董 爽,李曉宇,郭 鵬,陳 野,李宏軍
等離子體輔助玉米醇溶蛋白電誘導(dǎo)沉積成膜的工藝優(yōu)化
董 爽1,李曉宇1,郭 鵬1,陳 野2,李宏軍1※
(1. 山東理工大學(xué)農(nóng)業(yè)工程與食品科學(xué)學(xué)院,淄博 255000;2. 天津科技大學(xué)食品科學(xué)與工程學(xué)院,天津 300457)
天然玉米醇溶蛋白(Zein)具有良好成膜特性,但其在成膜過程中蛋白無序排列導(dǎo)致膜結(jié)構(gòu)不穩(wěn)定,限制了實際應(yīng)用。該研究基于玉米醇溶蛋白的電荷特性,將玉米醇溶蛋白置于平行勻強電場下,誘導(dǎo)蛋白有序自組裝排列并沉積成膜,且在誘導(dǎo)液中引入低溫等離子體預(yù)處理以提高誘導(dǎo)效率。分別探究了玉米醇溶蛋白濃度、溶液pH值以及電流密度對蛋白沉積率的影響,并通過Box-Behnken優(yōu)化試驗獲得了最佳沉積工藝為Zein濃度139.5 mg/mL,Zein溶液pH 值為8.17,電流密度14.3 A/m2,在優(yōu)化條件下,玉米醇溶蛋白的沉積率可達1.120 mg/cm2,顯著高于未經(jīng)等離子體處理的沉積率0.483 mg/cm2,表明等離子體輔助可有效提高電誘導(dǎo)中玉米醇溶蛋白的沉積率。掃描電子顯微鏡圖像顯示采用等離子體輔助電誘導(dǎo)制備的沉積膜表面更平整、光滑。傅里葉紅外光譜分析表明,電誘導(dǎo)可使玉米醇溶蛋白二級結(jié)構(gòu)中-轉(zhuǎn)角和無規(guī)則卷曲結(jié)構(gòu)向-折疊及-螺旋結(jié)構(gòu)轉(zhuǎn)化。研究結(jié)果為電誘導(dǎo)玉米醇溶蛋白成膜技術(shù)提供參考,有利于拓展低溫等離子體在蛋白質(zhì)領(lǐng)域的應(yīng)用。
膜;電誘導(dǎo);等離子體;玉米醇溶蛋白;沉積率
玉米醇溶蛋白(Zein)多存在于玉米胚芽中,占玉米中蛋白質(zhì)的60%~68%[1-2],目前主要采用濕法從玉米淀粉加工的副產(chǎn)物玉米黃粉中提取[3]。其分子結(jié)構(gòu)中包含有9個相鄰平行或反平行排列的螺旋結(jié)構(gòu)單元,螺旋首尾處以谷氨酰胺相連,構(gòu)成了大小為130 ?×30 ?×12 ?的棱柱[4-5]。玉米醇溶蛋白分子中包含大量的非極性氨基酸[6-7],一般不溶于水,可溶于60%~95%的醇水溶液、強堿、丙二醇等有機溶劑混合液[8]。天然玉米醇溶蛋白具有理想的成膜特性[9],使其在可降解包裝材料、藥物包埋與緩釋、醫(yī)學(xué)組織支架等領(lǐng)域有著廣闊的應(yīng)用前景。然而,玉米醇溶蛋白在醇水溶液中以無規(guī)則線團形式存在,成膜過程中蛋白無序排列導(dǎo)致蛋白膜結(jié)構(gòu)不穩(wěn)定[10],薄膜存在力學(xué)性能和耐水性差等問題,限制了玉米醇溶蛋白的實際應(yīng)用,導(dǎo)致其目前大多作為低價值的飼料蛋白出售[11],亟需探尋高效的改性方法以提高工業(yè)利用率。
電誘導(dǎo)沉積成膜技術(shù)是基于帶電粒子所帶電荷的性質(zhì)和強弱,在電場力作用下發(fā)生自發(fā)性的遷移,形成穩(wěn)定、有序的聚集體并沉積在電極板或其他形式的載體上,形成功能性質(zhì)良好的生物薄膜材料[10,12-13]。目前電誘導(dǎo)沉積技術(shù)在生物傳感器[14]、表面抗菌涂層[15-16]、藥物控釋[17]等領(lǐng)域有著廣闊的應(yīng)用前景。與其他蛋白質(zhì)類似,玉米醇溶蛋白的末端氨基、末端羧基及側(cè)鏈的游離基團可在溶劑中發(fā)生兩性解離。當(dāng)處于一定pH值條件下,玉米醇溶蛋白在溶液中解離后使分子表面帶有電荷,如果此時將其置于平行電場內(nèi),帶電荷的蛋白可以實現(xiàn)向正極或負極泳動,且能自組裝排列吸附在相應(yīng)的電極板上,如果延長反應(yīng)時間,可以實現(xiàn)層層堆疊最終形成沉積膜[18]。在電誘導(dǎo)過程中,玉米醇溶蛋白遷移的方向取決于蛋白分子所帶的凈電荷數(shù),若調(diào)節(jié)溶液pH值小于等電點時,則玉米醇溶蛋白帶正電,在電場中向負極方向沉積,相反,若調(diào)節(jié)溶液pH值為大于等電點時,則玉米醇溶蛋白帶負電荷,在電場中向正極方向沉積。玉米醇溶蛋白在體積分數(shù)為80%乙醇溶液中,pH值在2~12范圍內(nèi)隨著pH值的升高,玉米醇溶蛋白電位由+16.2 mV(pH值為2)降低至-30.1 mV(pH值為12)[10],證明在pH值升高的過程中,玉米醇溶蛋白粒子由正電荷向負電荷轉(zhuǎn)變。在pH值為5.97時所帶凈電荷數(shù)為0,該pH值為玉米醇溶蛋白的等電點。王君予[10]分別在玉米醇溶蛋白膜制備和干燥過程中引入外加電場,利用電誘導(dǎo)下蛋白成膜液中帶點粒子的遷移運動改變蛋白膜內(nèi)部結(jié)構(gòu)。研究發(fā)現(xiàn),平行電場的改性效果要優(yōu)于垂直電場,膜的功能特性均有改善。徐慧等[13,19]分別探究了不同乙醇濃度和電流密度下,電場誘導(dǎo)對玉米醇溶蛋白澆鑄成膜過程的影響。結(jié)果顯示在電場和乙醇濃度協(xié)同作用下,玉米醇溶蛋白分子有序排列形成均勻網(wǎng)絡(luò)狀結(jié)構(gòu),通過調(diào)節(jié)乙醇濃度和電流密度可獲得具有一定機械強度,同時具有親/疏水特性的玉米醇溶蛋白膜。綜上可知,通過電誘導(dǎo)制備的玉米醇溶蛋白膜理化性質(zhì)較傳統(tǒng)流延法成膜更為均勻,膜結(jié)構(gòu)緊密,性能穩(wěn)定。
