì)胞對單獨(dú)或者聯(lián)合使用EGFR-TKIs均不敏感。EAI045是近年來針對奧希替尼C797S突變耐藥研發(fā)的新藥,EAI045聯(lián)合西妥昔單抗的療法已在體內(nèi)和體外試驗(yàn)中被證實(shí)對于奧希替尼耐藥后的L858R/T790M/C797S突變有效,因此被譽(yù)為第四代EGFR-TKIs,但目前包括EAI045、JBJ-04-125-02及國產(chǎn)新藥TQB3804在內(nèi)的第四代EGFR-TKIs仍在臨床研究階段,尚未廣泛投入到臨床應(yīng)用中。

2.3 肝細(xì)胞生長因子受體(MET)基因擴(kuò)增

MET基因擴(kuò)增引發(fā)耐藥性占EGFR-TKIs獲得性耐藥的15%~22%。MET為原癌基因,其配體為肝細(xì)胞生長因子(HGF),MET基因擴(kuò)增可通過激活ErbB3信號,活化ErBb3/PI3K/Akt信號通路,從而繞過EGFR-TKIs靶點(diǎn)EGFR,產(chǎn)生耐藥性。有研究發(fā)現(xiàn),MET擴(kuò)增降低了腫瘤細(xì)胞對第三代EGFR-TKIs的敏感性。張寧寧應(yīng)用自主培養(yǎng)耐藥性HCC827細(xì)胞系研究發(fā)現(xiàn),克唑替尼(可針對MET的蛋白激酶抑制劑)單藥或聯(lián)用??颂婺峋哂幸种芃ET信號通路活化的作用。臨床試驗(yàn)證明,對MET陽性病人使用MET抑制劑onartuzumab聯(lián)用厄洛替尼療效顯著。值得注意的是,配體HGF的水平升高也可以通過誘導(dǎo)激活MET通路而引發(fā)EGFR-TKIs耐藥,提示EGFR-TKIs耐藥產(chǎn)生的原因并不局限于靶點(diǎn)本身。MET基因擴(kuò)增合并T790M突變的耐藥性病人約有6.8%,其進(jìn)展后生存期(PPS)僅為10.7個(gè)月,對此類病人采用第一代EGFR-TKIs聯(lián)用MET抑制劑或單用T790M抑制劑治療均效果不佳,提示臨床應(yīng)用MET抑制劑聯(lián)合T790M抑制劑可能為潛在抗耐藥療法。

2.4 人表皮生長因子受體-2(HER2)基因擴(kuò)增

HER2基因擴(kuò)增在獲得性耐藥病人中的發(fā)生率約為12%。HER2易與包括EGFR在內(nèi)的其他HER家族成員結(jié)合形成異源二聚體,含有HER2的異源二聚體具有強(qiáng)致癌信號,可避開EGFR靶點(diǎn),持續(xù)激活RAS/MAP/MEK和PI3K/Akt通路,使腫瘤細(xì)胞不斷增殖與轉(zhuǎn)移。HER2基因擴(kuò)增也被認(rèn)為是奧希替尼獲得性耐藥的重要機(jī)制之一,奧希替尼聯(lián)合曲妥珠單抗與微管抑制劑DM1的偶聯(lián)物T-DM1是克服此種耐藥的潛在療法。

2.5 上皮-間質(zhì)轉(zhuǎn)化(EMT)

EMT在NSCLC獲得性耐藥中的發(fā)生率約20%,在EGFR-TKIs治療過程中,EMT可由多種EMT轉(zhuǎn)錄因子啟動,從而轉(zhuǎn)化為遷移能力更強(qiáng)的間充質(zhì)細(xì)胞。研究發(fā)現(xiàn),發(fā)生EMT的吉非替尼耐藥細(xì)胞侵襲與轉(zhuǎn)移能力更強(qiáng)。目前許多研究已從抑制EMT轉(zhuǎn)錄因子及阻斷相關(guān)通路的角度來研究抗EGFR-TKIs耐藥。Twist1為EMT的轉(zhuǎn)錄因子之一,YOCHUM等研究發(fā)現(xiàn),Twist1過表達(dá)可通過抑制促凋亡蛋白Bim基因的轉(zhuǎn)錄使腫瘤細(xì)胞對厄洛替尼與奧希替尼產(chǎn)生耐藥性,而駱駝蓬堿可通過抑制Twist1的表達(dá)來克服EGFR-TKIs耐藥。

