王振華,胡貴榮,劉寧寧,劉娉楠,曹 緣,張棟楠
擴散段結(jié)構(gòu)對非對稱文丘里施肥器旋渦特征及吸肥性能的影響
王振華,胡貴榮,劉寧寧,劉娉楠,曹 緣,張棟楠
(1. 石河子大學水利建筑工程學院,石河子 832000;2. 現(xiàn)代節(jié)水灌溉兵團重點實驗室,石河子 832000;3. 兵團工業(yè)技術(shù)研究院,石河子 832000)
為減小非對稱文丘里施肥器擴散段旋渦區(qū)的能量耗散,提升非對稱文丘里施肥器在低壓灌溉系統(tǒng)中的吸肥性能,該研究通過物理試驗與數(shù)值仿真,對比分析了直線擴散段與弧形擴散段的非對稱文丘里施肥器的工作性能差異。結(jié)果表明:將非對稱文丘里施肥器擴散段設(shè)置成弧形結(jié)構(gòu)有利于減小旋渦區(qū)面積及強度,提升非對稱文丘里施肥器吸肥性能。與直線擴散段結(jié)構(gòu)相比,弧形擴散段的旋渦區(qū)面積減小28.41%~42.37%,旋渦強度減小6.64%~35.65%,吸肥效率提升48.15%~98.25%,提升幅度隨進出口壓差的增大逐漸減小。旋渦對非對稱文丘里施肥器吸肥性能具有顯著影響(≤0.05),減小旋渦區(qū)面積或強度、增大旋渦區(qū)邊界到喉部的距離等均能提升非對稱文丘里施肥器吸肥性能。研究結(jié)果可為非對稱文丘里施肥器的結(jié)構(gòu)設(shè)計提供參考。
CFD;數(shù)值分析;文丘里施肥器;擴散段結(jié)構(gòu);吸肥性能;旋渦
低壓灌溉大幅度降低了灌溉系統(tǒng)運行成本,在國家“低功耗農(nóng)業(yè)”發(fā)展趨勢下,是未來滴灌發(fā)展的重要手段[1-2]。施肥設(shè)備是滴灌系統(tǒng)中重要的組成部分,其性能好壞直接關(guān)系到灌溉質(zhì)量[3-4]。目前常用的施肥設(shè)備有壓差施肥罐、文丘里施肥器、水肥一體機等,其中文丘里施肥器因結(jié)構(gòu)簡單,價格便宜,無需外加動力等優(yōu)點被廣泛應用在農(nóng)業(yè)灌溉中[5-6]。現(xiàn)有文丘里施肥器存在擴散段旋渦較大,局部水頭損失明顯,吸肥臨界壓力高等問題[7]?;诖耍芯课那鹄锸┓势鲀?nèi)部旋渦特征及其吸肥性能對結(jié)構(gòu)形式的響應關(guān)系對開發(fā)適用于低壓滴灌的文丘里施肥器具有重要意義。
國內(nèi)外對文丘里施肥器的研究主要聚焦于對稱文丘里施肥器,研究的主要技術(shù)手段包括吸肥性能測試試驗[8-10]、計算流體動力學(Calculate Fluid Dynamics,CFD)數(shù)值仿真[11-14],高速攝像技術(shù)[15-16]等。研究涵蓋了文丘里施肥器性能測試、結(jié)構(gòu)參數(shù)優(yōu)化、樣件工程應用等方面,形成了較為完善的結(jié)構(gòu)設(shè)計及優(yōu)化方法[17]。針對現(xiàn)有文丘里施肥器的不足,諸多學者對其進行結(jié)構(gòu)參數(shù)優(yōu)化或結(jié)構(gòu)創(chuàng)新:李歡等[18-19]分別設(shè)計了螺紋式文丘里施肥器及四通道并聯(lián)文丘里施肥器,使得文丘里施肥器的吸肥流量得到了明顯提升,但仍存在喉部負壓利用率較低、吸肥臨界壓差較高的問題。范興科等[20]設(shè)計了一種偏心向上的非對稱文丘里施肥器,并進行了物理試驗,研究表明非對稱文丘里施肥器水頭損失更小、吸肥臨界壓差明顯降低。王海濤等[21]通過CFD數(shù)值仿真技術(shù)對比分析了對稱文丘里施肥器與非對稱文丘里施肥器的流場分布差異,指出非對稱文丘里施肥器喉部多方向速度碰撞少是其水頭損失較小的主要原因。
目前針對非對稱文丘里施肥器的研究還停留在與對稱結(jié)構(gòu)的對比分析。非對稱文丘里施肥器擴散段中存在較大的旋渦區(qū),局部水頭損失顯著,制約了其吸肥性能的進一步提升,且非對稱文丘里施肥器結(jié)構(gòu)形式與內(nèi)部旋渦特征的關(guān)系尚不明晰?;诖?,本文采用物理試驗與數(shù)值仿真相結(jié)合的方法,研究擴散段結(jié)構(gòu)形式對非對稱文丘里施肥器旋渦特征及吸肥性能的影響,以期進一步提升非對稱文丘里施肥器在灌溉系統(tǒng)中的工作性能。
本文以賀向麗等[22]設(shè)計的弧形擴散段結(jié)構(gòu)的非對稱文丘里施肥器(F2)為研究對象(圖1a),對比分析直線擴散段(F1,圖1b)和弧形擴散段(F2,圖1c)的非對稱文丘里施肥器旋渦特征和吸肥性能差異。同時為了與市面上常見的對稱文丘里施肥器進行比較,建立與F1相同結(jié)構(gòu)尺寸的對稱文丘里施肥器(DC,圖1d)進行對比分析。文丘里施肥器結(jié)構(gòu)參數(shù)依據(jù)王海濤等[21]研究確定(表1)。
表1 文丘里施肥器結(jié)構(gòu)參數(shù)
