楊柳崴,王妍,趙瑞,魏小兵,鄭懷禮,安延嚴,劉霜
(1. 重慶大學 三峽庫區(qū)生態(tài)環(huán)境教育部重點實驗室,重慶 400045;2. 中海油天津化工研究設計院有限公司,天津 300131;3. 重慶藍潔廣順凈水材料有限公司,重慶 402465)
隨著現(xiàn)代化進程的不斷推進,人民對水環(huán)境質量的要求日益提高,對水處理工藝的要求也越來越嚴格。水處理過程中的主流工藝包括混凝、沉淀、過濾、消毒等,其中,混凝技術是水處理廠和污水處理廠中最常見的工藝之一,被認為是一種簡單、經(jīng)濟、可升級的技術[1-2]。在混凝工藝中,需要添加的化合物藥劑即是混凝劑或絮凝劑[3],所選擇混(絮)凝劑的性能往往能直接決定處理效果及工藝費用?;欤ㄐ酰┠齽┮话阃ㄟ^吸附架橋、電中和及網(wǎng)捕卷掃作用使污水中的膠體顆粒物質聚集形成大的聚集物,最后,利用沉淀作用將這些聚集物分離出去[4-5]。目前常用的混(絮)凝劑實現(xiàn)固液分離的方式大多依賴于重力沉降,往往造成分離的效率低、速度慢、產(chǎn)生的絮體小。
磁混凝通過向傳統(tǒng)的混凝過程中引入磁性顆粒(通常為Fe3O4顆粒),使得無機混凝劑(聚鐵[6]、聚鋁[7]等)或有機聚合物絮凝劑(聚丙烯酰胺等)與磁性顆粒形成磁性絮體。在外加磁場作用下,磁性絮體打破對重力沉降的依賴,實現(xiàn)比傳統(tǒng)混凝過程更快的聚集沉淀[7-8]。常見的引入磁性顆粒的方法是直接向目標水體中添加磁性成分,但兩步投加(分別添加磁性顆粒和混凝劑)又比同時投加混凝效果更好[9]。
磁性混(絮)凝劑是傳統(tǒng)混(絮)凝劑與功能化磁性顆粒材料結合而制備出的復合型材料,是實現(xiàn)磁混凝中引入磁性顆粒的另一新的方式。與之前的引入方式相比,磁性混(絮)凝劑的應用投加更方便、沉降分離效果更優(yōu)異[10-11]。筆者結合最新研究進展,對磁性混(絮)凝劑在水處理中的具體應用研究進行綜述,總結磁性混(絮)凝劑在不同應用情境下的研究進展,并對磁性混(絮)凝劑未來的發(fā)展趨勢進行分析與展望。
由于病毒或細菌等污染物會附著在懸浮固體上,水的濁度水平越高,對人類的健康風險越高[12],除濁一直是水處理的一項重要內容。近年來,磁性混(絮)凝劑在去除濁度方面的應用研究較多,如表1所示。Wang等[13]以丙烯酰胺(AM)、丙烯酰氧乙基三甲基氯化銨(DAC)和Fe3O4為原料制備了出磁性P(AM-co-DAC)-g-gelatin,與PAM、P(AM-co-DAC)-g-gelatin的處理情況進行對比,發(fā)現(xiàn)在濁度去除率上:磁性P(AM-co-DAC)-g-gelatin>P(AMco-DAC)-g-gelatin>PAM,且磁性P(AM-co-DAC)-g-gelatin僅需3 min即可實現(xiàn)濁度的穩(wěn)定,去除率達到98.89%,而另外兩種混凝劑對濁度的去除率僅達到97.71%、87.83%,磁性混凝劑濁度處理優(yōu)勢得到一定體現(xiàn)。Zhou等[14]以磁鐵礦(Fe3O4)為核心,油酸為改性劑,丙烯酰胺為單體合成磁性聚丙烯稀酰胺絮凝劑MPAM并將其用于濁度去除,研究發(fā)現(xiàn),在模擬高嶺土懸濁液中,靜態(tài)沉降5 min,濁度去除率可達到82.8%,除濁性能顯著優(yōu)于傳統(tǒng)的聚丙烯酰胺和聚合氯化鋁。在這里,油酸充當了一種高效改性劑,因為其親水基團和親脂基團分布在分子鏈的兩段,使得油酸分子與磁性顆粒的表面相結合,實現(xiàn)了無機磁性納米顆粒和天然混凝劑間的相容。對此,Santos等[15]進一步檢驗了油酸的相容性對于磁混凝性能的影響,將具有AO涂層的MOFeAO混凝劑和沒有AO涂層的MOFe混凝劑的混凝性能進行對比,結果顯示,MOFeAO對濁度的去除率低于MoFe,表明AO脂肪酸的存在增加了有機物的量,將影響磁性納米粒子磁響應性的發(fā)揮,進而削弱了磁性絮凝劑的除濁性能。