2.6 NSCLC轉(zhuǎn)化為小細(xì)胞肺癌(SCLC)

由NSCLC轉(zhuǎn)變?yōu)镾CLC產(chǎn)生獲得性耐藥的發(fā)生率為1.4%~14.0%。LEE等采用基因測序及免疫組化的方法對EGFR-TKIs耐藥性肺腺癌和SCLC進(jìn)行了研究,發(fā)現(xiàn)兩者的克隆起源相同,且RB1與TP53這兩種抑癌基因的失活為轉(zhuǎn)化發(fā)生的重要機(jī)制。耐藥后發(fā)生組織學(xué)轉(zhuǎn)化,提示耐藥后有必要重新進(jìn)行組織學(xué)檢查,以及時(shí)改變治療策略。目前,NSCLC轉(zhuǎn)化為SCLC后采用經(jīng)典型SCLC的放化療治療方案進(jìn)行治療是被廣泛認(rèn)可的。

2.7 髓樣細(xì)胞白血病-1(Mcl-1)基因過表達(dá)

Mcl-1屬于與調(diào)控細(xì)胞凋亡密切相關(guān)的B 細(xì)胞淋巴瘤-2(Bcl-2)家族。SHI等研究發(fā)現(xiàn),奧希替尼能夠通過促進(jìn)Mcl-1的降解與延緩Bim的降解從而誘導(dǎo)EGFR敏感突變NSCLC細(xì)胞系凋亡,但對PC-9/AR、HCC827/AR等耐藥細(xì)胞系無效。此外,過表達(dá)Mcl-1或直接抑制Bim均顯著抑制了奧希替尼對于EGFR敏感突變NSCLC細(xì)胞系的凋亡作用,這表明Mcl-1的過表達(dá)是第三代EGFR-TKIs獲得性耐藥的重要耐藥機(jī)制之一。目前,Mcl-1過表達(dá)已經(jīng)在許多NSCLC EGFR-TKIs耐藥細(xì)胞系中被證實(shí),Mcl-1已成為逆轉(zhuǎn)耐藥性的治療靶點(diǎn)之一。

目前靶向Mcl-1主要有兩種途徑:①通過BH3模擬物等小分子抑制劑直接阻斷Mcl-1與凋亡相關(guān)蛋白的相互作用;②通過靶向促進(jìn)Mcl-1蛋白酶體的降解(如強(qiáng)心苷)或阻斷Mcl-1的翻譯(如mTOR抑制劑)和轉(zhuǎn)錄(CDK抑制劑)從而間接下調(diào)Mcl-1水平。此外,通過Bak/Bax激動劑避開Mcl-1的凋亡抑制直接激活線粒體外膜上的促凋亡蛋白Bak/Bax也是潛在有效的抗耐藥方法。

3 適應(yīng)性耐藥

適應(yīng)性耐藥是指在EGFR-TKIs治療起始時(shí),NSCLC細(xì)胞便通過重構(gòu)并激活其信號通路對藥物靶向治療產(chǎn)生適應(yīng)性抵抗從而立即表達(dá)出耐藥性。ROSELL等研究認(rèn)為,NSCLC細(xì)胞在用藥之初可通過細(xì)胞外調(diào)節(jié)蛋白激酶(ERK)的負(fù)反饋喪失,影響受體酪氨酸激酶(RTK)的表達(dá),而RTKs的激活導(dǎo)致了典型信號通路的重構(gòu),由此引發(fā)適應(yīng)性耐藥,并提出了EGFR-TKIs聯(lián)用其他RTKs抑制劑為適應(yīng)性耐藥的潛在療法。近期有研究發(fā)現(xiàn),在EGFR-TKIs治療的初期,部分NSCLC細(xì)胞可通過應(yīng)激性激活NF-κB通路、Stat3通路來抵抗藥物作用,從而引發(fā)適應(yīng)性耐藥。

