閆雨杏,呂肖良,王亞凱,于 強(qiáng)**
日光誘導(dǎo)葉綠素?zé)晒庋芯考皯?yīng)用的文獻(xiàn)計(jì)量分析*
閆雨杏1,呂肖良2,王亞凱1,于 強(qiáng)2**
(1.西北農(nóng)林科技大學(xué)資源環(huán)境學(xué)院,楊凌 712100;2.西北農(nóng)林科技大學(xué)黃土高原土壤侵蝕與旱作農(nóng)業(yè)國家重點(diǎn)實(shí)驗(yàn)室,楊凌 712100)
日光誘導(dǎo)葉綠素?zé)晒釹IF(solar-induced chlorophyll fluorescence)作為直接監(jiān)測植被光合作用的理想“探針”,能對(duì)植物的生理狀態(tài)作出快速、靈敏的響應(yīng),是近年來植被遙感領(lǐng)域的研究熱點(diǎn)。為了系統(tǒng)梳理SIF研究的發(fā)展脈絡(luò),本研究以Scopus數(shù)據(jù)庫中1982-2021年的786篇相關(guān)文獻(xiàn)作為數(shù)據(jù)源,結(jié)合VOSviewer軟件,從國家、機(jī)構(gòu)、作者、期刊和關(guān)鍵詞等角度分別進(jìn)行文獻(xiàn)計(jì)量分析和可視化計(jì)量分析。結(jié)果表明,SIF領(lǐng)域年發(fā)文量整體呈增長趨勢(shì),現(xiàn)已進(jìn)入快速發(fā)展階段;發(fā)文量排名前3的國家分別為美國、中國和德國,其中德國擁有最高的篇均被引次數(shù)(56.2次)和最多的合作國家數(shù)(36個(gè));南京大學(xué)、加州理工學(xué)院、瓦倫西亞大學(xué)等機(jī)構(gòu)有著較高的發(fā)文量和H指數(shù),為該領(lǐng)域的發(fā)展做出了突出貢獻(xiàn);Guanter、Zhang、Frankenberg、Liu、Rascher等國內(nèi)外學(xué)者致力于該領(lǐng)域的研究,發(fā)表論文數(shù)均在40篇以上;期刊Remote Sensing of Environment在該領(lǐng)域中擁有最高發(fā)文量(92)和最高的H指數(shù)(40),Global Change Biology擁有最高的篇均被引數(shù)(65.6次)。關(guān)鍵詞反映出這一研究方向?qū)儆诘厍蚩茖W(xué)、生態(tài)學(xué)、農(nóng)學(xué)、植物生理學(xué)等多學(xué)科的交叉領(lǐng)域,涵蓋了葉片、冠層乃至區(qū)域等空間尺度;當(dāng)前研究主要集中在葉綠素?zé)晒獾纳硖匦约懊{迫監(jiān)測、SIF信號(hào)的獲取方式和SIF遙感應(yīng)用(如碳循環(huán))等三個(gè)方面。中國在該領(lǐng)域的整體研究實(shí)力走在世界前列,未來仍需進(jìn)一步提高研究影響力。
日光誘導(dǎo)葉綠素?zé)晒猓恢脖贿b感;文獻(xiàn)計(jì)量分析;VOSviewer
日光誘導(dǎo)葉綠素?zé)晒釹IF(solar-induced chlorophyll fluorescence)是指植物葉綠體在太陽光照條件下葉片自身發(fā)射出的一種光譜信號(hào)(650-850nm)[1],在紅光(680nm左右)和近紅外(740nm左右)波長處存在兩個(gè)明顯的熒光峰值。葉綠素?zé)晒饪梢灾苯臃从彻夂献饔霉夥磻?yīng)中的電子傳遞速率大小[2],而電子傳遞速率又受光合作用暗反應(yīng)中碳同化的影響,因此,葉綠素?zé)晒饪梢宰鳛闊o損監(jiān)測植被光合作用的理想“探針”[3?4]。近年來,研究表明,SIF遙感為大范圍監(jiān)測全球植被光合作用提供了一種全新的測量方式[5?7],其估算能力優(yōu)于植被“綠度”指數(shù)的遙感方法[8?10]。此外,SIF在研究植物的逆境、脅迫、病理等與生態(tài)系統(tǒng)變化相關(guān)的問題上,也發(fā)揮著重要作用[11]。