Ma等[16]研究發(fā)現(xiàn),不同pH值環(huán)境下,絮凝除濁的主要機理不同,當pH值低于8時,電中和起主要作用;當pH值高于8時,絮凝的主要機理是架橋。李建軍等[17]利用如圖1所示的磁絮凝實驗裝置進行了磁性混凝劑改善煤泥水的應用研究,在外加磁場下成功地實現(xiàn)了絮團的快速沉降。在實際的磁混凝沉淀池應用中,常常以磁分離設備進行外加磁場,磁分離設備主要分為永磁分離器和電磁分離器兩類,電磁分離器又以高梯度磁分離和超導磁分離為主,具體的特點和適用場景如表2所示[18-20]。
圖1 磁絮凝實驗裝置示意[17]Fig. 1 Schematic diagram of the magnetic flocculation experimental device[17]
表1 磁性混(絮)凝劑在濁度處理中的研究進展Table 1 Research progress of magnetic coagulants (flocculants) in turbidity treatment
表2 磁分離設備的主要形式及特點Table 2 Main forms and characteristics of magnetic separation equipments
Ding等[21]、羅米娜等[22]還利用硅酸鹽制備出磁性的硅酸鹽類絮凝劑進行了沉降回收實驗。傳統(tǒng)絮凝劑的適宜沉降時間為14 min,而磁性絮凝劑的適宜沉降時間為4 min,傳統(tǒng)絮凝劑的適宜沉降時間是磁性絮凝劑最佳沉降時間的3.5倍,相比傳統(tǒng)絮凝劑,磁性絮凝劑在沉降速度上有巨大的提升[22]。這表明在除濁過程中磁性混(絮)凝劑除具有穩(wěn)定的磁性外,還保持了較好的絮凝特性,用磁鐵能將絮凝廢渣從水中分離出來,實現(xiàn)磁性絮凝劑的回收和再利用[21]。
冶金、電鍍、電池制造等工業(yè)企業(yè)快速發(fā)展,將大量含重金屬離子或重金屬化合物的廢水排入自然水體,對生態(tài)環(huán)境造成嚴重破壞[23]。然而,傳統(tǒng)的絮凝劑對重金屬廢水的處理效率低且對pH值的依賴性很強[24-26],磁性混(絮)凝劑在重金屬廢水處理中的應用研究取得了一定進展,如表3所示。Yu等[27]以羧甲基殼聚糖和磁性Fe3O4為原料合成出磁性絮凝劑MF@AA,研究發(fā)現(xiàn),其在處理含Cu(II)廢水中表現(xiàn)出良好的絮凝性能。Sun等[28]進一步制備出羧甲基殼聚糖磁性絮凝劑(MC)、羧化殼聚糖—聚丙烯酰胺磁性絮凝劑(MC-g-PAM)和羧化殼聚糖—聚丙烯酰胺—2-丙烯酰胺—2-甲基丙磺酸磁性絮凝劑(MC-g-PAA),發(fā)現(xiàn)磁性絮凝劑對Cu(II)的絮凝處理效果較好,其中,MC對Cu(II)的去除率高達93.93%,且當pH值>6后,絮凝效果保持穩(wěn)定。郭振華等[29]進一步將微生物絮凝劑MBFX-8加快膠體脫溫凝聚的優(yōu)勢與磁性羧甲基殼聚糖的強化架橋作用相結合,制備出新型的MBFX-8/Fe3O4@CMC磁性絮凝劑,對Cu(II)的去除率進一步提高。特別是在利用磁性絮凝劑處理含Cu(II)廢水時,其磁混凝效果和對pH值的依賴性均減弱。Liu等[30]、Fosso-Kankeu等[31]將磁性混凝劑應用到處理含Ni2+、Pb2+、Cr6+的廢水中,均取得了較好的磁混凝處理效果。Fosso-Kankeu等[31]雖將磁性混凝劑與無機混凝劑協(xié)同運用到多種重金屬共存廢水的處理中,并嘗試利用圖2所示的對重金屬離子的處理原理進行解釋,但未能闡明單獨應用磁性混(絮)凝劑的作用機理及功能磁性顆粒在其中發(fā)揮的作用,仍需進一步深入研究。
表3 磁性混(絮)凝劑處理重金屬廢水研究進展Table 3 Research progress of magnetic coagulants (flocculants) in the treatment of heavy metal wastewater