然而,在電誘導(dǎo)過程中,天然玉米醇溶蛋白膠束尺寸較大(150~550 nm)[20],且分布不均、易聚集,降低了電誘導(dǎo)過程中蛋白質(zhì)分子的運動性以及沉積效果,限制了其在電誘導(dǎo)沉積成膜中的應(yīng)用?;谇捌谘芯堪l(fā)現(xiàn)[21],采用低溫等離子體處理3 min后,玉米醇溶蛋白膠束粒徑由(231.25±2.38)nm降低至(177.16±3.07)nm。此外,處理后粒徑尺寸的均勻性有明顯提高,膠束之間的聚集程度有降低。低溫等離子體體系中含有電子、離子、自由基、光子等多種活性粒子,這些粒子絕大多數(shù)攜帶較高能量(200~4 000 kJ/mol)[22-23],往往高于常見有機物化學(xué)鍵的鍵能以及蛋白分子間作用力,如疏水作用力(4.2~8.4 kJ/mol)、氫鍵(8.4~20.9 kJ/mol)、二硫鍵(209.5~418.1 kJ/mol)、范德華力(0.4~4.0 kJ/mol)等。因此,通過等離子體中高能粒子撞擊玉米醇溶蛋白膠束,可以破壞蛋白質(zhì)分子鏈之間的分子間作用力,降低分子的聚集程度,形成尺寸更小的玉米醇溶蛋白膠束。此外,研究發(fā)現(xiàn)等離子體處理后,玉米醇溶蛋白溶液的黏度下降,電導(dǎo)率顯著提高(<0.05)[21]。這表明等離子體預(yù)處理后的玉米醇溶蛋白溶液具有更理想的粒徑尺寸和電化學(xué)特性,可能利于提高在電誘導(dǎo)過程中蛋白自組裝動力及薄膜沉積效率。
雖然實驗室在前期研究中已證明了玉米醇溶蛋白膠束在平行外置電場力作用下可自組裝定向排列并沉積在相應(yīng)電極板表面[24],但沉積技術(shù)中玉米醇溶蛋白濃度、玉米醇溶蛋白溶液pH值以及電流密度等因素對蛋白沉積效果的影響仍未知曉。此外,采用等離子體預(yù)處理有助于提高蛋白電誘導(dǎo)沉積效率的猜想仍未得到驗證。本文采用等離子體輔助電誘導(dǎo)玉米醇溶蛋白沉積成膜,分別探究玉米醇溶蛋白濃度、溶液pH值以及電流密度對蛋白沉積率的影響,通過Box-Behnken優(yōu)化試驗獲得了優(yōu)化沉積工藝。在此基礎(chǔ)上對沉積膜進行表面形貌掃描、表面元素組成及蛋白二級結(jié)構(gòu)分析,進一步探究等離子體預(yù)處理及電場誘導(dǎo)作用下蛋白微觀結(jié)構(gòu)的變化。本研究擬為電誘導(dǎo)玉米醇溶蛋白成膜技術(shù)提供參考,并有利于拓展低溫等離子體在蛋白質(zhì)大分子領(lǐng)域的應(yīng)用。
玉米醇溶蛋白(純度>95%),日本和光純藥工業(yè)株式會社;無水乙醇(分析純),天津市北方天醫(yī)化學(xué)試劑廠;氧化銦錫(Indium-Tin Oxide,ITO)涂層導(dǎo)電玻璃,珠海Kaivo光電科技有限公司。
CTP-2000K型低溫等離子體處理儀,南京蘇曼等離子科技有限公司;DYY-6C型電泳儀,北京六一生物科技有限公司。AL204型分析天平,梅特勒-托利多儀器(上海)有限公司。PHS-3E型pH計,上海儀電科學(xué)儀器股份有限公司。SUI1510型掃描電子顯微鏡,日本日立株式會社。Inca X-Max能譜分析儀,牛津儀器(上海)有限公司。NICOLET IS50型傅里葉紅外光譜儀,美國尼高力公司。
1.3.1 玉米醇溶蛋白誘導(dǎo)液的等離子體預(yù)處理方法
稱量一定量的玉米醇溶蛋白粉末,溶解于體積分數(shù)80%乙醇中。搖床振蕩30 min,充分溶解后60 ℃水浴加熱10 min。取出待冷卻至室溫(25.0±0.1)℃。參考Dong等[25]報道的等離子體處理參數(shù),處理條件為輸入電壓65 V,輸入電流(1.0±0.2)A,處理時長為3 min。將等離子體預(yù)處理后的誘導(dǎo)液密封并置于4 ℃下靜置12 h待用。
1.3.2 平行勻強電場誘導(dǎo)玉米醇溶蛋白自組裝沉積成膜方法
基于蛋白質(zhì)分子兩性解離的特點,調(diào)節(jié)溶液pH值在玉米醇溶蛋白等電點(pI=5.97)前后可使蛋白分子帶有正電荷或負電荷,進而在平行勻強電場誘導(dǎo)下實現(xiàn)向負極或正極遷移。電場誘導(dǎo)玉米醇溶蛋白沉積成膜的機理如圖1所示。試驗發(fā)現(xiàn),ITO電極板負極在電場中極易氧化變黑,降低玉米醇溶蛋白沉積膜品質(zhì)。因此,本試驗通過調(diào)節(jié)溶液pH值大于5.97,使玉米醇溶蛋白帶負電荷,并收集正極電極板上的沉積膜。
圖1 電誘導(dǎo)玉米醇溶蛋白自組裝成膜機理