自1931年Kautsky首次用肉眼觀察并記錄到葉綠素?zé)晒鈴?qiáng)度與葉片光合過程有關(guān),葉綠素?zé)晒庵饾u成為一種與植物光合作用研究相結(jié)合的新技術(shù),可以作為監(jiān)測植物對(duì)環(huán)境響應(yīng)的有效工具[12?13]。隨著高光譜傳感器的發(fā)展和熒光探測項(xiàng)目FLEX(fluorescence explorer)的推進(jìn),特別是在2011年日本溫室氣體衛(wèi)星GOSAT首先在全球尺度上實(shí)現(xiàn)了SIF的遙感反演后,葉綠素?zé)晒膺b感和碳循環(huán)應(yīng)用研究得到了迅速發(fā)展,多篇里程碑式的研究論文相繼發(fā)表在PNAS、Science等期刊上[8?9]。隨著SIF研究領(lǐng)域文獻(xiàn)的日益增多,學(xué)者們基于多種角度在該領(lǐng)域進(jìn)行了探討分析。Meroni等[14]對(duì)SIF遙感原理、反演方法及其應(yīng)用情況進(jìn)行了介紹,主要回顧了地基平臺(tái)SIF的相關(guān)反演方法和應(yīng)用研究。章釗穎等[4]闡述了近年來SIF在陸地生態(tài)系統(tǒng)總初級(jí)生產(chǎn)力GPP(gross primary productivity)估算、全球碳循環(huán)監(jiān)測、物候和植被脅迫監(jiān)測等方面的應(yīng)用現(xiàn)狀,并從衛(wèi)星SIF反演算法優(yōu)化、SIF-GPP關(guān)系機(jī)理、SIF多尺度綜合觀測等方面,展望了植被SIF遙感的發(fā)展前景。詹春暉等[15]回顧了葉片、冠層和生態(tài)系統(tǒng)尺度的SIF模型,從建模機(jī)理出發(fā),對(duì)比了不同模型的性能,指出了未來SIF輻射傳輸模型的前景。孫忠秋等[16]總結(jié)了現(xiàn)有全球SIF產(chǎn)品存在的問題和后續(xù)SIF衛(wèi)星探測計(jì)劃的發(fā)展方向,為現(xiàn)有SIF衛(wèi)星產(chǎn)品的應(yīng)用以及未來SIF探測衛(wèi)星載荷方案的設(shè)計(jì)提供了參考。上述研究綜述對(duì)SIF領(lǐng)域的研究進(jìn)展進(jìn)行了全面總結(jié),但缺少針對(duì)SIF領(lǐng)域文獻(xiàn)發(fā)展特征與熱點(diǎn)演變較為清晰直觀的整體性概述。
隨著SIF領(lǐng)域研究的不斷發(fā)展與深入,當(dāng)前迫切需要對(duì)該領(lǐng)域整體發(fā)展變化特征與研究熱點(diǎn)演變進(jìn)行評(píng)述。本研究采用文獻(xiàn)計(jì)量學(xué)方法,通過檢索Scopus數(shù)據(jù)庫中SIF研究領(lǐng)域的相關(guān)文獻(xiàn),運(yùn)用可視化分析軟件VOSviewer繪制知識(shí)圖譜,對(duì)SIF領(lǐng)域大量已發(fā)表文獻(xiàn)的數(shù)量發(fā)展、高產(chǎn)國家、高產(chǎn)機(jī)構(gòu)、高產(chǎn)作者、熱點(diǎn)期刊、高頻關(guān)鍵詞等進(jìn)行特征分析,系統(tǒng)地對(duì)SIF研究進(jìn)行整理歸納、分析總結(jié)和展望,以期更深入了解SIF領(lǐng)域文獻(xiàn)的基本發(fā)展特征和研究熱點(diǎn)演變。