采用CFD技術(shù)進行流場可視化展示。采用UG12.0建立三維模,利用ANSYS Mesh 19.0進行網(wǎng)格劃分。為提高計算精度并盡可能減少計算量,需進行網(wǎng)格無關(guān)性驗證,以得到最佳網(wǎng)格尺寸。Zhang等[23]研究表明,計算精度主要受網(wǎng)格尺寸的影響,與計算工況相關(guān)性較小,因此本文在進水口為0.11 MPa、出口為0.04 MPa、進肥口為0 MPa的工況下進行網(wǎng)格無關(guān)性驗證,檢驗指標為吸肥流量變化率,得到吸肥流量變化率與網(wǎng)格數(shù)之間的關(guān)系(圖2)。當計算結(jié)果差異小于0.5%時,可認為網(wǎng)格密度對計算結(jié)果的精度影響不大,可用作計算網(wǎng)格[24]。綜合考慮計算精度和計算成本,確定模型網(wǎng)格計算單元總數(shù)95.94萬,此時最佳網(wǎng)格劃分策略是全局最大尺寸為1.05 mm,針對進水口、水肥出口、進肥口、喉部進行局部網(wǎng)格加密。
圖2 網(wǎng)格數(shù)量與吸肥流量變化率曲線關(guān)系
計算模型的選擇取決于水流通過計算域的流態(tài)。前人研究指出,文丘里施肥器內(nèi)部液體流經(jīng)收縮段進入喉部時,流向發(fā)生變化,喉部流態(tài)紊亂,且有較大的壓力梯度[25-27],因此本文數(shù)值仿真基于壓力基求解器,選取Standard-湍流模型,在模型的近壁面采用非平衡壁面函數(shù)(Non-Equilibrium Wall Functions)。充分考慮空化效應,采用Mixture多相流模型,將Water-Liquid設(shè)置為Phase-1,Water-Vapor設(shè)置為Phase-2,激活空化模型中的Zwart-Gerber-Belamri模型。計算過程中,壓力速度耦合方程采用SIMPLE算法,設(shè)置進水口、進肥口均為壓力進口,出口為壓力出口。設(shè)置進水口壓力0.07~0.25 MPa,壓力梯度0.02 MPa;進肥口壓力設(shè)置為0 MPa,出口壓力為0.04 MPa(表2),工作環(huán)境為1個大氣壓,計算精度設(shè)置為10-5。
為驗證數(shù)值仿真可靠性,使用PollyPolymer公司提供的精度為0.5 mm的3D打印機,利用HD-50光敏樹脂打印試驗樣件,搭建吸肥性能測試平臺(圖3)進行試驗測試。試驗平臺采用潛水泵供水,管路安裝3個調(diào)壓閥、2個壓力表。試驗時吸肥管外接肥液桶供肥,同時通過調(diào)節(jié)調(diào)壓閥1、調(diào)壓閥2、調(diào)壓閥3控制流經(jīng)非對稱文丘里施肥器的水壓。試驗過程中設(shè)置進水口壓力為0.07~0.25 MPa,壓力梯度0.02 MPa,出口壓力固定為0.04 MPa,吸肥口壓力為標準大氣壓,試驗工況如表2。每次試驗3 min,用量筒容積法測定不同壓力水平下肥液桶試驗前后質(zhì)量差和出口流量,并采用精度為0.001 g的電子天平進行校核。
表2 文丘里施肥器工作壓力方案
注:1表示進水口壓力;2表示進肥口壓力;3表示出口壓力;D表示進出口壓力差。
Note:1is the water inlet pressure;2is the fertilizer inlet pressure;3is the outlet pressure;Dis the difference between inlet and outlet pressure.
1.調(diào)壓閥1 2.調(diào)壓閥2 3.非對稱文丘里施肥器 4調(diào)壓閥3 5.壓力表1 6.壓力表2 7.循環(huán)水箱 8.主管 9.支管
物理試驗在石河子大學干旱區(qū)滴灌節(jié)水兵團科技創(chuàng)新團隊滴灌設(shè)備試驗室進行。為保證試驗可持續(xù)性,試驗時以清水代替肥液。通過試驗得到不同壓力水平下非對稱文丘里施肥器進出口壓差D與吸肥流量之間的變化關(guān)系,并與模擬值進行對比(圖4)。從圖4可知,相同進口壓力下,實測值與模擬值變化趨勢基本相同,二者誤差為1.36%~5.18%,小于10%,說明計算模型選取合理[28]。
圖4 數(shù)值仿真與物理試驗對比
文丘里施肥器綜合性能通常采用吸肥流量、肥液濃度、吸肥效率這3個指標進行評價[29]。
式中表示進水口流量,m3/h。
由公式(1)~(2)可知,和均是、的函數(shù),通過簡單變換,可表示為的函數(shù)。因此試驗以、為主要吸肥性能指標。
漩渦特征包括漩渦面積、漩渦強度及旋渦區(qū)邊界到喉部末端最小距離,其中旋渦強度[30]計算公式為
式中表示旋渦區(qū)面積,m2;1max表示旋渦區(qū)最大速度,m/s;表示旋渦區(qū)等效半徑,m;表示旋渦強度,s-1。
將旋渦特征數(shù)據(jù)及吸肥性能數(shù)據(jù)導入origin 2021b(學習版)中,采用Correlation Plot小程序進行分析,其中相關(guān)性計算采用Spearman相關(guān)系數(shù),數(shù)據(jù)缺失采用Listwise補缺方式。
將Fluent計算結(jié)果導入Tecplot 360中進行后處理。提取文丘里施肥器中軸面上的速度流線分布、湍流動能分布,分別研究其旋渦特征和水力性能。