調(diào)整玉米醇溶蛋白誘導(dǎo)液為不同pH值,以ITO導(dǎo)電玻璃(2.0 cm×3.0 cm,ITO涂層0.15~0.20m)為電極,將兩塊電極板的導(dǎo)電面相對放置,固定間距為3.0 cm,平行插入誘導(dǎo)液中,使電極板垂直于誘導(dǎo)液,聯(lián)入電泳儀。在不同電流密度下對玉米醇溶蛋白溶液進行電誘導(dǎo)沉積成膜,誘導(dǎo)時間為1 min。結(jié)束后將沉積膜立即取出并干燥至恒定質(zhì)量,置于50%±2%相對濕度環(huán)境中平衡7 d后進行表征和分析。
1.3.3 單因素試驗
固定電誘導(dǎo)玉米醇溶蛋白沉積成膜工藝的基本條件為玉米醇溶蛋白濃度100 mg/mL,玉米醇溶蛋白溶液pH值為8,電流密度為10 A/m2。在基本條件下,分別探究玉米醇溶蛋白濃度(30、50、100、125、150 mg/mL)、玉米醇溶蛋白溶液pH值(6、7、8、9、10)、電流密度(5、7、10、15、20 A/m2)對電極板上玉米醇溶蛋白沉積率的影響,所有試驗重復(fù)3次并對結(jié)果取平均值。
1.3.4 沉積率(Deposition Rate,DR)測定
沉積率(DR,mg/cm2)為電誘導(dǎo)成膜后,單位面積ITO電極板上玉米醇溶蛋白沉積的質(zhì)量。精準(zhǔn)稱量ITO電極板的質(zhì)量(1,mg)和玉米醇溶蛋白溶液經(jīng)電誘導(dǎo)后ITO電極板的質(zhì)量(2,mg),按公式(1)計算DR:
式中DR為玉米醇溶蛋白在ITO板上的沉積率,mg/cm2;1為未誘導(dǎo)的ITO電極板質(zhì)量,mg;2為電誘導(dǎo)蛋白沉積后的ITO電極板質(zhì)量,mg;為 ITO電極板的表面積,cm2。
1.3.5 微觀形貌掃描
對優(yōu)化工藝條件下的玉米醇溶蛋白膜(即等離子體輔助電誘導(dǎo)玉米醇溶蛋白膜)進行微觀形貌表征,并以同等成膜條件下未經(jīng)等離子體預(yù)處理或未經(jīng)電誘導(dǎo)的蛋白膜作為對照。將膜樣品進行真空噴金后固定于樣品臺上,采用掃描電子顯微鏡(Scanning Electron Microscope,SEM)對沉積膜表面微觀形貌進行觀察并拍照,加速電壓為5.0 kV。
1.3.6 表面化學(xué)元素測定
采用與SEM連用的X射線能譜儀(Energy Dispersive Spectroscopy,EDS)對優(yōu)化工藝條件下的玉米醇溶蛋白膜表面化學(xué)元素進行測定,以同等成膜條件下未經(jīng)電誘導(dǎo)的蛋白膜為對照,每個樣品隨機選擇5個位置進行掃描,結(jié)果取平均值。
1.3.7 紅外二級結(jié)構(gòu)分析
采用傅里葉變換衰減全反射紅外光譜(Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy,ATR-FTIR)對優(yōu)化工藝條件下的玉米醇溶蛋白膜進行掃描,以同等成膜條件下未經(jīng)電誘導(dǎo)的蛋白膜為對照。掃描次數(shù)為32次,分辨率為4 cm-1,光譜掃描范圍為400~4 000 cm-1。參考Fellows等[26]的方法,應(yīng)用OMNIC 8.4及Peakfit 4.12軟件對酰胺I區(qū)(1 600~1 700 cm-1)光譜進行傅里葉自去卷積(Fourier Self-Deconvolution,F(xiàn)SD)和峰擬合等數(shù)據(jù)處理,計算樣品中各二級結(jié)構(gòu)組分的相對百分含量。
1.3.8 數(shù)據(jù)分析
采用SPSS 16.0和Origin 8.0軟件對數(shù)據(jù)進行統(tǒng)計學(xué)分析并作圖,采用Design-Expert 8.0軟件進行Box-Behnken試驗設(shè)計。
電誘導(dǎo)工藝中各因素對玉米醇溶蛋白沉積率的影響如圖2所示。由圖2a結(jié)果可知,在一定濃度范圍(30~125 mg/mL)內(nèi),沉積率隨著玉米醇溶蛋白溶液濃度的增加而增加。在蛋白濃度為125 mg/mL 時達到沉積率最大值。玉米醇溶蛋白濃度越高,單位體積溶液中帶電粒子數(shù)越多,溶液電導(dǎo)率提高,進而提高了蛋白沉積率。但當(dāng)?shù)鞍诐舛忍岣叩?50 mg/mL時,沉積率反而有所降低(<0.05)。這是由于當(dāng)?shù)鞍踪|(zhì)濃度過大時形成的膠束聚集程度較高,在此影響下溶液的黏度較大進而使電誘導(dǎo)中溶液的遷移阻力大,自組裝動力較弱,最終導(dǎo)致沉積率有所降低。
a. 玉米醇溶蛋白濃度對沉積率的影響a. Effects of zein concentration on deposition rateb. 玉米醇溶蛋白溶液pH值對沉積率的影響b. Effects of pH value of zein solution on deposition ratec. 電流密度對沉積率的影響c. Effects of electric current density on deposition rate
注:圖中小寫字母不同表示在<0.05水平上差異顯著。
Note: Different lowercase letters indicate significant differences at<0.05 level.