在國內(nèi),MA等研究發(fā)現(xiàn),MEK/ERK/MAPK通路的反饋性重新激活是厄洛替尼重要的適應(yīng)性耐藥機(jī)制,通過應(yīng)用厄洛替尼與MEK抑制劑曲美替尼的聯(lián)合療法可以顯著抑制小鼠移植瘤的生長;周燁等研究發(fā)現(xiàn),EGFR-TKIs適應(yīng)性耐藥可由絲氨酸的生物合成途徑引發(fā),其中起主要作用的是磷酸絲氨酸氨基轉(zhuǎn)移酶1、磷酸甘油酸脫氫酶和磷酸絲氨酸磷酸酶,通過抑制此3種酶的活性,EGFR-TKIs的療效可以在早期得到提高,耐藥的發(fā)生也得以延緩。

4 小結(jié)與展望

EGFR-TKIs已成為治療EGFR突變NSCLC病人的一線藥物。但目前,EGFR-TKIs耐藥性的頻發(fā)對臨床療效已造成嚴(yán)重影響,且各類耐藥機(jī)制復(fù)雜,部分耐藥機(jī)制可同時(shí)存在,臨床出現(xiàn)耐藥后往往需要再次進(jìn)行基因檢測、病理診斷明確耐藥類型,且目前針對各類耐藥機(jī)制的對策尚未統(tǒng)一,耐藥的后續(xù)治療也往往以再次耐藥告終。目前,對于EGFR-TKIs耐藥機(jī)制的研究已步入多學(xué)科研究時(shí)代,但仍存有很多空白值得進(jìn)一步深入研究。如近期發(fā)現(xiàn)腫瘤細(xì)胞通過外泌體在微環(huán)境的相互作用以及PD-L1過表達(dá)等免疫因素可引發(fā)EGFR-TKIs耐藥,但尚需進(jìn)一步驗(yàn)證和探索抗耐藥對策。

在當(dāng)前EGFR-TKIs抗耐藥研究中,EGFR-TKIs新藥物的研發(fā)速度遠(yuǎn)遠(yuǎn)不及臨床藥物耐藥的發(fā)生速度,且新藥物的應(yīng)用仍無法避免耐藥性的再次出現(xiàn),新藥物與新耐藥機(jī)制的對抗終將是場拉鋸戰(zhàn)、持久戰(zhàn),且很難避免后者占據(jù)上風(fēng)。因此,在研發(fā)新藥物以針對耐藥突變的同時(shí),通過研究綜合治療手段例如聯(lián)合用藥、多靶點(diǎn)治療、中醫(yī)藥輔助治療等方式,增加現(xiàn)有EGFR-TKIs療效或延緩耐藥的發(fā)生時(shí)間,可能是探索抗耐藥治療的另一種更有效率的方式。

[參考文獻(xiàn)]

[1]SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: a Cancer Journal for Clinicians, 2021,71(3):209-249.

[2]GRIDELLI C, ROSSI A, CARBONE D P, et al. Non-small-cell lung cancer[J]. Nature Reviews Disease Primers, 2015,1:15009.

[3]SUDA K, MITSUDOMI T, SHINTANI Y, et al. Clinical impacts of EGFR mutation status: analysis of 5780 surgically resected lung cancer cases[J]. The Annals of Thoracic Surgery, 2021,111(1):269-276.

[4]ZHANG Y L, YAO Y, XU Y P, et al. Pan-cancer circulating tumor DNA detection in over 10, 000 Chinese patients[J]. Nature Communications, 2021,12(1):11.

[5]ZHENG S B, WANG X D, FU Y, et al. Targeted next-gene-ration sequencing for cancer-associated gene mutation and copy number detection in 206 patients with non-small-cell lung can-cer[J]. Bioengineered, 2021,12(1):791-802.

[6]張世強(qiáng),張旭東,王保慶,等. 晚期非小細(xì)胞肺癌患者外周血游離DNA中EGFR突變與靶向藥物一線治療療效的相關(guān)性[J]. 山西醫(yī)科大學(xué)學(xué)報(bào), 2015,46(7):645-648.

[7]GREENHALGH J, BOLAND A, BATES V, et al. First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small cell lung cancer[J]. The Cochrane Database of Systematic Reviews, 2021,3: CD010383.