研究數(shù)據(jù)來自提供標(biāo)準(zhǔn)化、高質(zhì)量學(xué)術(shù)出版物信息的Scopus數(shù)據(jù)庫(https://www.scopus.com/)。該數(shù)據(jù)庫包含的期刊范圍較為廣泛,且在支持關(guān)鍵詞搜索和引文分析方面更具優(yōu)勢(shì)和影響力[17],在眾多學(xué)科領(lǐng)域中被學(xué)者們廣泛使用。數(shù)據(jù)檢索日期為2021年7月16日,在Scopus高級(jí)檢索模塊下,選取關(guān)鍵詞“日光誘導(dǎo)葉綠素?zé)晒狻保ㄟ^對(duì)文章標(biāo)題、摘要和關(guān)鍵詞的主題域(TS)進(jìn)行檢索:“TS(主題)= TITLE-ABS-KEY (sun AND induced) OR TITLE- ABS-KEY (solar AND induced) OR TITLE-ABS-KEY (SIF) AND (TITLE-ABS-KEY (chlorophyll AND fluorescence) OR TITLE-ABS-KEY (chl AND fluorescence)”,檢索到了1982?2021年發(fā)表在SIF領(lǐng)域的803篇英文論文,文獻(xiàn)類型為期刊論文和會(huì)議論文。查閱并剔除重復(fù)和不相關(guān)的文獻(xiàn)后,最終得到用于本研究分析的文獻(xiàn)786篇。
文獻(xiàn)計(jì)量分析是一種利用定量分析和統(tǒng)計(jì)學(xué)原理來描述某一特定領(lǐng)域文獻(xiàn)特征的方法[18]。這種分析通過研究特定領(lǐng)域論文發(fā)表的模式和動(dòng)態(tài),能夠有效反映相關(guān)研究的熱點(diǎn)和未來趨勢(shì)[19],在科學(xué)研究中發(fā)揮著重要作用。本研究從國家、機(jī)構(gòu)、作者、關(guān)鍵詞等方面對(duì)786篇文獻(xiàn)進(jìn)行了分析,將總被引數(shù)、篇均被引數(shù)、期刊影響因子,以及作者、機(jī)構(gòu)、國家和期刊的H指數(shù)作為衡量科學(xué)影響力的指標(biāo)。H指數(shù)被用作學(xué)術(shù)成就的衡量標(biāo)準(zhǔn)之一[20],其定義為一個(gè)作者(或機(jī)構(gòu)、國家/地區(qū)、期刊)有H篇文獻(xiàn)的被引次數(shù)至少為H次。因?yàn)镾copus數(shù)據(jù)庫沒有提供作者的全名信息,為了避免不同作者有著相同的縮寫名而對(duì)后續(xù)分析造成影響,基于研究者信息(如所屬單位、學(xué)科領(lǐng)域和合著者信息等)手動(dòng)消除歧義[21]。國家/地區(qū)之間的學(xué)術(shù)合作和關(guān)鍵詞的共現(xiàn)情況通過共現(xiàn)圖譜呈現(xiàn)。在初次生成共現(xiàn)圖譜后核查結(jié)果,對(duì)圖譜網(wǎng)絡(luò)中相同含義的詞匯(包括英文單復(fù)數(shù)、簡稱和全稱以及同義詞等)進(jìn)行合并,例如solar-induced chlorophyll fluorescence與SIF、gross primary production與GPP、vegetation indices與vegetation index等,并對(duì)高頻關(guān)鍵詞進(jìn)行分析,得到領(lǐng)域的研究熱點(diǎn)。全文出現(xiàn)的“關(guān)鍵詞”是指“作者關(guān)鍵詞”,即作者自己給出的關(guān)鍵詞。
使用R(3.5.1)編程語言(University of Auckland Statistics Department,https://www.r-project.org/)結(jié)合Excel對(duì)文獻(xiàn)數(shù)據(jù)進(jìn)行計(jì)量分析,用到的R語言程序包主要包括“bibliometrix”和“stringr”[22],并使用VOSviewer[23]軟件對(duì)作者、機(jī)構(gòu)、國家的合作以及關(guān)鍵詞的共現(xiàn)進(jìn)行可視化。VOSviewer能夠清晰解讀某一領(lǐng)域的知識(shí)結(jié)構(gòu)、發(fā)展趨勢(shì)、研究熱點(diǎn)等信息,因其可視化效果好、功能全面、分析結(jié)果準(zhǔn)確而被廣泛應(yīng)用[24]。
2.1.1 發(fā)文數(shù)量