圖2 電誘導(dǎo)因素對玉米醇溶蛋白沉積率的影響
Fig.2 Effects of different electric induction factors on the deposition rate of zein
溶液pH值通過影響玉米醇溶蛋白的電荷性質(zhì)及電荷數(shù)量進而影響沉積效率。當(dāng)pH值在6~10范圍內(nèi),隨著pH值的增加沉積率呈現(xiàn)先增加后降低的趨勢(圖2b)。當(dāng)溶液pH值為6時,接近于玉米醇溶蛋白等電點5.97,此時蛋白攜帶電荷數(shù)量較少,在勻強電場中受到的誘導(dǎo)作用力較弱,因此沉積率為最小值。隨著溶液pH值的提高,pH值逐漸偏離等電點,此時玉米醇溶蛋白的末端羧基、末端氨基以及側(cè)鏈游離基團更多發(fā)生解離,蛋白所帶電荷數(shù)量增加進而使玉米醇溶蛋白在電場下的遷移效率更高。當(dāng)溶液pH值為9和10時,蛋白質(zhì)在強堿性環(huán)境下出現(xiàn)了一定程度的變性,導(dǎo)致多肽鏈部分展開[27],蛋白質(zhì)分子結(jié)構(gòu)失穩(wěn)進而導(dǎo)致沉積率的降低(圖2b)。
相比之下,電流密度對沉積率的影響相對較小(>0.05),僅在15 A/m2時沉積率((1.055±0.030) mg/cm2)顯著高于其他樣品(<0.05)(圖2c)。當(dāng)進一步提高電流密度至20 A/m2時,沉積率反而下降。電流密度反映的是導(dǎo)電面上負載的電流大小,其影響著玉米醇溶蛋白在電場中受到的驅(qū)動力強弱。較低的電流密度下(5~10 A/m2),蛋白自組裝動力較弱,因此玉米醇溶蛋白沉積率相對較低,僅在15 A/m2時達到最大值。但當(dāng)電流密度達到20 A/m2時,蛋白受到的電場力較強,一定程度上破壞了網(wǎng)狀結(jié)構(gòu)[13],降低了薄膜的均勻性,從而導(dǎo)致沉積率不升反降。
2.2.1 響應(yīng)面設(shè)計與結(jié)果
基于單因素試驗結(jié)果選擇合適的水平,根據(jù)Box-Behnken試驗設(shè)計原理,以玉米醇溶蛋白濃度()、玉米醇溶蛋白溶液pH值()、電流密度()三個因素為自變量,以Zein沉積率()為響應(yīng)值,對沉積工藝進行響應(yīng)面優(yōu)化,試驗設(shè)計及結(jié)果如表1所示。
表1 響應(yīng)面試驗設(shè)計及響應(yīng)值
2.2.2 回歸模型建立與方差分析
對試驗數(shù)據(jù)進行多元回歸模型擬合,得到二次多項式回歸方程
=1.1+0.054+0.068+0.019-0.045-0.037
-0.013-0.042-0.132-0.0192(2)
對上述模型進行方差分析,結(jié)果如表2所示。由表2可知,回歸模型極顯著(<0.01)而失擬項不顯著(>0.05,模型決定系數(shù)2=0.949 7,變異系數(shù)為3.41,表明該回歸方程具有較高的擬合度且誤差較小。一次項、和二次項2對沉積率的影響為極顯著(<0.01),交互項和二次項2對沉積率的影響大小為顯著(<0.05)。此外,各因素對玉米醇溶蛋白沉積率影響排序從大到小為(Zein溶液pH值)、(Zein濃度)、(電流密度)。
表2 回歸方程顯著性檢驗與方差分析結(jié)果
2.2.3 各因素交互作用分析與最優(yōu)條件驗證
圖3為各因素之間的響應(yīng)面圖,其中,Zein濃度和Zein溶液pH值對沉積率影響顯著,曲面陡峭,呈橢圓形,與方差分析結(jié)果一致。通過對試驗?zāi)P头治霾⒔Y(jié)合試驗的可操作性,得到玉米醇溶蛋白沉積的優(yōu)化沉積工藝為Zein濃度139.5 mg/mL,Zein溶液pH值8.17,電流密度14.3 A/m2,在此條件下經(jīng)過3次重復(fù)試驗,玉米醇溶蛋白平均沉積率為1.120 mg/cm2,與預(yù)測值相對誤差<5%,表明該模型合理、準(zhǔn)確。另外,為證明等離子體的作用效果,試驗進行了優(yōu)化沉積工藝條件下未經(jīng)等離子體預(yù)處理的沉積膜,測得沉積率為0.483 mg/cm2,證明等離子體預(yù)處理可有效提高電誘導(dǎo)下玉米醇溶蛋白的沉積率。
為進一步分析等離子體預(yù)處理以及電場誘導(dǎo)在玉米醇溶蛋白沉積成膜中的作用,通過SEM對玉米醇溶蛋白膜進行微觀形貌掃描。由圖4可知,不同處理方式的3個樣品SEM圖有顯著差異。圖4a為未經(jīng)等離子體預(yù)處理的沉積膜,其表面分布著較多密集的圓形孔洞,且表面附著較多小尺寸顆粒物。這是由于未經(jīng)過等離子體處理的玉米醇溶蛋白膠束粒徑大小不均,且平均徑較大[20]。在電誘導(dǎo)力作用下表現(xiàn)出不同的遷移速率,影響了沉積膜的均勻性。此外,膠束粒徑的不均勻性影響了成膜液中溶劑揮發(fā)速率,導(dǎo)致較多孔洞和顆粒物出現(xiàn)。由圖4b可知,經(jīng)等離子體預(yù)處理但未經(jīng)電誘導(dǎo)的玉米醇溶蛋白膜表面不平整,存在較多褶皺。未經(jīng)電誘導(dǎo)的玉米醇溶蛋白膠束排列相對無序,其成膜過程僅為物理性吸附,玉米醇溶蛋白與成膜介質(zhì)間的結(jié)合力較弱,容易剝離。圖4c是基于最優(yōu)沉積工藝的等離子體預(yù)處理電誘導(dǎo)沉積膜,相比之下,該膜的表面形貌較為平整、光滑,有少量顆粒物附著于表面。經(jīng)過等離子體預(yù)處理后,玉米醇溶蛋白膠束大小更均勻,且聚集度降低,在電場誘導(dǎo)下呈現(xiàn)規(guī)律性排布,進而提高了蛋白質(zhì)網(wǎng)絡(luò)結(jié)構(gòu)的有序性和沉積膜的均勻性。徐慧等[19]也報道過類似結(jié)論,在玉米醇溶蛋白澆筑成膜過程中引入電誘導(dǎo),SEM觀察發(fā)現(xiàn)薄膜粗糙度有明顯降低,斷面無孔隙出現(xiàn),表明玉米醇溶蛋白在電場作用下可形成有序排列,進而影響了膜的微觀形貌。