[8]RIESS J W, GANDARA D R, FRAMPTON G M, et al. Diverse EGFR exon 20 insertions and co-occurring molecular al-terations identified by comprehensive genomic profiling of NSCLC[J]. Journal of Thoracic Oncology: Official Publication of the International Association for the Study of Lung Cancer, 2018,13(10):1560-1568.

[9]楊廣建,王燕. 表皮生長因子受體基因20號外顯子插入突變型非小細(xì)胞肺癌的治療現(xiàn)狀與展望[J]. 中華腫瘤雜志, 2020,42(1):22-29.

[10]HE M, CAPELLETTI M, NAFA K, et al. EGFR exon 19 insertions: a new family of sensitizing EGFR mutations in lung adenocarcinoma[J]. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 2012,18(6):1790-1797.

[11]NAIDOO J, SIMA C S, RODRIGUEZ K, et al. Epidermal growth factor receptor exon 20 insertions in advanced lung adenocarcinomas: clinical outcomes and response to erlotinib[J]. Cancer, 2015,121(18):3212-3220.

[12]KOSAKA T, TANIZAKI J, PARANAL R M, et al. Response heterogeneity of EGFR and HER2 exon 20 insertions to covalent EGFR and HER2 inhibitors[J]. Cancer Research, 2017,77(10):2712-2721.

[13]張玉萍,萬繼蘭,王慧,等. 非小細(xì)胞肺癌838例EGFR、KRAS基因突變狀態(tài)及臨床意義[J]. 診斷病理學(xué)雜志, 2020,27(9):644-648.

[14]HUANG L H, FU L W. Mechanisms of resistance to EGFR tyrosine kinase inhibitors[J]. Acta Pharmaceutica Sinica B, 2015,5(5):390.

[15]ZHANG Q, WANG J H, LI X, et al. Clinical analysis of 107 NSCLC patients harboring KRAS mutation[J]. Chinese Journal of Lung Cancer, 2016,19(5):257-262.

[16]WANG F, DIAO X Y, ZHANG X, et al. Identification of genetic alterations associated with primary resistance to EGFR-TKIs in advanced non-small-cell lung cancer patients with EGFR sensitive mutations[J]. Cancer communications (London, England), 2019,39(1):7.

[17]SOS M L, KOKER M, WEIR B A, et al. PTEN loss contri-butes to erlotinib resistance in EGFR-mutant lung cancer by activation of Akt and EGFR[J]. Cancer Research, 2009,69(8):3256-3261.

[18]ZHAO Y, WANG H, HE C. Drug resistance of targeted the-rapy for advanced non-small cell lung cancer harbored EGFR mutation: from mechanism analysis to clinical strategy[J]. Journal of Cancer Research and Clinical Oncology, 2021,147(12):3653-3664.

[19]FUJITA Y, SUDA K, KIMURA H, et al. Highly sensitive detection of EGFR T790M mutation using colony hybridization predicts favorable prognosis of patients with lung cancer harboring activating EGFR mutation[J]. Journal of Thoracic Oncology: Official Publication of the International Association for the Study of Lung Cancer, 2012,7(11):1640-1644.

[20]KOBAYASHI S, BOGGON T J, DAYARAM T, et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib[J]. The New England Journal of Medicine, 2005,352(8):786-792.

[21]劉慧慧,王孟昭,胡克,等. EGFR-TKI在非小細(xì)胞肺癌中耐藥機(jī)制的研究進(jìn)展[J]. 中國肺癌雜志, 2013,16(10):535-540.

[22]王如坤,張振亮,邱斌,等. 奧希替尼治療EGFR T790M陽性非小細(xì)胞肺癌的臨床療效[J]. 臨床肺科雜志, 2019,24(7):1257-1260.

[23]LI Z X, ZHAO W, SUN Q, et al. Efficacy of osimertinib for the treatment of previously EGFR TKI treated NSCLC patients: a meta-analysis[J]. Clinical and Translational Oncology, 2020,22(6):892-899.

[24]THRESS K S, PAWELETZ C P, FELIP E, et al. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M[J]. Nature Medicine, 2015,21(6):560-562.

[25]ARULANANDA S, DO H, MUSAFER A, et al. Combination osimertinib and gefitinib in C797S and T790M EGFR-mutated non-small cell lung cancer[J]. Journal of Thoracic Onco-logy, 2017,12(11):1728-1732.

