孫燦興,黃 增,任 旺,王 琳,付承偉,孔祥東,樓申琦
(1.上海海岳液壓機電工程有限公司,上海 200000;2.燕山大學 機械工程學院,河北 秦皇島 066004;3.中信重工機械股份有限公司 洛陽礦山機械工程設計研究院,河南 洛陽 471003)
二通插裝閥是一種以二通型單向元件為主體,采用先導控制和插裝式連接的新型液壓控制元件,具有抗污染能力強、工作可靠、結構簡單、流動阻尼小、通流能力大,以及可實現(xiàn)方向、流量、壓力等多種控制功能等優(yōu)點。由于其具有特別適用于高壓大流量系統(tǒng)、組合方式靈活的特點,在液壓系統(tǒng)中得到了廣泛應用[1-5]。
與某液壓系統(tǒng)回路環(huán)形閥組配套使用的專用高品質組合式插裝閥是設備的核心元件,要求具有大流量、快速響應、耐沖擊等特性。目前,國內產(chǎn)品與國外相比還存在較大差距,相關技術為國外公司壟斷,產(chǎn)品供貨周期和造價、維護、備品等均受制于人,亟需突破壟斷,做到自主可控。
隨著流體力學、算法理論、可靠性理論等學科的發(fā)展,特別是在計算機技術飛速發(fā)展的今天,流體仿真技術也日益成熟,越來越成為液壓設計人員強有力的輔助工具[6]。計算機仿真技術已經(jīng)成為現(xiàn)代高科技產(chǎn)業(yè)中不可或缺的進行系統(tǒng)分析的一項關鍵性技術手段[7]。
張晉等人[8]對插裝閥壓力和溫度變化引起的油液密度和黏度的變化規(guī)律進行了研究,在考慮了摩擦力與伺服閥閥口流量的基礎上,對其先導部分與主閥部分進行了機理建模,從而提高了模型的準確性。張威[9]通過對二通比例流量閥工作原理的分析,考慮了其負載特性,利用仿真軟件AMESim建立了相應的液壓模型,并對其進行了動態(tài)仿真,研究了二通比例流量閥的動態(tài)特性。楊亦婷等人[10]對某電磁閥的工作原理、磁場特征、運動過程等進行了分析,采用磁路分析法建立了其動態(tài)過程的數(shù)學模型,利用Simulink進行了電磁閥動態(tài)過程仿真,針對電磁閥主要參數(shù),對動態(tài)響應特性的影響進行了研究。YUE Da-ling等人[11]利用計算機建模,針對脈沖電壓持續(xù)時間,對螺桿式插裝閥啟閉動態(tài)特性的影響進行了研究。WANG Wen-zhu等人[12]利用AMESim對二通比例插裝閥的建模與仿真進行了研究。
為了對液壓打樁錘的組合插裝閥動作過程中的響應特性和流場特性進行研究,筆者在總結前人研究的基礎上,通過考慮彈簧剛度、閥芯各面所受壓力、穩(wěn)態(tài)液動力、閥芯重力、液體阻尼力等因素對閥芯動作特性的影響,建立插裝閥的動態(tài)響應數(shù)學模型,并利用AMESim和Fluent軟件進行仿真研究。通過獲取特定條件下插裝閥的性能參數(shù)、快速響應數(shù)據(jù)和可靠性數(shù)據(jù),為整機的可靠性分析及性能預測提供重要依據(jù)。
該插裝閥結構如圖1所示。
圖1 插裝閥結構示意圖
該插裝閥主要包括蓋板、彈簧座、彈簧、閥芯、閥套等部件。
液壓打樁錘專用插裝組合閥的原理如圖2所示。
圖2 插裝閥工作原理圖
液壓打樁錘專用組合閥系統(tǒng)由兩部分組成,包括先導級和主閥級。其中,主閥為插裝閥(之所以選擇插裝閥,是為了能夠滿足海上作業(yè)打樁錘大流量的需求)。高壓油從A口流入,B口流出,控制口C控制插裝閥的開啟與關閉。