圖3 各因素互相作用響應(yīng)面圖
a. 未經(jīng)等離子體預(yù)處理的玉米醇溶蛋白膜a. Electric induced deposited zein film without plasma pretreatmentb. 未經(jīng)電誘導(dǎo)的玉米醇溶蛋白膜b. Naturally deposited zein film with plasma pretreatmentc. 等離子體輔助電誘導(dǎo)玉米醇溶蛋白膜c. Electric induced deposited zein film with plasma pretreatment
采用EDS分別對未經(jīng)電誘導(dǎo)的玉米醇溶蛋白膜、電誘導(dǎo)玉米醇溶蛋白沉積膜、ITO導(dǎo)電玻璃的表面元素進行掃描和分析,表面化學(xué)元素組成及相對含量結(jié)果如表3所示。由表3可知,未經(jīng)電誘導(dǎo)的玉米醇溶蛋白膜主要由C、N、O、In等元素組成,另外還含有少量Na、S、Si元素。而經(jīng)過電誘導(dǎo)后,玉米醇溶蛋白沉積膜表面主要存在C、N、O、Na、S 5種元素,In元素和Si元素含量降為0。In元素來自于ITO導(dǎo)電玻璃的銦錫涂層(厚度0.155~0.205m)[28],Si元素來自于ITO導(dǎo)電玻璃的基材SiO2,該兩種元素分別占總體的23.63%±0.20%和27.92%±0.09%(表3)。未經(jīng)電誘導(dǎo)的zein膜表面發(fā)現(xiàn)的In元素和Si元素很有可能是由于未經(jīng)電誘導(dǎo)的蛋白膜厚度較薄或是分布不均勻?qū)е略谀茏V掃描時檢測到了部分ITO玻璃的成分。此外,通過對比表3可知,相比之下電誘導(dǎo)zein沉積膜元素組成的標(biāo)準(zhǔn)偏差普遍小于未誘導(dǎo)玉米醇溶蛋白膜,這表明采用電誘導(dǎo)制備的玉米醇溶蛋白沉積膜其表面元素的均勻性要高于未誘導(dǎo),這與2.3節(jié)中SEM結(jié)果一致。
表3 等離子體輔助玉米醇溶蛋白沉積膜的表面元素組成及相對百分含量
為了獲得玉米醇溶蛋白沉積膜化學(xué)基團及二級結(jié)構(gòu)信息,采用FTIR對玉米醇溶蛋白膜進行表征,F(xiàn)TIR光譜和酰胺I區(qū)峰擬合圖如圖5所示,二級結(jié)構(gòu)相對含量的結(jié)果如表4所示。根據(jù)蛋白質(zhì)中的重復(fù)結(jié)構(gòu)單元的振動,其紅外圖譜可劃分為9個特征吸收區(qū)域,分別是酰胺A區(qū)、酰胺B區(qū)和酰胺I~VII區(qū)[29]。由圖5可知,玉米醇溶蛋白在波數(shù)3 295 cm-1(酰胺A區(qū))附近存在較寬闊的吸收峰,其對應(yīng)蛋白中O-H伸縮振動結(jié)構(gòu)。波數(shù)范圍1 200~1 480 cm-1為蛋白的指紋圖譜帶[30],歸屬于C-H、N-H振動以及酰胺結(jié)構(gòu)的異構(gòu)體。波數(shù)范圍1 600~1 700 cm-1為蛋白的酰胺I區(qū),對應(yīng)C=O伸縮振動。波數(shù)范圍1 500~1 600 cm-1為蛋白的酰胺II區(qū),歸屬于C-N伸縮振動和N-H彎曲振動。對比圖5可知,未誘導(dǎo)和電誘導(dǎo)的玉米醇溶蛋白膜FTIR圖譜整體差異不大,未出現(xiàn)新峰以及明顯的峰位偏移,表明電場誘導(dǎo)對玉米醇溶蛋白主體結(jié)構(gòu)無較大影響。
圖5 FTIR紅外光譜及酰胺I區(qū)峰擬合圖
表4 二級結(jié)構(gòu)的相對含量
在FTIR光譜中,酰胺I區(qū)對蛋白分子結(jié)構(gòu)中的微小振動和氫鍵類型極度敏感,可用來分析二級結(jié)構(gòu)信息及蛋白質(zhì)空間構(gòu)象[31]。通過對酰胺I區(qū)光譜進行基線校正、傅里葉自去卷積和高斯-洛倫茲函數(shù)峰擬合等數(shù)據(jù)處理,獲得蛋白質(zhì)各二級結(jié)構(gòu)單元的相對百分含量。由表4結(jié)果可知,電誘導(dǎo)玉米醇溶蛋白沉積膜的-折疊含量由未誘導(dǎo)的30.43%提高至40.59%,-螺旋含量由未誘導(dǎo)的11.40%增加至12.40%。而-轉(zhuǎn)角和無規(guī)則卷曲結(jié)構(gòu)含量降低,經(jīng)過誘導(dǎo)后的蛋白膜中-轉(zhuǎn)角含量較未誘導(dǎo)下降了10.41個百分點。FTIR結(jié)果表明電誘導(dǎo)可導(dǎo)致玉米醇溶蛋白二級結(jié)構(gòu)中-轉(zhuǎn)角和無規(guī)則卷曲結(jié)構(gòu)向-折疊及-螺旋結(jié)構(gòu)轉(zhuǎn)化,-折疊及-螺旋結(jié)構(gòu)在蛋白質(zhì)二級結(jié)構(gòu)中屬于相對緊密、穩(wěn)定、有序的結(jié)構(gòu)[32],這表明電誘導(dǎo)后蛋白膜空間結(jié)構(gòu)的有序性和穩(wěn)定性有所提高。此外,氫鍵是維系蛋白質(zhì)二級結(jié)構(gòu)的主要作用力,電誘導(dǎo)后二級結(jié)構(gòu)的變化意味著玉米醇溶蛋白肽鏈骨架中氫鍵數(shù)量的增加,使玉米醇溶蛋白多肽鏈在空間上進一步折疊和螺旋,形成更穩(wěn)定、有序的二級結(jié)構(gòu)。