[26]WANG Z, YANG J J, HUANG J, et al. Lung adenocarcinoma harboring EGFR T790M and in trans C797S responds to combination therapy of first- and third-generation EGFR TKIs and shifts allelic configuration at resistance[J]. Journal of Thoracic Oncology: Official Publication of the International Association for the Study of Lung Cancer, 2017,12(11):1723-1727.

[27]JIA Y, YUN C H, PARK E, et al. Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors[J]. Nature, 2016,534(7605):129-132.

[28]PAPADIMITRAKOPOULOU V A, WU Y L, HAN J Y, et al. Analysis of resistance mechanisms to osimertinib in patients with EGFR T790M advanced NSCLC from the AURA3 study[J]. Annals of Oncology, 2018,29: viii741.

[29]RAMALINGAM S S, CHENG Y, ZHOU C, et al. Mechanisms of acquired resistance to first-line osimertinib: preliminary data from the phase III FLAURA study[J]. Annals of Oncology, 2018,29: viii740.

[30]ENGELMAN J A, ZEJNULLAHU K, MITSUDOMI T, et al. MET amplification leads to gefitinib resistance in lung can-cer by activating ERBB3 signaling[J]. Science (New York, N Y), 2007,316(5827):1039-1043.

[31]ORTIZ-CUARAN S, SCHEFFLER M, PLENKER D, et al. Heterogeneous mechanisms of primary and acquired resistance to third-generation EGFR inhibitors[J]. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 2016,22(19):4837-4847.

[32]張寧寧. 非小細(xì)胞肺癌靶向治療和耐藥機(jī)制研究[D]. 北京:北京協(xié)和醫(yī)學(xué)院, 2016.

[33]SPIGEL D R, ERVIN T J, RAMLAU R A, et al. Rando- mized phase II trial of Onartuzumab in combination with erlo-tinib in patients with advanced non-small-cell lung cancer[J]. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 2013,31(32):4105-4114.

[34]LIANG H G, WANG M Z. MET oncogene in non-small cell lung cancer: mechanism of MET dysregulation and agents targeting the HGF/c-met axis[J]. OncoTargets and Therapy, 2020,13:2491-2510.

[35]茍?zhí)m英. 晚期非小細(xì)胞肺癌MET/T790M共存的臨床和分子特征及MET-TKI耐藥機(jī)制研究[D]. 廣州:南方醫(yī)科大學(xué), 2016.

[36]TAKEZAWA K, PIRAZZOLI V, ARCILA M E, et al. HER2 amplification: a potential mechanism of acquired resistance to EGFR inhibition in EGFR-mutant lung cancers that lack the second-site EGFRT790M mutation[J]. Cancer Discovery, 2012,2(10):922-933.

[37]PILLAI R N, BEHERA M, BERRY L D, et al. HER2 mutations in lung adenocarcinomas: a report from the Lung Cancer Mutation Consortium[J]. Cancer, 2017,123(21):4099-4105.

[38]LA MONICA S, CRETELLA D, BONELLI M, et al. Trastuzumab emtansine delays and overcomes resistance to the third-generation EGFR-TKI osimertinib in NSCLC EGFR mutated cell lines[J]. Journal of Experimental & Clinical Cancer Research: CR, 2017,36(1):174.

[39]YOCHUM Z A, CADES J, WANG H L, et al. Targeting the EMT transcription factor TWIST1 overcomes resistance to EGFR inhibitors in EGFR-mutant non-small-cell lung cancer[J]. Oncogene, 2019,38(5):656-670.

[40]RIBATTI D, TAMMA R, ANNESE T. Epithelial-mesenchymal transition in cancer: a historical overview[J]. Translatio-nal Oncology, 2020,13(6):100773.

[41]LI L, GU X J, YUE J N, et al. Acquisition of EGFR TKI resistance and EMT phenotype is linked with activation of IGF1R/NF-κB pathway in EGFR-mutant NSCLC[J]. Oncotarget, 2017,8(54):92240-92253.

[42]YU H A, ARCILA M E, REKHTMAN N, et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers[J]. Clinical Cancer Research: an Official Journal of the Ame-rican Association for Cancer Research, 2013,19(8):2240-2247.