對于旋渦處理,以旋渦的最外側(cè)流線作為旋渦區(qū)邊界,采用樣條曲線對邊界進行擬合,繪制出旋渦區(qū)的形狀。沿旋渦邊界向旋渦內(nèi)部延伸,找到旋渦中除邊界層部分的最低流速所在的流線,以該流線起點作為旋渦區(qū)中心點。其中旋渦邊界及中心采用Tecplot軟件提取,主要操作步驟包括導入文件、提取中軸面、計算流速、繪制流線、提取出邊界層之外的流速最低點坐標,最低流速所在的流線起點即為旋渦中心。樣條曲線包含區(qū)域大小即為旋渦區(qū)面積[31],旋渦強度由公式(3)~(4)進行計算。為確定漩渦區(qū)中心點坐標,以進水口遠離吸肥管一側(cè)為坐標軸原點(),沿水流方向為軸,豎直向上為軸建立坐標軸(圖5)。
圖5 旋渦邊界及中心確定方法
圖6為不同D下的文丘里施肥器的速度及流線分布。文丘里施肥器的能量轉(zhuǎn)換過程主要是壓力與流速之間的轉(zhuǎn)換,在相同的工作環(huán)境下,喉部流速越大,能量轉(zhuǎn)換效率越高[13]。隨著D的增大,沿水流方向流速先增大后減小,在喉部流速及流速梯度達到最大。喉管下部的流速比喉管上部的流速高,這是因為喉管上部的水流與吸肥管中的肥液相互摻混,流體相互碰撞導致了較大的局部能量損失,進而使得流速降低。在D相同的情況下,最大流速及最大流速區(qū)面積從大到小為F2、F1、DC,D0.07 MPa時,F(xiàn)2、F1、DC喉部的最大流速分別為16.76、15.90、15.01 m/s,平均速度分別為9.21、8.91、8.68 m/s,F(xiàn)2的能量轉(zhuǎn)換效率最高,DC的能量轉(zhuǎn)換效率最低。
表3為不同D下的渦旋特征,隨著D從0.03 MPa增加到0.19 MPa,3類文丘里施肥器旋渦中心均向后和向下移動。在F1擴散段及出水直管段內(nèi),旋渦面積增加了518.77 mm2,增幅達39.27%,主流面積減少48.83%;在F2的擴散段及出水直管段內(nèi),旋渦面積增加了427.00 mm2,增幅達47.97%,主流區(qū)減小41.85%;在DC擴散段及出水直管段內(nèi),旋渦面積增加了531.25 mm2,增幅達38.51%,主流區(qū)減小55.02%;隨著D的增加,F(xiàn)1與DC的旋渦面積增加幅度減小,F(xiàn)2的旋渦面積增加幅度增大。在相同工況下,與DC相比,F(xiàn)1旋渦區(qū)面積減小3.72%~4.25%,旋渦強度減小1.57%~10.54%;與F1相比,F(xiàn)2的旋渦區(qū)面積減小28.41%~42.37%,旋渦強度減小6.64%~35.65%。
圖6 不同DP下文丘里施肥器的流線及流速對比
表3 不同DP時的文丘里施肥器旋渦特征
注:表示旋渦區(qū)面積,表示旋渦區(qū)邊界到喉部末端最小距離,表示漩渦中心點的軸坐標,表示漩渦中心點的軸坐標,表示旋渦強度。
Note:represents the of vortex area,is the minimum distance from the vortex area boundary to the throat end,represents theaxis coordinates of the vortex center point,represents theaxis coordinates of the vortex center point, andrepresents the vortex intensity.
當D=0.03 MPa時,DC與F1旋渦區(qū)邊界與喉部末端的距離為0,說明旋渦已經(jīng)對喉部造成了影響,而F2的旋渦區(qū)較小,且遠離喉部,對喉部的影響較小;隨著D的增大,F(xiàn)2的擴散段末端形成較大的旋渦,且旋渦區(qū)逐步向喉部發(fā)展,旋渦對喉部的影響逐漸增大。其原因是與F1相比,F(xiàn)2的擴散段前端與喉部平滑過度,擴散角度較小,不利于旋渦發(fā)展;F2擴散段末端的擴散角度較大,導致偏斜流動和回流現(xiàn)象明顯,從而產(chǎn)生較大的旋渦,同時隨著D的增大,喉部負壓增加,在出口壓力不變時,逆壓梯度增大,導致旋渦區(qū)逐漸向喉部發(fā)展。與F1、F2相比,DC的擴散段是向兩邊擴散,其偏斜流動更加明顯,主流區(qū)主要集中在擴散段遠離吸肥管的一側(cè),從而在其擴散段中形成了更大的旋渦。
圖7是不同D下文丘里施肥器的湍流動能分布云圖。湍流動能反映了流場的湍流程度,湍流動能越大,流體流動狀態(tài)越復雜,流層之間的碰撞及摻混越強烈,局部水頭損失越大[6]。DC、F1的湍流動能在收縮段末端開始迅速增長,在喉管末端和擴散段前端達到最大值,這是因為水流通過收縮段進入喉部時流向發(fā)生變化,多方向速度碰撞強烈,同時吸肥管中的肥液與喉部的水流相互摻混碰撞,流態(tài)紊亂,導致湍流強度增加。
a. DP=0.03 MPab. DP=0.15 MPac. DP=0.19 MPa