圖2 有機絮凝劑吸附金屬離子示意圖[31]Fig. 2 Schematic diagram of the adsorption of metal ions onto the organic flocculant[31]
隨著工業(yè)時代的飛速發(fā)展,工業(yè)生產(chǎn)需求不斷增加,工業(yè)染料產(chǎn)量越來越多,隨之而來的印染工業(yè)廢水問題也越來越嚴重[32]。環(huán)境中的染料會降低水體透明度,減少光的穿透,從而抑制光合作用,造成水體缺氧,干擾水生生物生長,破壞水體自凈功能,由于芳環(huán)和雜環(huán)的存在,某些染料自身、前體和降解產(chǎn)物均是致癌物和致突變物[33]。染料廢水的傳統(tǒng)處理方法是混凝沉淀,然而傳統(tǒng)的混凝劑具有絮體小、沉淀困難、殘留量大、污泥產(chǎn)量高等不足[34-35],許多學者將視角轉移到磁性混(絮)凝劑并開展了一系列研究,如表4所示。鄭懷禮等[30,36]開發(fā)出一系列的磁性混(絮)凝劑并將其用于多種含染料廢水的處理中,均取得了較好的混凝效果,磁性混凝劑TAPAM-PDA-Fe3O4、Mag@PIA-g-CS對典型陽離子染料亞甲基藍、陽離子三苯甲烷染料孔雀石綠的去除率高達97.5%和87.4%。此外,Kadam等[37]利用磁性氧化鐵與殼聚糖復合,開發(fā)出的磁性殼聚糖納米復合材料MCNCs對陰離子染料酸性紅的去除率達91.60%,而單一的磁性材料對氧化鐵的去除率僅16.4%。Reck等[38]將辣木油脂酶蛋白經(jīng)氧化鐵納米顆粒功能化處理,探究了加磁前后磁性混凝劑混凝性能的變化,發(fā)現(xiàn)加磁前后絮凝劑材料對莧菜紅染料的去除率從45%提高到86%,對日落黃染料的去除率從15%提高到69%,對活性黑5和亮藍的去除率也分別達到了94%和52%。磁性混(絮)凝劑在強化染料廢水混凝處理效果的同時,更具有易分離、可回收利用的優(yōu)勢。在外加磁場作用下,Mag@PIA-g-CS[30]、MCNCs[37]、Fe3O4/辣 木 油 脂酶蛋白[38]、PSBFZ-Fe3O4[21]、Fe3O4/Mo[39]、IONPs[40]等磁性混(絮)凝劑在完成對染料廢水的混凝處理后均能快速沉降分離,具有很大的回收潛力。Kristianto等[40]在IONPs的沉降動力學實驗中發(fā)現(xiàn),磁性混凝劑的沉降時間(30 min)僅為普通混凝劑(60 min)的一半,沉降性能提升明顯。在回收再利用方面,Mag@PIA-g-CS經(jīng)過連續(xù)5次的絮凝/再生循環(huán)后,對孔雀石綠的有效去除率仍能保持在72%以上[30]。盡管磁性混(絮)凝劑在染料廢水的應用研究中已經(jīng)顯現(xiàn)出去除率高、易分離、可回收、能循環(huán)利用等優(yōu)勢,但在具體生產(chǎn)應用和經(jīng)濟性等方面還需進一步論證分析。
表4 磁性混(絮)凝劑處理染料廢水研究進展Table 4 Research progress of magnetic coagulants (flocculants) in the treatment of dye wastewater
湖泊與水庫的富營養(yǎng)化使得水中的藻類等浮游生物大量生長、過度繁殖,導致水質惡化,而微藻還被視為生物燃料生產(chǎn)的潛在替代原料[41-43]。人們嘗試將微藻從藻類廢水中回收,目前回收方法主要包括混凝、離心、過濾、浮選、沉淀和電泳等[43-44],其中,混凝因其能耗較低、操作簡便、經(jīng)濟可行而成為最常用的方法之一[45]。在微藻回收處理中,相對于傳統(tǒng)混凝劑,磁性混(絮)凝劑具有單次用量少、沉降速度快、可重復利用的優(yōu)勢[46-47]。