[43]LEE J K, LEE J, KIM S, et al. Clonal history and genetic predictors of transformation into small-cell carcinomas from lung adenocarcinomas[J]. Journal of Clinical Oncology, 2017,35(26):3065-3074.

[44]RUDIN C M, GIACCONE G, ISMAILA N. Treatment of small-cell lung cancer: American society of clinical oncology endorsement of the American college of chest physicians guideline[J]. Journal of Oncology Practice, 2016,12(1):83-86.

[45]SHI P Y, OH Y T, DENG L, et al. Overcoming acquired resistance to AZD9291, A third-generation EGFR inhibitor, through modulation of MEK/ERK-dependent BIM and mcl-1 degradation[J]. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 2017,23(21):6567-6579.

[46]ZHAO R, ZHOU S, XIA B, et al. AT-101 enhances gefitinib sensitivity in non-small cell lung cancer with EGFR T790M mutations[J]. BMC Cancer, 2016,16:491.

[47]PERVUSHIN N V, SENICHKIN V V, ZHIVOTOVSKY B, et al. Mcl-1 as a “barrier” in cancer treatment: can we target it now[J]? International Review of Cell and Molecular Biology, 2020,351:23-55.

[48]XIANG W G, YANG C Y, BAI L C. MCL-1 inhibition in cancer treatment[J]. OncoTargets and Therapy, 2018,11:7301-7314.

[49]ROSELL R, KARACHALIOU N, MORALES-ESPINOSA D, et al. Adaptive resistance to targeted therapies in cancer[J]. Translational Lung Cancer Research, 2013,2(3):152-159.

[50]BLAKELY C M, PAZARENTZOS E, OLIVAS V, et al. NF-κB-activating complex engaged in response to EGFR oncogene inhibition drives tumor cell survival and residual disease in lung cancer[J]. Cell Reports, 2015,11(1):98-110.

[51]LEE H J, ZHUANG G L, CAO Y, et al. Drug resistance via feedback activation of Stat3 in oncogene-addicted cancer cells[J]. Cancer Cell, 2014,26(2):207-221.

[52]MA P F, FU Y J, CHEN M J, et al. Adaptive and acquired resistance to EGFR inhibitors converge on the MAPK pathway[J]. Theranostics, 2016,6(8):1232-1243.

[53]周燁,顧瑋銘,梁倩,等. 絲氨酸生物合成途徑介導(dǎo)肺腺癌細(xì)胞EGFR-TKIs靶向治療適應(yīng)性耐藥[J]. 現(xiàn)代生物醫(yī)學(xué)進(jìn)展, 2019,19(17):3218-3224.

[54]WU S C, LUO M, TO K K W, et al. Intercellular transfer of exosomal wild type EGFR triggers osimertinib resistance in non-small cell lung cancer[J]. Molecular Cancer, 2021,20(1):17.

[55]PENG S L, WANG R, ZHANG X J, et al. EGFR-TKI resis-tance promotes immune escape in lung cancer via increased PD-L1 expression[J]. Molecular Cancer, 2019,18(1):165.

(本文編輯 黃建鄉(xiāng))

猜你喜歡
奧希替尼外顯子耐藥性
外顯子跳躍模式中組蛋白修飾的組合模式分析
晚期肺腺癌患者奧希替尼后線治療耐藥后基因突變模式研究
EGFR突變非小細(xì)胞肺癌患者奧希替尼誘導(dǎo)間質(zhì)性肺疾病后奧希替尼再挑戰(zhàn):病例報(bào)道
長絲鱸潰爛癥病原分離鑒定和耐藥性分析
外顯子組測序助力產(chǎn)前診斷胎兒骨骼發(fā)育不良
奧希替尼固體分散體的制備及體外溶出度研究
奧希替尼聯(lián)合培美曲塞、貝伐珠單抗治療EGFR19del/T790M/順式C797S突變肺腺癌1例
嬰幼兒感染中的耐藥菌分布及耐藥性分析
WHO:HIV耐藥性危機(jī)升級,普及耐藥性檢測意義重大
外顯子組測序助力產(chǎn)前診斷胎兒骨骼發(fā)育不良