隨著D的增大,F(xiàn)2的最大湍流動能逐漸向擴散段中部移動,其原因是隨著D的增大,旋渦區(qū)逐步向喉部發(fā)展,旋渦區(qū)回水與主流區(qū)中的水發(fā)生碰撞,同時該部分產(chǎn)生邊界層分離現(xiàn)象,增加了流動阻力損失,導致湍流強度增加。當D<0.15 MPa時,相同工況下,F(xiàn)2的最大湍流動能及其分布區(qū)域均小于F1,表明在較低的工作壓差下,F(xiàn)2的能量損失較小。當D=0.19 MPa時,DC的最大湍流動能也向著擴散段中部移動,這是因為DC的擴散段向兩側(cè)擴散,使得主流區(qū)更加遠離吸肥管一側(cè),產(chǎn)生了邊界層分離現(xiàn)象,同時遠離吸肥管一側(cè)的流向發(fā)生轉(zhuǎn)變,多方向速度碰撞增加,湍流強度增加。
當D=0.09 MPa時,F(xiàn)2達到最高吸肥流量,其后吸肥流量逐漸下降(圖8a),這是因為隨著D的增大,F(xiàn)2的擴散段旋渦逐漸向喉部發(fā)育,對喉部的影響逐漸增加,且旋渦區(qū)域增大趨勢較為明顯,形成較大旋渦,旋渦區(qū)能量耗散顯著增加,降低了吸肥性能。當D=0.13 MPa,DC的吸肥流量達到最大值0.143 m3/h,D=0.15 MPa,,F(xiàn)1達到最大吸肥流量0.156 m3/h,其后F1和DC的吸肥流量趨于穩(wěn)定,這是因為F1和DC的擴散段的旋渦對喉部負壓的影響不隨著進出口壓差的變化而存在顯著性差異,但隨著進出口壓差的增大,管內(nèi)逐步出現(xiàn)空蝕空化,抑制了喉部負壓的進一步增大,影響了吸肥流量的持續(xù)增加。相同工況下,F(xiàn)2的吸肥流量比F1提升50.64%~103.22%,增加幅度隨著D的增大逐漸降低;DC的吸肥流量比F1的吸肥流量小16.56%~49.15%,減小幅度隨著D的增大逐漸降低,這說明相同結(jié)構(gòu)尺寸下,非對稱結(jié)構(gòu)文丘里施肥器比對稱結(jié)構(gòu)文丘里施肥器吸肥性能更好。
吸肥效率隨著進出口壓差的增大逐漸降低,并最終趨于平穩(wěn)(圖8b)。在相同工況下,與DC相比,F(xiàn)1的吸肥效率提升31.23%~56.21%。與F1相比,F(xiàn)2的吸肥效率提升48.15%~98.25%,隨著D增大,提升幅度逐漸降低。D>0.09 MPa時,F(xiàn)2的吸肥流量下降明顯,而F1達到最大吸肥量之后基本保持不變,導致F2的吸肥效率下降速度比F1更快,表明F1的吸肥量隨著壓強的變化穩(wěn)定性較強,且工作范圍較大,F(xiàn)2在低壓差的工作環(huán)境下具有較強的吸肥性能,更加適用于低壓滴灌系統(tǒng)。
圖9是旋渦區(qū)面積、強度以及與喉部末端的距離對吸肥流量、吸肥流量變化率及吸肥效率的影響分析。在本試驗中,隨著D的增大,旋渦區(qū)面積及強度與吸肥流量均呈現(xiàn)增長趨勢。但隨著旋渦區(qū)域的增大,吸肥流量增加率及吸肥效率呈現(xiàn)下降趨勢,這說明隨著旋渦區(qū)面積及強度的增加,能量損耗增加,能量轉(zhuǎn)換效率降低。
在95%的置信區(qū)間中,F(xiàn)1旋渦區(qū)面積及強度對吸肥流量和吸肥效率均存在顯著性影響(≤0.05,圖9a)。將擴散段改為弧形結(jié)構(gòu)后,旋渦區(qū)面積及強度對吸肥流量的影響減弱,僅對吸肥效率有顯著影響(圖9b),其原因可能是與直線型擴散段相比,弧形擴散段中的旋渦區(qū)離喉部較遠,旋渦中的回水對喉部最大負壓的影響較小,從而對吸肥流量影響較小。在弧形擴散段文丘里施肥器中,旋渦區(qū)邊界與喉部末端的距離()對吸肥效率存在顯著性關(guān)系,隨著的減小,吸肥效率逐漸減小。旋渦區(qū)面積及強度均與吸肥量流量變化率呈現(xiàn)負相關(guān)關(guān)系,且僅有DC的旋渦區(qū)面積及強度對吸肥流量變化率有顯著性影響,說明對稱結(jié)構(gòu)文丘里施肥器中旋渦特征對吸肥量的變化有顯著影響。
a. F1b. F2c. DC
注:*表示影響顯著,≤0.05;為吸肥流量,m3·h-1;表示吸肥流量變化率,=[(q+1-q)/q]′100%,=1~9,%;表示吸肥效率,%;圖中數(shù)據(jù)表示相關(guān)性系數(shù),大于0表示正相關(guān),反之表示負相關(guān)。
Note: * represents significant effect,≤0.05;is the fertilizer absorption flow rate, m3·h-1;represents the Change rate of fertilizer absorption flow,=(q+1-q)/q′100%,=1-9, %;represents fertilizer absorption efficiency, %; the data in the figure is the correlation coefficient, and if it is greater than 0, it means positive correlation, otherwise it means negative correlation.