文獻(xiàn)數(shù)量的年度變化可以整體反映該領(lǐng)域的研究趨勢(shì),文獻(xiàn)的被引數(shù)可一定程度上反映文獻(xiàn)的學(xué)術(shù)影響力。由圖1a可見,檢索到SIF領(lǐng)域的研究文獻(xiàn)從1982年的1篇增至2020年的111篇,整體呈現(xiàn)發(fā)文量不斷增加的趨勢(shì)。1982?1993年關(guān)于SIF的文獻(xiàn)發(fā)表數(shù)量較少,2002?2011年每年發(fā)表的數(shù)量則穩(wěn)定在15篇左右,2015年開始發(fā)文快速增加,直到2020年達(dá)到高峰,表明對(duì)SIF的研究進(jìn)入了快速發(fā)展階段。被引數(shù)在2013年之前整體隨時(shí)間推移呈波動(dòng)增長趨勢(shì),2013年之后隨著SIF的遙感反演在全球尺度上得以實(shí)現(xiàn),里程碑式的優(yōu)秀文獻(xiàn)不斷涌現(xiàn)[8?9]且快速增長。2015年發(fā)表文獻(xiàn)的被引數(shù)達(dá)到高峰,全年共計(jì)被引2610次。由圖1b可見,進(jìn)行(發(fā)表)SIF相關(guān)研究的作者、機(jī)構(gòu)、期刊和國家數(shù)量也從2013年之后開始急劇增加。這些數(shù)據(jù)表明,關(guān)于SIF領(lǐng)域的研究在過去10a里不斷增長,學(xué)術(shù)合作也日益增多和活躍。由于統(tǒng)計(jì)時(shí)間截至2021年7月,因此2021年的數(shù)據(jù)不表征全年的數(shù)據(jù)特征。
圖1 1982?2021年關(guān)于日光誘導(dǎo)葉綠素?zé)晒猓⊿IF)研究年發(fā)表文獻(xiàn)數(shù)量/被引數(shù)(a)及研究作者/機(jī)構(gòu)/期刊/國家數(shù)量(b)
2.1.2 論文引用
表1列出了關(guān)于SIF研究的前10篇最高被引論文。其中美國研究者參與了9篇,德國研究者參與了7篇,表明美國和德國的研究者在SIF研究的前沿領(lǐng)域表現(xiàn)活躍。此外,前10篇文章中有3篇發(fā)表在Remote Sensing of Environment期刊上,表明該期刊在SIF研究領(lǐng)域具有較高的影響力。在這10篇文章中,有7篇研究SIF反演及其與總初級(jí)生產(chǎn)力GPP的關(guān)系,2篇分別對(duì)SIF的估算方法、應(yīng)用和光合作用的聯(lián)系進(jìn)行了綜述,另外1篇是利用SIF數(shù)據(jù)研究水文氣候和熱帶森林生產(chǎn)力之間的聯(lián)系。最高被引論文[8]于2014年發(fā)表在PNAS[8],被引次數(shù)為507,研究發(fā)現(xiàn)SIF為農(nóng)田和草地生態(tài)系統(tǒng)的GPP估算提供了一種全新的方法,且估算精度顯著高于碳循環(huán)模型模擬結(jié)果,并表明SIF有助于改進(jìn)全球模型,以更準(zhǔn)確地預(yù)測農(nóng)業(yè)生產(chǎn)水平和氣候?qū)ψ魑锂a(chǎn)量的影響。排名第二的論文[25]發(fā)表在2011年的Geophysical Research Letters上,被引次數(shù)為483,該文章基于日本溫室氣體衛(wèi)星GOSAT在全球尺度上首次實(shí)現(xiàn)了SIF的遙感反演,為全球GPP的準(zhǔn)確估算提供了更加可靠的數(shù)據(jù)源,有利于約束陸面過程模型中的植被光合過程的模擬,從而提高全球碳循環(huán)模擬精度。排名第三的論文[14]發(fā)表在2009年的Remote Sensing of Environment上,被引次數(shù)為474,通過回顧40多篇關(guān)于估算SIF的科學(xué)論文,概述了各種方法的理論假設(shè)和優(yōu)缺點(diǎn),并討論了測量到的SIF信號(hào)在近地面、航空和衛(wèi)星平臺(tái)三種觀測尺度上的應(yīng)用,為今后的相關(guān)研究提出了展望。