先導閥主要由兩部分組成,包括電磁閥和二位三通液控換向閥。在電磁閥未得電的情況下,閥芯處于右位,高壓油pA無法通過電磁閥控制液控換向閥,此時液控換向閥右端處于低壓狀態(tài),高壓油pA進入液控換向閥左端,推動換向閥右移,所以換向閥處于左位,主閥的控制腔內液壓油通過換向閥,回到低壓油箱p0,此時控制腔pC為低壓,主閥閥芯受A、B面向上壓力而向上移動,主閥B口和A口連通,主閥開啟;相反,當電磁閥得電的時候,閥芯移到左位,液控換向閥右側壓力升高,推動換向閥左移,換向閥處于右位,高壓油pA進入主閥控制腔C,推動主閥閥芯下移,從而主閥關閉。
插裝閥的主要技術參數(shù)如表1所示。
表1 插裝閥的主要技術參數(shù)
在插裝閥的仿真研究中,準確建立插裝閥的數(shù)學模型是難點。
插裝閥的工作過程涉及到液壓油壓力、閥芯重力、穩(wěn)態(tài)液動力[13]、彈簧力、液體阻尼力、側向力[14]等多種力的耦合作用,閥芯受力的數(shù)學模型由流量方程、流量連續(xù)性方程和閥芯的力平衡方程組成。
先導閥的電磁驅動力與驅動電壓成比例關系,故可等效為一個比例環(huán)節(jié)。閥芯位移與輸入電壓信號之間的傳遞函數(shù)可以簡化為:
(1)
式中:xV—先導閥閥芯位移,mm;UV—輸入電壓,V;Ka—閥功率放大器增益;KV—伺服閥增益;wf—伺服閥固有頻率;ζm—伺服閥阻尼比。
液控先導閥流量方程為:
q1=Kqxt-Kc(p2-p0)
(2)
式中:Kq—流量增益;Kc—流量-壓力系數(shù);q1—控制流量,L/min;p0—油箱壓力,MPa;p2—換向閥閥背壓,MPa。
液控先導閥運動方程為:
(3)
式中:xt—液控先導閥位移,mm;mt—液控先導閥閥芯質量,kg;pA—供油壓力,MPa;AD—液控先導閥左側面積,mm2;AE—液控先導閥右側面積,mm2。
2.3.1 阻尼孔通流方程
若不考慮管道中的液體壓縮,開啟過程阻尼孔的通流方程為:
(4)
式中:Cd1—1號阻尼孔流量系數(shù);Cd4—4號阻尼孔流量系數(shù);A1—1號阻尼孔通流面積,mm;A4—4號阻尼孔通流面積,mm;pC—插裝閥控制腔壓力,MPa;p2—液體通過1號阻尼孔后管路壓力,MPa。
2.3.2 流量連續(xù)性方程
開啟過程中的流量連續(xù)性方程為:
(5)
式中:x—插裝閥閥芯位移,mm;AC—插裝閥C面面積,mm2;VC—插裝閥控制腔體積,mm3;Cip—插裝閥內泄漏系數(shù);K—液壓油有效體積彈性模量。
2.3.3 穩(wěn)態(tài)液動力
由于流體的運動狀態(tài)通常比較復雜,很難通過精確的數(shù)學表達式來表示其速度和壓力的實際分布,因此,不能夠應用積分的方法來計算穩(wěn)態(tài)液動力??梢詰脛恿慷ɡ?通過求解所選控制體的動量變化,反求閥芯所受液動力[15]。
由動量定理得:
Fsdt=ρv2Acosαdt
(6)
式中:Fs—流體軸向液動力,N;v—流體軸向流速,m/s;ρ—液壓油密度,kg/m3;α—射流角度,45°。
又因流量公式:
q=Av
(7)
并將式(6)兩邊同時對時間積分,可得:
FS=ρqvcosα
(8)
錐形閥口過流速度為:
(9)
錐形閥口過流面積為:
(10)
插裝閥閥口流量為:
(11)
將式(9,11)式代入式(8),可得穩(wěn)態(tài)液動力為:
(12)
穩(wěn)態(tài)液動力剛度為:
(13)
式中:CV—速度系數(shù),一般取0.95~0.98;Cd—插裝閥流量系數(shù);d—插裝閥出口直徑,mm;pA—插裝閥A面壓力,MPa;pB—插裝閥B面壓力,MPa。
2.3.4 主閥芯的運動平衡方程
開啟過程主閥芯的運動平衡方程為:
(14)
式中:AA—插裝閥A面面積,mm2;AB—插裝閥B面面積,mm2;m—插裝閥閥芯質量,kg;B—主閥芯的黏性阻尼系數(shù);k—彈簧剛度,N/mm。
2.4.1 阻尼孔通流方程
若不考慮管道中的液體壓縮,關閉過程阻尼孔的通流方程為:
(15)
式中:pA—控制口高壓/供油壓力,MPa。
2.4.2 流量連續(xù)性方程
關閉過程中的流量連續(xù)性方程為:
(16)
2.4.3 主閥芯的運動平衡方程
關閉過程主閥芯的運動平衡方程為:
(17)
仿真模型參數(shù)如表2所示。
表2 仿真模型參數(shù)
電磁閥建模部分解釋了輸入電壓信號與閥芯位移之間聯(lián)系;液控先導閥建模部分解釋了液控先導閥位移與控制流量之間的聯(lián)系;插裝閥部分數(shù)學建模分別列出了阻尼孔通流方程、流量連續(xù)性方程和主閥芯的運動平衡方程,從而得到了控制流量引起閥芯位移變化之間的聯(lián)系。
以上數(shù)學建模將輸入電壓信號與閥芯位移變化關聯(lián)起來,準確解釋了插裝閥的工作原理。
通過設置數(shù)學模型中的相關參數(shù),再利用AMESim軟件,筆者搭建先導級與主閥級的仿真模型,并進行計算。
筆者所建仿真模型如圖3所示。
圖3 先導級與主閥級的仿真及測試模型
通過AMESim建模仿真,可得到插裝閥控制腔壓力仿真曲線,如圖4所示。
圖4 控制腔壓力仿真曲線
圖4中,在0 s時,控制管路聯(lián)通低壓p0,控制腔C內的壓力迅速下降到0 Pa。5.7 s后,控制管路聯(lián)通供油壓力高壓pA,控制腔內的壓力迅速上升至25 MPa。
控制腔內壓力的變化控制插裝閥的運動狀態(tài)。
插裝閥的主閥位移的動態(tài)響應特性仿真曲線,如圖5所示。
圖5 閥芯位移仿真曲線
圖5中,控制管路聯(lián)通油箱低壓時,控制腔內的壓力迅速下降到0 Pa,此時插裝閥C面所受壓力為0,插裝閥芯A、B面受液體向上的壓力而向上運動,到0.036 m處停止;控制管路聯(lián)通高壓時,控制腔內的壓力迅速上升到25 Pa,此時插裝閥C面受到較大壓力,推動插裝閥芯向下運動,直至插裝閥完全關閉。
插裝閥芯的上下運動直接導致插裝閥的開啟與關閉,從而控制液體流動。
插裝閥開啟與關閉過程中,插裝閥入口處的壓力變化如圖6所示。
圖6 插裝閥入口壓力變化圖
圖6中,插裝閥開啟瞬間,入口與出口連通,入口壓力迅速下降到15 MPa;插裝閥關閉瞬間,入口與出口斷開,入口壓力又上升到25 MPa。
插裝閥開啟與關閉過程中,插裝閥出口處的壓力變化如圖7所示。
圖7 插裝閥出口壓力變化圖
由圖7可知:由于負載壓力恒定,所以出口處的壓力穩(wěn)定在16 MPa。
插裝閥開啟與關閉過程通過插裝閥的流量變化,如圖8所示。
圖8 插裝閥口流量仿真曲線
由圖8可知:在插裝閥開啟瞬間,由于插裝閥入口壓力為25 MPa,出口壓力為15 MPa,插裝閥兩側存在較大壓差,閥口流量躍升至33 000 L/min,之后入口壓力逐漸降低,流量穩(wěn)定在5 000 L/min;當插裝閥關閉時,閥口流量迅速減小為0。
由于插裝閥結構復雜,理論計算過程中,很多問題都被簡化忽略了,其計算結果比較粗略。
采用計算流體動力學方法,則能更精確地得到插裝閥內部的流場特性。因此,筆者采用計算流體動力學的方法,對不同開度時插裝閥腔內的流場進行穩(wěn)態(tài)仿真,得到插裝閥腔內流體流動區(qū)域的流量特性、速度分布和壓力分布情況。
插裝閥模型如圖9所示。
圖9 插裝閥模型
當閥芯向上運動時,插裝閥打開,液體由A口進入插裝閥,從B口流出。當閥芯向下運動時,插裝閥關閉。
筆者將插裝閥模型(采用Solid works建立)轉換為x-t格式,之后將其導入到Fluid Flow(Fluent)軟件中,根據(jù)流體在閥套內流過的區(qū)域,提取出流體域用于流場分析;