圖9 旋渦特征對吸肥性能的影響
Fig.9 Effects of vortex characteristics on fertilizer absorption performance
與對稱文丘里施肥器相比,非對稱文丘里施肥器的能量轉(zhuǎn)換效率更高,吸肥性能更加優(yōu)良,在相同結(jié)構(gòu)尺寸下,非對稱文丘里施肥器的吸肥流量和吸肥效率分別提升16.56%~49.15%和31.23%~56.21%,本文試驗結(jié)果與王海濤等[21]的研究結(jié)果一致,其原因可能是對稱文丘里施肥器中水流流經(jīng)收縮段、喉部、擴散段時,流向發(fā)生多次轉(zhuǎn)變,流體多方向速度碰撞強烈,產(chǎn)生了較大的水頭損失;而非對稱文丘里施肥器只有一側(cè)進行了漸縮漸闊,另一端平滑過度,湍流程度較小,水頭損失明顯降低。另外,對稱文丘里施肥器喉部負壓呈現(xiàn)環(huán)狀分布,非對稱文丘里施肥器喉部負壓主要是集中在靠近吸肥管的一側(cè),其負壓區(qū)更加集中,負壓利用效率更高;此外,在水肥混合的過程中,喉部多余的負壓極易由于外界的擾動或自身內(nèi)部的局部低壓區(qū)產(chǎn)生空化核,進一步抑制了對稱文丘里施肥器吸肥性能的提升[32]。
本文的旋渦特征是基于Fluent數(shù)值仿真結(jié)果進行分析的,受限于試驗條件,并未在實際試驗中針對旋渦進行觀測,僅用進出口流量、吸肥流量與實測值進行了對比,結(jié)果顯示數(shù)值模擬與實測值誤差為1.36%~5.18%,滿足分析要求[28]。數(shù)值仿真與物理試驗相結(jié)合的方法是目前研究文丘里施肥器的主要方法,且到目前為止,已經(jīng)形成了較為完善的試驗及結(jié)構(gòu)優(yōu)化設(shè)計體系[33]。數(shù)值仿真結(jié)果顯示,3類文丘里施肥器內(nèi)部均存在旋渦(圖6),多數(shù)學者針對文丘里施肥器或者文丘里管進行數(shù)值仿真均得到了相似的結(jié)果[11,34]。旋渦具有較強的消能作用,旋渦對文丘里施肥器的影響研究較少,但在灌水器的研究中,部分學者將旋渦引入灌水器中進行灌水器消能穩(wěn)流[35]。可見文丘里施肥器中旋渦的存在增大了局部水頭損失,降低了能量轉(zhuǎn)換效率[6]。旋渦主要是依靠流層之間的摩擦進行消能,旋渦強度越大,消能效果越強[31,35],因此減小旋渦區(qū)面積及強度有利于減小局部水頭損失,提升文丘里施肥器的能量轉(zhuǎn)換效率。
對于文丘里施肥器內(nèi)部旋渦產(chǎn)生的原因,部分學者也進行了研究。Kozak等[36]認為偏斜流動是文丘里施肥器內(nèi)部產(chǎn)生旋渦的主要原因,當喉部直徑與進水口直徑之比小于0.25或者擴散角大于8°時,偏斜流動最為明顯,這是因為當喉部直徑與進水口直徑之比過小時,在較高的壓強下,極易產(chǎn)生射流現(xiàn)象,流速較高,當水流進入擴散段時,流速逐漸降低,水流逐漸擴散,產(chǎn)生回流現(xiàn)象,形成旋渦,且隨著進出口壓差的增大,旋渦現(xiàn)象更加明顯。因此在進行文丘里施肥器結(jié)構(gòu)設(shè)計時,應當注意其結(jié)構(gòu)尺寸范圍,盡量避免產(chǎn)生較大旋渦,影響文丘里施肥器工作穩(wěn)定性。王秋良[11,37]等認為吸肥管與喉部交叉,肥液流向改變且與主流發(fā)生碰撞,致使整體流動紊亂,產(chǎn)生旋渦。同時水流流經(jīng)喉部時存在較大的水力梯度,水流的剪切作用及橫向環(huán)流產(chǎn)生了較大的水頭損失,水流流速減小,擴散及回流趨勢明顯增加。而Li等[6]認為旋渦的產(chǎn)生與喉部結(jié)構(gòu)有關(guān),且喉部吸入室結(jié)構(gòu)形式還會影響旋渦分布的區(qū)域,因此在設(shè)計文丘里施肥器時也可采用對稱型喉部吸入室,以減小偏斜流動。
在相同工況下,旋渦面積及強度從大到小為DC、F1、F2,吸肥流量從大到小為F2、F1、DC。其中F2較F1的吸肥性能明顯提升。在產(chǎn)品生產(chǎn)方面,現(xiàn)階段大都采用壓模的生產(chǎn)工藝,雖然弧形結(jié)構(gòu)相較于直線結(jié)構(gòu)相對復雜,但弧形結(jié)構(gòu)內(nèi)部無倒鉤結(jié)構(gòu),因此生產(chǎn)工藝與直線結(jié)構(gòu)相同,同時弧形擴散段與直線型擴散段的長度和厚度相同,生產(chǎn)成本相當。本文只針對3類不同結(jié)構(gòu)文丘里施肥器進行了研究,其他結(jié)構(gòu)參數(shù)對旋渦特征的影響還需進一步研究。
本文以非對稱文丘里施肥器擴散段結(jié)構(gòu)形式為研究對象,采用物理試驗和CFD數(shù)值仿真相結(jié)合的方式對比分析了直線擴散段和弧形擴散段的旋渦特征和吸肥性能,同時與市面上常用的對稱文丘里施肥器進行了比較,結(jié)果顯示:
1)隨著進出口壓差的增大,文丘里施肥器擴散段中的旋渦區(qū)面積及旋渦強度增大,旋渦區(qū)逐漸向后、向下移動。相同工況下,弧形擴散段的非對稱文丘里施肥器旋渦區(qū)面積減小28.41%~42.37%,旋渦強度減小6.64%~35.65%。隨著進出口壓差的增大,弧形擴散段中旋渦區(qū)邊界到喉部的距離由37.92 mm減小到19.99 mm,對喉部的影響程度逐漸增加。
2)與對稱文丘里施肥器相比,相同結(jié)構(gòu)尺寸下的非對稱文丘里施肥器吸肥性能更優(yōu)異。與直線擴散段相比,弧形擴散段的吸肥流量和吸肥效率分別提升50.64%~103.22%和48.15%~98.25%,隨著進出口壓差的增大,增大的幅度逐漸降低,將擴散段設(shè)置成弧形結(jié)構(gòu)更適用于低壓灌溉。
3)旋渦特征對非對稱文丘里施肥器吸肥性能有顯著影響(≤0.05),減小旋渦面積及強度、或增大旋渦區(qū)邊界到喉部的距離均有利于提升非對稱文丘里施肥器吸肥性能。
[1] 張建闊,李加念. 低壓灌溉系統(tǒng)中文丘里施肥器吸肥性能試驗分析[J]. 農(nóng)機化研究,2019,41(2):183-186.