表1 關(guān)于SIF研究的前10篇最高被引論文
2.2.1 發(fā)文國家
共有67個(gè)國家發(fā)表了關(guān)于日光誘導(dǎo)葉綠素?zé)晒猓⊿IF)研究的文章。表2顯示了在這一研究領(lǐng)域發(fā)表文章最多的15個(gè)國家/地區(qū)統(tǒng)計(jì)數(shù)據(jù)。其中美國發(fā)表文章數(shù)量最多(285篇),被引數(shù)也最多(10869次),并在SIF研究領(lǐng)域貢獻(xiàn)了最多的國際合作發(fā)文量(181篇),同時(shí)美國還擁有最高的H指數(shù)(57),也是最早發(fā)表相關(guān)文章(1982年)的國家。德國是篇均被引數(shù)最高(56.2次)、與不同國家合作最多(36個(gè))的國家,并在高被引文章數(shù)量(30篇論文被引超過100次)上與美國并列第一。中國在SIF研究領(lǐng)域的起步較晚(1994年),但發(fā)展迅速,到目前為止發(fā)表文章數(shù)(263篇)、相關(guān)作者數(shù)(636個(gè))和機(jī)構(gòu)數(shù)(280個(gè))僅次于美國,但篇均被引數(shù)和高被引文章數(shù)量(≥引用100次的論文數(shù))卻低于美國、德國、意大利、西班牙、荷蘭等國家,這表明中國在SIF領(lǐng)域的科研實(shí)力還有待加強(qiáng),在增加發(fā)文數(shù)量的同時(shí)更要進(jìn)一步提高文章的質(zhì)量。在發(fā)表文章最多的15個(gè)國家/地區(qū)中,大多數(shù)國家通過國際合作發(fā)表的文章數(shù)高于無國際合作發(fā)表的文章數(shù)(MCP vs SCP),其中中國(131 vs 132)的SCP值和MCP值差異不大,而同為發(fā)展中國家的印度和波蘭,其SCP值高于MCP值,發(fā)文量和被引數(shù)等指標(biāo)也排名靠后。
表2 關(guān)于SIF研究的15個(gè)最高產(chǎn)國家/地區(qū)的綜合統(tǒng)計(jì)
注:TP是發(fā)表文章的總數(shù)量; TC是總被引數(shù); TC/TP是篇均被引數(shù); NHCP是高被引文章數(shù)量(≥引用100次); SCP和MCP分別是非國際合作和多國合作發(fā)表文章的數(shù)量; FCP和CCP分別是以此國家/地區(qū)為第一作者和通訊作者的國家/地區(qū)發(fā)表文章的數(shù)量; SY和EY分別是該國家首次和最后發(fā)表相關(guān)文章的年份; NCC是合作國家/地區(qū)的數(shù)量; TA是作者總數(shù); TI是機(jī)構(gòu)總數(shù)。
Note: TP is the total number of publications; TC is the total number of citations; TC/TP is citations per publication; NHCP is the number of highly cited publications (≥100 citations); SCP and MCP are the numbers of single- and multi-country publications, respectively; FCP and CCP are the numbers of first and corresponding country publications, respectively; SY and EY are the starting and ending publication years, respectively; NCC is the number of collaborative countries/regions; TA is the total number of authors; TI is the total number of institutions.