筆者將流體域模型設為進油口inlet、出油口outlet和壁面wall 3部分,采用Fluent自帶的Meshing功能進行網(wǎng)格劃分,減少了網(wǎng)格的生成時間,簡化模型和網(wǎng)格生成的過程[16-18],最終得到的流體域模型網(wǎng)格劃分。
流體域抽取與網(wǎng)格劃分如圖10所示。
圖10 流體域抽取與網(wǎng)格劃分
流體域模型網(wǎng)格劃分中的總網(wǎng)格數(shù)為507 535,總節(jié)點數(shù)為97 449。筆者檢查網(wǎng)格質達到0.830 01,符合仿真分析要求;檢查網(wǎng)格平均扭曲度為0.238 52,符合仿真分析要求。
P閥總行程為36 mm,筆者分別取閥芯開度為20%、40%、60%、80%、100%進行流場分析,根據(jù)不同開度時的實際工況,得出三維和二維仿真云圖,進而對比流速云圖、壓力云圖的變化情況。
閥口開度為20%即7.2 mm時,出口平均流速為19.64 m/s,三維的速度和壓力云圖如圖11所示。
圖11 三維云圖(20%開度)
二維的速度和壓力云圖如圖12所示。
圖12 二維云圖(20%開度)
閥口開度為40%即14.4 mm時,出口平均流速為39.20 m/s,三維的速度和壓力云圖如圖13所示。
圖13 三維云圖(40%開度)
二維的速度和壓力云圖如圖14所示。
圖14 二維云圖(40%開度)
閥口開度為60%即21.6 mm時,出口平均流速為53.22 m/s。三維的速度和壓力云圖如圖15所示。
圖15 三維云圖(60%開度)
二維的速度和壓力云圖如圖16所示。
圖16 二維云圖(60%開度)
閥口開度為80%即28.8 mm時,出口平均流速為55.44 m/s。三維的速度和壓力云圖如圖17所示。
圖17 三維云圖(80%開度)
二維的速度和壓力云圖如圖18所示。
圖18 二維云圖(80%開度)
當閥口開度為100%即36 mm時,出口平均流速為57.28 m/s。三維的速度和壓力云圖如圖19所示。
圖19 三維云圖(100%開度)
二維的速度和壓力云圖如圖20所示。
圖20 二維云圖(100%開度)
筆者通過以上仿真分析得出了插裝閥較準確的流場特性。
比較插裝閥在不同開度時流場的速度云圖與壓力云圖可知:隨著閥芯開度逐漸增加,出口流量和出口壓力逐漸增大,入口壓力有所降低。
為了研究某液壓打樁錘的組合插裝閥動作過程中的響應特性和流場特性,筆者先介紹了某液壓打樁錘專用組合插裝閥的結構及工作原理,分析了插裝閥閥芯運動的機理,并分別建立了插裝閥開啟和關閉兩種狀態(tài)的數(shù)學模型;然后,利用AMESim軟件對插裝閥控制腔壓力、閥口流量、閥芯位移等進行了仿真分析;最后,利用Fluent仿真軟件得到了插裝閥在不同開度下的速度云圖、壓力云圖。
主要過程及研究結論如下:
(1)利用AMESim軟件仿真研究組合插裝閥的響應特性,得到了組合插裝閥在不同開度時的具體工況。在插裝閥突然開啟瞬間,插裝閥入口壓力為供油高壓,出口壓力為負載低壓,插裝閥兩側存在較大壓差,閥口流量突然躍升,之后入口壓力逐漸降低,流量穩(wěn)定在一定值;
(2)利用Fluent仿真軟件得到了主閥在不同閥口開度下的速度云圖、壓力云圖等流場特性。通過壓力云圖可看出壓力分布沒有明顯突變,閥芯開口設計較為合理,通過速度云圖得到組合插裝閥開度分別為20%、40%、60%、80%、100%時出口平均流速為19.64 m/s、39.20 m/s、53.22 m/s、55.44 m/s、57.28 m/s,可為平衡閥內部結構的設計和計算提供參考;
(3)隨著開度的逐漸增大,流體最大流速依次減小,平均流量逐漸增大,入口處流體壓力逐漸減小。
在今后的工作中,筆者將在考慮更多因素的情況下,對插裝閥的工況進行模擬,通過提高流場計算精度,以此來獲得更準確的結果。