Zhang Jiankuo, Li Jianain. Experimental and analysis of venturi injector fertilizer performance in low pressure irrigation system[J]. Journal of Agricultural Mechanization Research, 2019, 41(2): 183-186. (in Chinese with English abstract)
[2] Duan X N, He W Q, Wang Y B, et al. Optimization design method of a large-scale multilevel gravity drip irrigation pipe network system based on atom search optimization[J]. Journal of Irrigation and Drainage Engineering, 2022, 148(7): 04022023
[3] 汪小珊,嚴海軍,周凌九,等. SSQ系列射流施肥器水力性能試驗研究[J]. 農(nóng)業(yè)工程學報,2020,36(21):31-38.
Wang Xiaoshan, Yan Haijun, Zhou Lingjiu, et al. Experimental research of hydraulic performance on jet fertilizer applicator of SSQ series[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(21): 31-38. (in Chinese with English abstract)
[4] Shi Y Y, Hu Z C, Wang X C, et al. Fertilization strategy and application model using a centrifugal variable-rate fertilizer spreader[J]. International Journal of Agricultural and Biological Engineering, 2018, 11(6): 41-48
[5] Fan J L, Wu L F, Zhang F C, et al. Evaluation of drip fertigation uniformity affected by injector type, pressure difference and lateral layout[J]. Irrigation and Drainage, 2017, 66(4): 520-529.
[6] Li H, Li H, Huang X Q, et al. Numerical and experimental study on the internal flow of the venturi injector[J]. Processes, 2020, 8(1): 64.
[7] Wang H T, Wang J D, Yang B, et al. Simulation and optimization of venturi injector by machine learning algorithms[J]. Journal of Irrigation and Drainage Engineering, 2020, 146(8): 04020021.
[8] 周良富,金永奎,薛新宇. 電磁閥開關(guān)模式下文丘里施肥器吸肥特性研究[J]. 農(nóng)業(yè)工程學報,2019,35(22):277-284.
Zhou Liangfu, Jin Yongkui, Xue Xinyu. Suction characteristics of venturi injector in solenoid valve switch on&off mode[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(22): 277-284. (in Chinese with English abstract)
[9] 陳囡囡,朱德蘭,柏楊,等. 水肥一體化灌溉施肥機吸肥性能試驗研究[J]. 節(jié)水灌溉,2019(5):17-20,26.
Chen Nanan, Zhu Deilan, Bai Yang, et al. Experimental study on fertilization performance of integrated water and fertilizer fertigation machine[J]. Water Saving Irrigation, 2019(5): 17-20, 26. (in Chinese with English abstract)
[10] 王海濤,王建東,楊彬,等. 施肥機管路布置對文丘里施肥器吸肥性能的影響[J]. 排灌機械工程學報,2019,37(6):534-539.
Wang Haitao, Wang Jiandong, Yang Bin, et al. Effect of pipeline layout of fertilizer applicator on performance of venturi injector[J]. Journal of Drainage and Irrigation Machinery Engineering (JDIME), 2019, 37(6): 534-539. (in Chinese with English abstract)
[11] 王秋良,王振華,吳文勇,等. 基于CFD的文丘里施肥器收縮與擴散段結(jié)構(gòu)優(yōu)化[J]. 節(jié)水灌溉,2019(9):46-52.
Wang Qiuliang, Wang Zhenhua, Wu Wenyong, et al. Structure optimization of contrsction and diffusion section of venturi fertilizer based on CFD[J], Water Saving Irrigation, 2019(9): 46-52. (in Chinese with English abstract)
[12] Abbasi E, Saadat S, Jashni Ayoub K, et al. A novel method for optimization of slit venturi dimensions through CFD simulation and RSM design[J]. Ultrasonics Sonochemistry, 2020, 67: 105088.
[13] Shi H B, Li M D, Liu Q X, et al. Experimental and numerical study of cavitating particulate flows in a venturi tube[J]. Chemical Engineering Science, 2020, 219: 115598.
[14] 張超,梁忠偉,劉曉初,等. 基于ANSYS的文丘里施肥器水力特性研究[J]. 農(nóng)業(yè)與技術(shù),2019,39(8):1-4.
[15] 嚴海軍,王子君,陳燕. 文丘里施肥器空化過程高速攝像分析[J]. 排灌機械工程學報,2014,32(10):901-905,920.
Yan Haijun, Wang Zijun, Chen Yan. High-speed photography analysis on cavitation of venturi injector[J]. Journal of Drainage and Irrigation Machinery Engineering, 2014, 32(10): 901-905, 920. (in Chinese with English abstract)
[16] Wang Z N, Liao Y S, Wang W C. An intermittent flow structure in airlift pump by using an annular venturi injector[J]. Journal of Applied Fluid Mechanics, 2021, 14(3): 949-961.
[17] Cheng P, Li Q L, Chen H Y, et al. Study on the dynamic response of a pressure swirl injector to ramp variation of mass flow rate[J]. Acta Astronautica, 2018, 152: 449-457.
[18] 李歡,高亮,張夢,等. 改進型螺旋紋文丘里施肥器的設(shè)計與實現(xiàn)[J]. 河北農(nóng)業(yè)大學學報,2019,42(3):115-119.