利用VOSviewer的國家合作分析功能繪制國家合作共現(xiàn)圖譜,可以清楚地反映國家發(fā)文量和國家之間的合作強(qiáng)度。該分析展示了發(fā)表10篇以上文章的國家/地區(qū)的數(shù)據(jù),得到共23個(gè)圓圈,197條連線,3個(gè)聚類的國家合作共現(xiàn)圖譜。由圖2可以看出,美國在SIF領(lǐng)域扮演著非常重要的角色,與眾多國家均有密切的合作,其與中國的聯(lián)系最為密切;德國對(duì)眾多歐洲國家的研究有巨大的影響??傮w而言同一大陸的國家聯(lián)系更為緊密,西方國家與其他國家的合作也更為活躍。
圖2 關(guān)于SIF研究的主要國家/地區(qū)之間的學(xué)術(shù)合作Fig. 2 Academic cooperation among major countries/ regions on the research of SIF
注:圖譜中共有3個(gè)聚類,23個(gè)圓圈,197條連線;不同顏色代表由不同國家/地區(qū)組成的聚類;圓圈代表不同國家/地區(qū),圓圈越大表示該國家/地區(qū)發(fā)文數(shù)量越多;連線代表國家/地區(qū)之間的合作關(guān)系(不同國家作者出現(xiàn)在同一篇文獻(xiàn)中),連線越粗表示合作越密切。
Note:There are 3 clusters, 23 circles, and 197 connecting lines. Colors represent clusters of different countries/regions. Circles represent different countries/regions, and bigger circles represent more articles published in this country/region. Lines represent the cooperative relationship between countries/regions (authors from different countries/regions appear in the same article), and thicker lines indicate more and closer cooperation between countries/regions.
2.2.2 發(fā)文機(jī)構(gòu)
表3列出了在SIF研究領(lǐng)域發(fā)表文章最多的15個(gè)機(jī)構(gòu)的發(fā)表統(tǒng)計(jì)數(shù)據(jù)。可以看到在排名前10的機(jī)構(gòu)中美國和中國總共占了7個(gè),其中南京大學(xué)發(fā)表的文章最多(61篇),但總被引數(shù)(1306次)卻低于發(fā)文量相近的加州理工學(xué)院(3806次)。加州理工學(xué)院還擁有最高的高被引文章數(shù)量(13篇)和H指數(shù)(25)。篇均被引數(shù)最高(92.3次)的機(jī)構(gòu)是發(fā)文量為35篇的美國卡內(nèi)基科學(xué)研究所,其次是發(fā)文量為30篇的德國地球科學(xué)研究中心(86.8次),體現(xiàn)了其卓越的文獻(xiàn)質(zhì)量。同時(shí)美國卡內(nèi)基科學(xué)研究所是最早(1982年)進(jìn)行SIF研究的機(jī)構(gòu),為該領(lǐng)域的發(fā)展做出了突出的貢獻(xiàn)。南京大學(xué)在該領(lǐng)域的研究主要由Zhang(張永光)團(tuán)隊(duì)完成,集中在運(yùn)用模型估算SIF及其與GPP的關(guān)系[26?27]、SIF對(duì)植被光合能力的監(jiān)測[28?30]等研究方向。加州理工學(xué)院的SIF研究主要由Frankenberg研究員團(tuán)隊(duì)完成,集中在通過遙感衛(wèi)星實(shí)現(xiàn)對(duì)葉綠素?zé)晒夥囱萆蟍9,25,31?32]。
隨著科學(xué)研究的不斷發(fā)展,國際合作的加強(qiáng),越來越多的研究是通過不同機(jī)構(gòu)的相互合作完成的。由表3可見,多機(jī)構(gòu)合作的文章發(fā)表數(shù)量明顯高于單機(jī)構(gòu)。其中,中國科學(xué)院大學(xué)、馬克斯·普朗克生物地球化學(xué)研究所、蘇黎世大學(xué)和多倫多大學(xué)發(fā)表的所有文章都是通過與其他機(jī)構(gòu)的合作完成的。中國科學(xué)院遙感與數(shù)字地球研究所有著最多的單機(jī)構(gòu)文章發(fā)表數(shù)量(8篇)。利用VOSviewer的機(jī)構(gòu)合作分析功能,進(jìn)一步分析各機(jī)構(gòu)之間的合作共現(xiàn)。該分析展示了發(fā)表10篇以上文章的機(jī)構(gòu)數(shù)據(jù),得到共39個(gè)圓圈,270條連線,5個(gè)聚類的機(jī)構(gòu)合作共現(xiàn)圖譜。由圖3可以看出,加州理工學(xué)院、南京大學(xué)和美國宇航局戈達(dá)德航天飛行中心均有著較為頻繁的機(jī)構(gòu)合作。同時(shí)各研究機(jī)構(gòu)的合作關(guān)系有較強(qiáng)的地理相關(guān)性,盡管各機(jī)構(gòu)不缺乏相當(dāng)數(shù)量的國際合作,但從5種顏色對(duì)應(yīng)5個(gè)不同的聚類來看,各機(jī)構(gòu)還是與在同一國家/地區(qū)的其他機(jī)構(gòu)更易組成聚類,聯(lián)系也更密切些。