劉詩楠[48]采用共沉淀法和溶膠凝膠法制備出PAC復合Fe3O4的復合磁性絮凝劑,復合后的納米Fe3O4表面電荷呈正電荷且較高,為45.6 mV,可以通過電性吸引作用與微藻結合,3 min內對微藻的去除率即達到98.56%。Jiang等[49]、Hu等[50]、Wang等[51]、Liu等[52-53]、Barekati-Goudarzi等[45]先后將聚合氯化鐵(PFC)、聚乙烯亞胺(PEI)、聚 酰 胺—胺(PAMA)、氧 化 石 墨 烯 片(GO)、長鏈聚精氨酸(PA)與Fe3O4進行復合改性,制備出一系列磁性混凝劑,對藻類廢水的處理均效果顯著(見表5)。Nguyen等[44]利用仙人掌衍生物與NH4OH修飾超順磁性鈷納米材料CoFe2O4制備出的磁性混凝劑對微藻的去除率也高達99.51%。在回收再生利用方面,氧化石墨烯—Fe3O4/PDDA對微藻的去除率在一次再生后可高達92.5%,即使在4次和5次再生后,仍能達到90.2%和88.7%[52]。p-Fe3O4@PA-2在分離10 min時,對微藻的去除率接近100%,即使經(jīng)過5次回收利用,去除率仍在85%以上[53]。此外,趙遠[54]嘗試引入酸堿變化和磁力系數(shù)修正DLVO理論,建立了新的模型解釋磁混凝過程和磁藻絮體形成的機理。新的模型對后續(xù)磁混凝機理的闡釋具有很好的參考價值,但模型的普適性尚需不斷完善。
表5 磁性混(絮)凝劑處理含藻廢水的研究進展Table 5 Research progress of magnetic coagulants (flocculants) in the treatment of algae-containing wastewater
由于石油開采和加工、食品工業(yè)和機械加工行業(yè)的快速發(fā)展,含油廢水進入到水生態(tài)環(huán)境系統(tǒng)中,對水體環(huán)境和生物造成極大危害[57]。常見的含油廢水處理方式有浮選、混凝、生物處理、膜分離、水力旋流器、吸附、高級氧化等[58-59]。相比之下,混凝工藝成本低、操作簡便、效果穩(wěn)定,更經(jīng)濟且環(huán)境友好[58,60]。磁性混凝劑作為一種新型復合藥劑,對含油廢水的應用研究進展如表6所示。Fang等[61]、Duan等[62]、Lv等[60,63]制 備 出 的 磁 性 混 凝 劑 除 油 率 均達到了80%以上。pH值和溫度等環(huán)境因素會影響磁性混(絮)凝劑的穩(wěn)定性,其中溫度起主要作用[61]。潘蓮蓮[64]進一步將pH值與溫度敏感性高分子材料PNIPAAm和DMAEMA應用到磁性絮凝劑中,制備出pH值/溫度敏感性磁性混凝劑,其同時具備了pH值響應性、溫敏特性和磁響應性,應用優(yōu)勢明顯。此外,利用殼聚糖類天然高分子材料接枝磁性納米粒子制備出的磁性絮凝劑都具有較強的酸堿適應性,能夠在較寬的pH值范圍內有效發(fā)揮作用[60,63]。磁性混(絮)凝劑對含油廢水的處理一方面依賴于功能性官能團的疏水性和電荷吸引作用;另一方面,絮凝過程中游離或分散的磁性粒子還將對油滴產(chǎn)生包覆作用[60,62-63]。外加磁場時,被磁性粒子包覆的油滴將通過磁響應實現(xiàn)沉降分離,除油率進一步降低[60]。在回收再利用方面,磁性混凝劑的優(yōu)勢依舊得到體現(xiàn)。循環(huán)使用7次后,殼聚糖類磁性絮凝劑除油效果仍無明顯損失[60,63]。然而,磁性混凝劑M-DMEA的除油率卻隨著循環(huán)次數(shù)的增加而降低,4次循環(huán)再利用后,除油率從原始的92.3%降至71.2%[62]。Duan等[62]研究發(fā)現(xiàn),循環(huán)過程中磁性混凝劑會以單次循環(huán)5%的質量損失率逐漸逸失,由于磁性較弱,小粒徑的混凝劑逸失的可能性最大,再加上殘留接枝聚合物的架橋作用,回收的MDMEA粒徑不斷增加(如圖3所示)。粒徑的增加使得絮凝顆粒比表面積減小,投加量一定時,與污染物的有效碰撞概率降低,表面活性降低,會對混凝效果產(chǎn)生負影響[18,62,65]。這表明絮凝顆粒粒徑的大小是磁性混凝劑性能優(yōu)化的一大重要因素。