Li Huan, Gao Liang, Zhang Meng, et al. Design and implementation of an improved venturi fertilizer apparatus with helical blades[J]. Journal of Hebei Agricultural University, 2019, 42(3): 115-119. (in Chinese with English abstract)
[19] 王永濤,劉堅,李家春,等. 并聯(lián)四通道文丘里射流器吸肥結(jié)構(gòu)優(yōu)化與仿真[J]. 中國農(nóng)機化學報,2021,42(6):182-190.
Wang Yongtao, Liu Jian, Li Jiachun, et al. Optimization and simulation of fertilizer absorption structure of parallel four-channel venturi jet[J]. Journal of Chinese Agricultural Mechanization, 2021, 42(6): 182-190. (in Chinese with English abstract)
[20] 范興科,孔令陽. 滴灌系統(tǒng)中文丘里施肥器的選配方法[J]. 灌溉排水學報,2014,33(1):26-29.
Fan Xingke, Kong Lingyang. The selection of venturi injector in the drip irrigation system[J]. Journal of Irrigation and Drainage, 2014, 33(1): 26-29. (in Chinese with English abstract)
[21] 王海濤,王建東,楊彬,等. 非對稱結(jié)構(gòu)文丘里施肥器數(shù)值模擬[J]. 排灌機械工程學報,2018,36(11):1098-1103.
Wang Haitao, Wang Jiandong, Yang Bin, et al. Numerical simulation of venturi injector with non-axis-symmetric structure[J]. Journal of Drainage and Irrigation Machinery Engineering, 2018, 36(11): 1098-1103. (in Chinese with English abstract)
[22] 賀向麗,唐中. 文丘里施肥器及施肥設(shè)備:CN113439514 A[P]. 2021-9-28.
[23] Zhang H G, Tang S Y, Yue H R, et al. Comparison of computational fluid dynamic simulation of a stirred tank with polyhedral and tetrahedral meshes[J]. Iranian Journal of Chemistry & Chemical Engineering-International English Edition, 2021, 39(4): 311-319.
[24] Xing S B, Wang Z H, Zhang J Z, et al. Simulation and verification of hydraulic performance and energy dissipation mechanism of perforated drip irrigation emitters[J]. Water, 2021, 13(2), 171.
[25] Costa M G, Leite J M, Beckedorff L, et al. Static pressure behavior of gas-liquid flows along a venturi[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43(11): 498.
[26] Song Y C, Shentu Y Q, Qian Y L, et al. Experiment and modeling of liquid-phase flow in a venturi tube using stereoscopic PIV[J]. Nuclear Engineering and Technology, 2021, 53(1): 79-92.
[27] Shi H B, Lui Q X, Nikrityuk P. Numerical study of mixing of cavitating flows in a venturi tube[J]. Canadian Journal of Chemical Engineering, 2022, 99(3): 813-828.
[28] 張建闊,李加念,吳昊,等. 基于雙吸肥口的低壓文丘里施肥器設(shè)計與試驗[J]. 農(nóng)業(yè)工程學報,2017,33(14):115-121.
Zhang Jiankuo, Li Jianain, Wu Hao, et al. Design and experiment of low pressure venturi injector based on double fertilizer inlets[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(14): 115-121. (in Chinese with English abstract)
[29] Zhang L, Wei Z Y, Zhang Q. Structural optimization of the low-pressure venturi injector with double suction ports based on computational fluid dynamics and orthogonal test[J]. Desalination and Water Treatment, 2021, 214: 347-354.
[30] Zhang Z H, Li W W. Calculation of the strength of vortex currents induced by vortex generators on flat plates and the evaluation of their performance[J]. Energies, 2022, 15(7): 2442.
[31] 邢少博,張金珠,王振華,等. 不同工作壓力下穿孔形灌水器內(nèi)的旋渦作用分析[J]. 排灌機械工程學報,2021,39(10):1075-1080.
Xing Shaobo, Zhang Jinzhu, Wang Zhenhua, et al. Analysis of vortex action in perforated emitters under different working pressures[J]. Journal of Drainage and Irrigation Machinery Engineering, 2021, 39(10): 1075-1080. (in Chinese with English abstract)
[32] Song Y C, Wang D Z, Yin J L, et al. Experimental studies on bubble breakup mechanism in a venturi bubble generator[J]. Annals of Nuclear Energy, 2019, 130: 259-270.
[33] 李紅,湯攀,陳超,等. 中國水肥一體化施肥設(shè)備研究現(xiàn)狀與發(fā)展趨勢[J]. 排灌機械工程學報,2021,39(2):200-209.
Li Hong, Tang Pan, Chen Chao, et al. Research status and development trend of fertilization equipment used in fertigation in China[J]. Journal of Drainage and Irrigation Machinery Engineering, 2021, 39(2): 200-209. (in Chinese with English abstract)
[34] Manzano J, Palau C V, De Azevedo B M, et al. Geometry and head loss in venturi injectors through computational fluid dynamics[J]. Journal of the Brazilian Association of Agricultural Engineering, 2016, 36(3): 482-491.
[35] 馬炎超. 渦漩對迷宮流道灌水器水流流態(tài)的數(shù)值影響分析[J]. 節(jié)水灌溉,2021,3:73-78.
Ma Yanchao. Numerical analysis of the effect of vortex on flow pattern of emitter with labyrinth flow channel[J]. Water Saving Irrigation, 2021, 3: 73-78. (in Chinese with English abstract)
[36] Kozak J, Rudolf P, Hudec M, et al. Investigation of the cavitation within venturi tube: influence of the generated vortex[EB/OL]. (2018-02-27) Advances In Hydroinformatics: Simhydro 2017-Choosing the Right Model In Applied Hydraulics, 1049-1067.