本文確定了等離子體輔助玉米醇溶蛋白電誘導(dǎo)自組裝沉積成膜的優(yōu)化工藝為Zein濃度139.5 mg/mL,Zein溶液pH 值8.17,電流密度14.3 A/m2,在此條件下,玉米醇溶蛋白的沉積率可達1.120 mg/cm2。各因素對玉米醇溶蛋白沉積率影響大小排序為溶液pH值、玉米醇溶蛋白濃度、電流密度。掃描電子顯微鏡表明采用等離子體輔助電誘導(dǎo)制備的沉積膜表面平整、光滑,蛋白膠束在電場作用下有序排列使沉積膜結(jié)構(gòu)具有更高的穩(wěn)定性和有序性。傅里葉變換紅外光譜分析得出電誘導(dǎo)可使玉米醇溶蛋白二級結(jié)構(gòu)中-轉(zhuǎn)角和無規(guī)則卷曲結(jié)構(gòu)向-折疊及-螺旋結(jié)構(gòu)轉(zhuǎn)化。通過等離子體輔助制備的玉米醇溶蛋白電誘導(dǎo)沉積膜可作為基底材料適用于生物傳感器、仿生材料、可控釋藥物遞送系統(tǒng)等應(yīng)用,對于提高玉米醇溶蛋白應(yīng)用價值具有一定參考意義。后續(xù)可通過添加適量增塑劑來實現(xiàn)玉米醇溶蛋白膜與導(dǎo)電面的剝離,進一步提高應(yīng)用價值。
[1] Sun C, Dai L, He X, et al. Effect of heat treatment on physical, structural, thermal and morphological characteristics of zein in ethanol-water solution[J]. Food Hydrocolloids, 2016, 58: 11-19.
[2] Kim S, Peterson S C. Optimal conditions for the encapsulation of menthol into zein nanoparticles[J]. LWT-Food Science and Technology, 2021, 144(11): 111213.
[3] Liu J, Yu X, Wang Y, et al. A cleaner approach for corn starch production by ultrasound-assisted laboratory scale wet-milling[J]. Food Science and Technology Research, 2020, 26(4): 469-478.
[4] Matsushima N, Danno G, Takezawa H, et al. Three-dimensional structure of maize alpha-zein proteins studied by small-angle X-ray scattering[J]. Biochimica et Biophysica Acta, 2019, 1339(1): 14-22.
[5] Defrates K, Markiewicz T, Xue Y, et al. Air-jet spinning corn zein protein nanofibers for drug delivery: Effect of biomaterial structure and shape on release properties[J]. Materials Science and Engineering C, 2020, 118(1): 111419.
[6] 趙城彬,張浩,鄢健楠,等. 葡聚糖分子量對玉米醇溶蛋白接枝物結(jié)構(gòu)和乳化性的影響[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(14):288-295.
Zhao Chengbin, Zhang Hao, Yan Jiannan, et al. Effect of dextran molecular weight on structure and emulsifying property of zein[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(14): 288-295. (in Chinese with English abstract)
[7] 葛思彤,賈睿,劉回民,等. 玉米醇溶蛋白基納米顆粒的制備及應(yīng)用研究進展[J]. 食品科學(xué),2021,42(15):285-292.
Ge Sitong, Jia Rui, Liu Huimin, et al. Progress in preparation and application of zein-based nanoparticles[J]. Food Science, 2021, 42(15): 285-292. (in Chinese with English abstract)
[8] 李書紅,周軍君,陳桂蕓,等. 玉米醇溶蛋白-殼聚糖納米營養(yǎng)遞送粒子的制備及性質(zhì)[J]. 農(nóng)業(yè)工程學(xué)報,2021,37(16):279-286.