表6 磁性混(絮)凝劑處理含油廢水的研究進展Table 6 Research progress of magnetic coagulants (flocculants) in the treatment of oily wastewater
圖3 回收的M-DMEA的粒徑[62]Fig. 3 Particle size of the recycled M-DMEA [62]
除上述常見的磁性混(絮)凝劑的應用領域外,近年來,磁性混(絮)凝劑還被應用于其他類型污染物的去除中,包括抗生素、殘留藥物、微塑料等(見表7),具體包括:1)抗生素類廢水處理。磁性微生物絮凝劑能夠用于對磺胺類抗生素(SMX)廢水的處理,絮凝劑對SMX的去除率最佳可達89.14%[66]。2)含殘留藥物廢水處理。Sun等[67]制備出磁性絮凝劑TAPAM-PDA-Fe3O4,該絮凝劑能夠快速富集雙氯芬酸鈉(DCFS),對DCFS的去除率最大可達98.1%。3)含微塑料廢水處理。湯愛琪[68]利用微生物絮凝劑與磁性Fe3O4顆粒進行交聯(lián),制備出兩種磁性絮凝劑Klebsiellasp.J1(CGMCC No.6243)和A.tumefaciens F2(CGMCC No.10131),前者對微塑料的去除率達到90%,后者更是達到100%。4)含溶解性有機物廢水的處理。He等[69]將按照Fe/Si為1:5的比值制備出的含有Si-O-Fe的新型磁性混凝劑MHC應用于處理二級生物處理出水,發(fā)現(xiàn)磁性混凝劑除沉淀性能和常規(guī)混凝指標較好外,對NO-3-N等溶解性污染物也表現(xiàn)出較高的去除效率,這是帶正電的季銨鹽基團的靜電效應、Si-O-Fe的吸附性與磁性成分的磁性對NO-3協(xié)同作用的結果。磁性混(絮)凝劑為抗生素、殘留藥物、微塑料和溶解性有機物等污染物在水體中的去除提供了新的處理方式,然而,目前由于表征手段的限制,關于磁性混凝劑在部分污染物去除過程中的具體作用機理和涉及的復雜反應尚不完全清晰,有待進一步研究。
表7 磁性混(絮)凝劑處理其他類型廢水的研究進展Table 7 Research progress of magnetic coagulants (flocculants) in the treatment of other types of wastewater
磁性混(絮)凝劑在濁度、重金屬、染料等污染物處理的應用研究中表現(xiàn)出了去除率高、沉降速度快、易回收、可重復利用等優(yōu)勢,具有良好的發(fā)展前景。
目前,磁性混(絮)凝劑的制備一般是在傳統(tǒng)混(絮)凝劑的基礎上復合磁性顆粒材料進行的。為保證高的絮凝效率,磁混凝中的磁核粒徑一般不應大于10 μm,制備磁性混凝劑選取的磁核主要采用納米Fe3O4,還可以使用鋇鐵氧化體等其他磁性顆粒[18,55-56]?;|材料選擇種類廣泛,包括丙烯酰胺類[13-14,16-17,28,31,36,67]、無 機 鹽 類[21-22,49,54]、微 生 物類[29,66,68]、殼聚糖類[28-29,37,60,63]、植物成分類[15,55]等。目前的研究顯示,金屬基類混凝劑在使用中存在劑量高、對系統(tǒng)的酸堿度敏感、殘留金屬離子等缺點,甚至可能導致生物毒性[70-71]。而PAM及其衍生物的使用更有可能由于單體殘留導致二次污染和健康風險,生物類絮凝劑則需要較長的保留時間。然而,基于多糖的天然高分子聚合物具有環(huán)境友好、應用廣泛、可生物降解、結構特征突出等優(yōu)勢,可以更多地應用到磁性混凝劑的開發(fā)制備中。此外,以目標污染物為導向,有針對性地直接將季銨基、巰基、磺酸基等特殊官能團引入到磁性顆粒上,制備出的新型磁性混(絮)凝劑將同時具有靜電引力、吸附作用和磁相互作用,在去除傳統(tǒng)混凝劑難以去除的溶解性污染物方面具有很大潛力。