[37] 陳江林,呂宏興,石喜,等. T型三通管水力特性的數(shù)值模擬與試驗研究[J]. 農(nóng)業(yè)工程學報, 2012,28(5):73-77.
Chen Jianglin, Lyu Hongxing, Shi Xi, et al. Numerical simulation and experimental study on hydrodynamic characteristics of T-type pipes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(5): 73-77. (in Chinese with English abstract)
Effects of diffusion section structure on vortex characteristics and fertilizer absorption performance of non-axisymmetric Venturi injector
Wang Zhenhua, Hu Guirong, Liu Ningning, Liu Pingnan, Cao Yuan, Zhang Dongnan
(1.,,,832000,; 2.-,,832000,; 3.,,832000,)
Fertilization equipment is one of the important components of low-pressure irrigation systems. A Venturi injector is widely used in the agricultural irrigation system, due to its simple structure, low price, and convenient use. The non-axisymmetric Venturi injector normally presents a better fertilizer absorption performance than the axisymmetric one. There are many studies on the response relationship between the fertilizer absorption performance and structural parameters of the Venturi injector. But, only a few studies are focused on the response relationship between the vortex characteristics and structural parameters. Therefore, this study aims to explore the influence mechanism of vortex on the non-axisymmetric Venturi injector in the low-pressure irrigation system, in order to improve the fertilizer absorption performance. An analysis was made to compare the vortex characteristics, fertilizer absorption performance, and the response relationship between fertilizer absorption performance and vortex characteristics of non-axisymmetric Venturi injectors with arc diffusion section and non-axisymmetric Venturi injectors with linear diffusion section. A test platform was developed to evaluate the fertilizer absorption performance. The fertilizer inlet of the non-axisymmetric Venturi injector was set as the atmospheric pressure, where the outlet was 0.04 MPa, and the water inlet was controlled between 0.07 and 0.25 MPa. A pressure gradient was taken for each 0.02 MPa to carry out the experimental test of fertilizer absorption performance. At the same time, the computational fluid dynamics software was selected to carry out the vortex analysis and visualization of the flow field. The mathematical modeling, meshing and simulation of Venturi injectors were carried out to compare with the physical test. The Tecplot post-processing software was used to analyze the numerical simulation, where the spline curve was used to locate the vortex. The results show that the diffusion section of the non-axisymmetric Venturi injector as an arc structure was conducive to reducing the vortex area, and the local energy loss in the vortex area, in order to improve the energy conversion efficiency of the non-axisymmetric Venturi injector. The vortex area and intensity decreased by 28.41%-42.37%, and 6.64%-35.65%, respectively, in the non-axisymmetric Venturi injector with the arc diffusion section under the same difference between inlet and outlet pressure. Once the outlet pressure was 0.04 MPa, the rate of fertilizer absorbed by the non-axisymmetric Venturi injector with the linear diffusion section increased gradually with the increase of inlet and outlet pressure difference, and finally tended to be stable. However, when the non-axisymmetric Venturi injector with the arc diffusion reached the maximum amount of fertilizer absorption, the amount of fertilizer absorption decreased with the increase of inlet and outlet pressure difference. The non-axisymmetric Venturi injector with the arc diffusion section presented a 50.64%-103.22% and 48.15%-98.25% increase in the amount and efficiency of fertilizer absorption, respectively, compared with the linear diffusion section. There was a gradually reduced increase in the amount of fertilizer absorption and its efficiency with the increase of the inlet and outlet pressure difference. The vortex region presented a significant effect on the fertilizer absorption performance of the non-axisymmetric Venturi injector (≤0.05). The center point of the vortex region was gradually downward and backward with the increase of inlet and outlet pressure difference. When the inlet and outlet pressure difference was 0.03 MPa, the distance between the vortex boundary and the throat of the non-axisymmetric Venturi injector with the linear diffusion section was 0, indicating that the direct impact of the vortex on the formation of negative pressure in the throat. The vortex in the non-axisymmetric Venturi injector in the arc diffusion section was far away from the throat, without a direct effect on the formation of negative pressure in the throat. However, there was a gradually decreased distance between the vortex boundary and the throat of the non-axisymmetric Venturi injector in the arc diffusion section. The influence of the vortex on the throat increased gradually with the increase of the inlet and outlet pressure difference. A decrease in the area or intensity of the vortex area and an increase in the distance from the vortex boundary to the throat can greatly contribute to the better performance of fertilizer absorption in the non-axisymmetric Venturi injector. The finding can provide a strong reference for the structural design of non-axisymmetric Venturi injectors.
CFD; numerical analysis; Venturi injector; diffusion section structure; fertilizer absorption performance; vortex
10.11975/j.issn.1002-6819.2022.16.007
S224.21
A
1002-6819(2022)-16-0061-09
王振華,胡貴榮,劉寧寧,等. 擴散段結(jié)構(gòu)對非對稱文丘里施肥器旋渦特征及吸肥性能的影響[J]. 農(nóng)業(yè)工程學報,2022,38(16):61-69.doi:10.11975/j.issn.1002-6819.2022.16.007 http://www.tcsae.org
Wang Zhenhua, Hu Guirong, Liu Ningning, et al. Effects of diffusion section structure on vortex characteristics and fertilizer absorption performance of non-axisymmetric Venturi injector[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(16):61-69. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.16.007 http://www.tcsae.org
2022-06-02
2022-08-14
兵團重大科技項目(2021AA003);兵團南疆重點產(chǎn)業(yè)創(chuàng)新發(fā)展支撐計劃項目(202DB004);兵團重點領(lǐng)域創(chuàng)新團隊項目(2019CB004);石河子大學創(chuàng)新發(fā)展專項(CXFZ201905)
王振華,博士,教授,博士生導師,研究方向為節(jié)水灌溉理論與技術(shù)。Email:wzh2002027@163.com