Li Shuhong, Zhou Junjun, Chen Guiyun, et al. Preparation and properties of zein-chitosan nano-nutrient delivery particles[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(16): 279-286. (in Chinese with English abstract)
[9] Pleva P. Zein-based films containing monolaurin/eugenol or essential oils with potential for bioactive packaging application[J]. International Journal of Molecular Sciences, 2022, 23(1): 384.
[10] 王君予. 電誘導(dǎo)自組裝玉米醇溶蛋白成膜技術(shù)研究[D]. 天津:天津科技大學(xué),2014.
Wang Junyu. Formation of Zein Film Self-assemble by Electrically Treated[D]. Tianjin: Tianjin University of Science and Technology, 2014. (in Chinese with English abstract)
[11] 馬雪,郭麗,馬松艷,等. 玉米黃粉蛋白的功能特性及應(yīng)用研究[J]. 糧食與油脂,2019,32(2):28-32.
Ma Xue, Guo Li, Ma Songyan, et al. Functional properties and application of corn gluten meal protein[J]. Cereals & Oils, 2019, 32(2): 28-32. (in Chinese with English abstract)
[12] Hamid Z A, Refai M, El-Kilani R M, et al. Use of a Ni-TiO2nanocomposite film to enhance agricultural cutting knife surfaces by electrodeposition technology[J]. Journal of Materials Science, 2021, 56(25): 14096-14113.
[13] 徐慧,陳野. 電場處理改善玉米醇溶蛋白膜理化性質(zhì)[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(8):272-276.
Xu Hui, Chen Ye. Electric field treatment improving physicochemical properties of zein film produced by casting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(8): 272-276. (in Chinese with English abstract)
[14] Wan J, Ding J, Meng W. Preparation of gold nanotube by direct electrodeposition for biosensors[J]. Journal of Cluster Science, 2010, 21(4): 669-677.
[15] Guo X, Chen Y, Geng Z, et al. Electrodeposition of chitosan/gelatin/nanosilver: A new method for constructing biopolymer/nanoparticle composite films with conductivity and antibacterial activity[J]. Materials Science & Engineering C-Materials for Biogical Applications, 2015, 53: 222-228.
[16] 李輝,潘捷,曹凱元,等. 用電沉積法制備納米氧化鋅/海藻酸鈉復(fù)合膜[J]. 材料研究學(xué)報,2020,34(11):829-834.
Li Hui, Pan Jie, Cao Kaiyuan, et al. Preparation of nano zinc oxide/sodium alginate composite film by electrodeposition[J]. Chinese Journal of Materials Research, 2020, 34(11): 829-834. (in Chinese with English abstract)
[17] Shamaeli E, Alizadeh N. Functionalized gold nanoparticle-polypyrrole nanobiocomposite with high effective surface area for electrochemical/pH dual stimuli-responsive smart release of insulin[J]. Colloids & Surfaces B Biointerfaces, 2015, 126: 502-509.
[18] Argos P, Pedersen K, Marks M D, et al. A structural model for maize zein proteins[J]. Journal of Biological Chemistry, 1982, 257(17): 9984-9990.
[19] 徐慧,陳野. 電場下乙醇對玉米醇溶蛋白膜性質(zhì)的影響[J]. 農(nóng)業(yè)機械學(xué)報,2015,46(10):298-303.
Xu Hui, Chen Ye. Effects of ethyl alcohol concentrations on properties of zein films produced by casting under electric field[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(10): 298-303. (in Chinese with English abstract)
[20] Wang Y, Padua G W. Nanoscale characterization of zein self-assembly[J]. Langmuir, 2012, 28(5): 2429-2435.
[21] Dong S, Wang J, Cheng L, et al. Behavior of zein in aqueous ethanol under atmospheric pressure cold plasma treatment[J]. Journal of Agricultural and Food Chemistry, 2017, 65(34): 7352-7360.
[22] 朱士臣,陳小草,柯志剛,等. 低溫等離子體技術(shù)及其在水產(chǎn)品加工中的應(yīng)用[J]. 中國食品學(xué)報,2021,21(10):305-314.
Zhu Shichen, Chen Xiaocao, Ke Zhigang, et al. Non-thermal plasma technology and its applications in aquatic products processing[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(10): 305-314. (in Chinese with English abstract)
[23] Misra N N, Moiseev T, Patil S, et al. Cold plasma in modified atmospheres for post-harvest treatment of strawberries[J]. Food and Bioprocess Technology, 2014, 7(10): 3045-3054.
[24] 陳桂蕓,陳野,徐慧,等. 電誘導(dǎo)自組裝玉米醇溶蛋白膜的制備與性質(zhì)[J]. 天津科技大學(xué)學(xué)報,2018,33(2):27-31.
Chen Guiyun, Chen Ye, Xu Hui, et al. Preparation of zein film through self-assembly assisted electric inducement and its properties[J]. Journal of Tianjin University of Science & Technology, 2018, 33(2): 27-31. (in Chinese with English abstract)
[25] Dong S, Guo P, Chen Y, et al. Surface modification via atmospheric cold plasma (ACP): Improved functional properties and characterization of zein film[J]. Industrial Crops and Products, 2018, 115: 124-133.
[26] Fellows A P, Casford M, Davies P B. Express: Spectral analysis and deconvolution of the amide I band of proteins presenting with high-frequency noise and baseline shifts[J]. Applied Spectroscopy, 2019, 74(16): 597-615.
[27] Díaz O, Candia D, Cobos á. Whey protein film properties as affected by ultraviolet treatment under alkaline conditions[J]. International Dairy Journal, 2017, 73: 84-91.