目前,關于磁性混(絮)凝劑的研究中,大多都是定性分析,而非定量分析。磁性混(絮)凝劑研究的一大問題就是磁性混(絮)凝劑自身的結構特征分析困難?;欤ㄐ酰┠齽┑亩坛毯烷L程結構都會影響混(絮)凝劑與目標污染物的相互作用。不同類型的傳統(tǒng)絮(混)凝劑與磁性顆粒的復合過程中均存在各種相互作用,包括共價鍵、靜電相互作用、范德華力、電磁力和這些相互作用中涉及的高特異性力等,這些相互作用可能通過不同的機制途徑復合[72]。特別地,使用接枝、交聯(lián)、熱誘導和浸漬等不同的合成方法,也將會影響產(chǎn)物的結構及絮凝性能。因此,更精確的表征有賴于先進技術和更復雜的分析儀器的發(fā)展。此外,可以嘗試借鑒其他類型混(絮)凝劑的研究方式[73],在制備方式、結構特征和混凝效果的基礎上建立磁性混(絮)凝劑的分子結構與應用效果之間的關系,還可以加入磁分離表現(xiàn),進而有針對性地對磁性混(絮)凝劑進行精確的分子控制,實現(xiàn)磁混凝和分離過程的最優(yōu)化。
水的不同特性將影響磁性混(絮)凝劑的工作條件,從而影響其性能及磁混凝過程的效率[74]。對于常見的已經(jīng)建立的金屬基混凝劑,也常常需要保持或改變一些工作條件,以實現(xiàn)污染物的最佳去除。盡管在很多類型的水樣中磁性混(絮)凝劑的應用已被證明有效,但原水和廢水中的初始pH值、總有機含量、靜電條件及不同成分間的相互關系仍可能會對磁性混(絮)凝劑的混凝和絮凝過程產(chǎn)生影響[74-75]。因此,深入開展多重復雜水質條件下的磁性混(絮)凝劑應用研究十分有必要。
混凝機理的分析研究必須考慮混凝過程中形成的絮體的特性,包括絮凝物的大小、分形結構、再生能力和沉降速率等,而這些性質可以通過圖像分析或光散射技術結合分形理論進行研究[76]。在磁混凝過程中,分形維數(shù)是磁絮體分形概念中最關鍵的參數(shù)。分形維數(shù)的數(shù)值與絮體的緊密程度成正比,分形維數(shù)越大,絮體越緊密。分形維數(shù)通常有兩種,即二維(D2)和三維(即質量分形維數(shù),DF)。D2表示絮體結構的投影面積A和特征長度l之間的冪律關系,見式(1),通常通過圖像分析來測量;而DF描述了絮體的質量m與光強I之間的冪律關系,見式(2),可以通過光散射獲得,因為光強I與質量m成正比,散射矢量Q與光強I成反比[73]。
式中:A為絮體結構的投影面積;l為特征長度;D2為二維分形維數(shù);I為光強;Q為絮體的散射矢量;DF為三維分形維數(shù),即質量分形維數(shù)。
目前分形維數(shù)在傳統(tǒng)混(絮)凝劑的特性分析中應用較多,但在磁性混(絮)凝劑的特性分析中還不多見。
除了磁性混(絮)凝劑基質材料的金屬離子殘留、單體殘留等會導致生物毒性存在安全風險外,磁性混(絮)凝劑在絮凝過程中還可能殘留磁性顆粒、磁性混(絮)凝劑本身及磁混凝產(chǎn)生的絮體,而污水處理系統(tǒng)的微生物并不是彼此孤立的個體[77],這些殘留物是否會影響水處理系統(tǒng)中微生物的正常生長,是否會對人體存在潛在健康風險尚需探究。污泥作為磁性混凝過程最終的產(chǎn)品,不當處理和處置會造成二次污染,尤其是垃圾填埋污染[78]。因此,需要對磁性混(絮)凝劑應用工藝進行生態(tài)毒理調查,并與傳統(tǒng)的混(絮)凝劑進行比較,以便為實際推廣應用提供參考。
對近年來磁性混(絮)凝劑在水處理領域的應用研究進行了綜述,包括濁度、重金屬、染料、微藻、油質、其他類型等方面。不同專題顯示磁性混(絮)凝劑的不同應用。根據(jù)磁性混(絮)凝劑在水處理中的應用研究狀況對研究中存在的問題進行梳理和分析,從磁性混(絮)凝劑的材料選擇、性質分析、適應性、絮體特性、安全風險等方面對磁性混(絮)凝劑的未來研究趨勢進行展望,以期為磁性混凝劑的研發(fā)和應用提供一定理論依據(jù)。