[28] Deng W, Ohgi T, Nejo H, et al. Development of conductive transparent indium tin oxide (ITO) thin films deposited by direct current (DC) magnetron sputtering for photon-STM applications[J]. Applied Physics A Materials Science & Processing, 2001, 72(5): 595-601.
[29] Yang H, Yang S Kong J, et al. Obtaining information about protein secondary structures in aqueous solution using Fourier transform IR spectroscopy[J]. Nature Protocols, 2015. 10(3): 382-396.
[30] Zhang B, Luo Y, Wang Q. Effect of acid and base treatments on structural, rheological, and antioxidant properties of α-zein[J]. Food Chemistry, 2011, 124(1): 210-220.
[31] Mfa B, Okob C, Brhb C, et al. Quantitative approach to study secondary structure of proteins by FT-IR spectroscopy, using a model wheat gluten system[J]. International Journal of Biological Macromolecules, 2020, 164: 2753-2760.
[32] 孫圳,楊方威,李俠,等. ATR-FTIR分析凍結(jié)-解凍后的牛肉蛋白二級結(jié)構(gòu)變化[J]. 光譜學(xué)與光譜分析,2016,36(11):3542-3546.
Sun Zhen, Yang Fangwei, Li Xia, et al. Effects of freezing and thawing treatments on beef protein secondary structure analyzed with ATR-FTIR[J]. Spectroscopy and Spectral Analysis, 2016, 36(11): 3542-3546. (in Chinese with English abstract)
Optimization of the preparation of electric induced deposited zein film assisted by plasma pretreatment
Dong Shuang1, Li Xiaoyu1, Guo Peng1, Chen Ye2, Li Hongjun1※
(1.,,255000,; 2.,,300457,)
Zein is one of the most important food compositions as-Generally Recognized As Safe (GRAS). Wet milling was often used to extract the zein from the processing byproducts of corn starch. The current zein is widely applied as the low-value feed protein, due mainly to the low water solubility and the less essential amino acids. A high proportion of hydrophobic amino acids and abundant disulfide bonds can be expected to greatly contribute to the better film-forming property of zein. However, the practical application of zein can be confined to the disordered arrangement in the form of random strands in the aqueous ethanol solution, leading to the unstable structure of zein film. Fortunately, the uniform electric induction assisted with the cold plasma pretreatment can be applied to induce the zein micelles to be self-assembly deposited on the Indium Tin Oxide (ITO) glass substrate using the amphoteric dissociation. Smaller particle size and better electrochemical characteristics can be achieved for the zein film after the cold plasma pretreatment. The deposition efficiency of zein can also be improved during the electric induction process. In this study, an optimal preparation was proposed for the electric-induced deposited zein film that was assisted by plasma pretreatment. Specifically, the plasma pretreatment conditions were set to obtain the proper particle size of zein micelles, with the generation voltage of 65 V, the input current of (1.0±0.2) A, and the treatment duration of 3 min. The influence of electric induction parameters was studied under the treatment condition of the zein concentration (30, 50, 100, 125, and 15.0 mg/mL), pH values (6, 7, 8, 9, and 10), and electriccurrentdensity (5, 7, 10, 15, and 20 A/m2). A Box-Behnken experiment was also carried out to optimize the largest deposition rate on the ITO glass substrate. The single factor experiment showed that the deposition rate of zein film increased with the increasing concentration and pH of zein solution. The optimal conditions were achieved as follows: the zein concentration of 139.5 mg/mL, the zein solution pH of 8.17, and the electriccurrentdensity of 14.3 A/m2. The deposition rate of zein reached 1.120 mg/cm2under the optimal conditions, which was significantly higher than the sample without the plasma pretreatment (0.483 mg/cm2). It infers that the plasma treatment effectively enhanced the deposition rate of zein during electric induction. Scanning Electron Microscope (SEM) images indicated that smoother and much more uniform surface morphology was achieved in the electric-induced deposited zein film that was assisted by plasma pretreatment, compared with the untreated. Energy Dispersive Spectrum (EDS) analysis showed the In or Si element was not found in the electric-induced deposited zein film with the plasma pretreatment. More importantly, there was a similar profile of Fourier Transform Infrared spectroscopy (FTIR) spectra between the induced and untreated films, indicating no remarkable influence of the electric-induced deposition on the main structure of zein. The secondary structure of the protein was also drawn from the peak analysis of the amide I region (1 600-1 700 cm-1). It was found that the-turn and random coil were transformed into the much more ordered-folding and-helix structure. In conclusion, the finding can lay the theoretical foundations to fabricate the zein film using electric induction. The high-value utilization of zein can be expected in the development of cold plasma in the protein modification field. The microstructure of electric-induced deposited zein film can also be further modified for specific use in the subsequent investigation.
films; electric induction; plasma; zein; deposition rate
10.11975/j.issn.1002-6819.2022.16.035
TQ321.4
A
1002-6819(2022)-16-0322-08
董爽,李曉宇,郭鵬,等. 等離子體輔助玉米醇溶蛋白電誘導(dǎo)沉積成膜的工藝優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報,2022,38(16):322-329.doi:10.11975/j.issn.1002-6819.2022.16.035 http://www.tcsae.org
Dong Shuang, Li Xiaoyu, Guo Peng, et al. Optimization of the preparation of electric induced deposited zein film assisted by plasma pretreatment[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(16): 322-329. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.16.035 http://www.tcsae.org
2021-11-26
2022-07-27
國家自然科學(xué)基金資助項目(31901607)
董爽,博士,副教授,研究方向為植物蛋白質(zhì)高值化利用。Email:dongshuangsdut@126.com
李宏軍,博士,教授,研究方向為農(nóng)產(chǎn)品加工與利用。Email:lhj6812@163.com