2.2.3 論文作者
共有2502名作者參與了SIF的相關(guān)研究。表4列出了該領(lǐng)域發(fā)表文章最多的10位作者的發(fā)文統(tǒng)計(jì)數(shù)據(jù)。由表可見,其中來自美國、中國、德國和西班牙的作者各有兩位,還有兩位分別來自意大利和荷蘭,他們均為所在機(jī)構(gòu)甚至所在國家SIF研究領(lǐng)域的領(lǐng)軍人物。來自瓦倫西亞理工大學(xué)的Guanter有著最高的發(fā)文量(57篇)和總被引數(shù)(5073次),他還貢獻(xiàn)了最多的高被引文章數(shù)量(21篇)和最高的H指數(shù)(34)。Guanter的研究方向集中于高光譜遙感研究,包括從遙感衛(wèi)星中反演SIF[5,33?34]以及對(duì)植被光合作用的監(jiān)測[8]等。來自美國宇航局戈達(dá)德航天飛行中心的Joiner擁有最高的篇均被引數(shù)(92.3次),在其所發(fā)表的35篇文獻(xiàn)中有13篇高被引論文,他的研究方向同樣為基于遙感衛(wèi)星測量實(shí)現(xiàn)對(duì)葉綠素?zé)晒獾谋O(jiān)測[6,35?36]。
表3 關(guān)于SIF研究的15個(gè)最高產(chǎn)機(jī)構(gòu)的綜合統(tǒng)計(jì)
注:TP是發(fā)表文章的總數(shù)量;TC是總被引數(shù);TC/TP是篇均被引數(shù); NHCP是高被引文章數(shù)量(≥引用100次);SIP和MIP分別是單一機(jī)構(gòu)和多機(jī)構(gòu)合作發(fā)表文章的數(shù)量;FIP和CIP分別是以此機(jī)構(gòu)作為第一作者和通訊作者單位的發(fā)表文章數(shù)量;SY和EY分別是該機(jī)構(gòu)首次和最后發(fā)表相關(guān)文章的年份。A:南京大學(xué);B:加州理工學(xué)院;C:瓦倫西亞大學(xué);D:米蘭-比科卡大學(xué);E:美國宇航局戈達(dá)德航天飛行中心;F:中國科學(xué)院大學(xué);G:中國科學(xué)院遙感與數(shù)字地球研究所;H:卡內(nèi)基科學(xué)研究所;I:屯特大學(xué);J:加利福尼亞大學(xué);K:德國地球科學(xué)研究中心;L:馬克斯?普朗克生物地球化學(xué)研究所;M:北京師范大學(xué);N:蘇黎世大學(xué);O:多倫多大學(xué);P:瓦倫西亞理工大學(xué);Q:加州理工學(xué)院。下同。
Note: TP is the total number of publications; TC is the total number of citations; TC/TP is citations per publication; NHCP is the number of highly cited publications (≥100 citations); SIP and MIP are the numbers of single- and multi-institution publications, respectively; FIP and CIP are the numbers of first and corresponding institution publications, respectively; SY and EY are the starting and ending publication years, respectively. A:Nanjing University; B:California Institute of Technology; C:University of Valencia; D:University of Milano-Bicocca; E:NASA Goddard Space Flight Center; F:University of Chinese Academy of Sciences; G:Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences; H:Carnegie Institution for Science; I:University of Twente; J:University of California; K:German Research Center for Geosciences; L:Max Planck Institute for Biogeochemistry; M:Beijing Normal University; N:University of Zurich; O:University of Toronto; P:Polytechnic University of Valencia; Q:California Institute of Technology. The same as below.
圖4為發(fā)表10篇以上文章的作者之間的合作共現(xiàn)圖譜。57個(gè)作者可以分為5個(gè)聚類,共有541次聯(lián)系。其中發(fā)文量最多的Guanter與其他作者的聯(lián)系最為密切,并位于圖譜的中心位置,他與Frankenberg、Zhang(張永光)、Rossini和van der Tol等高產(chǎn)作者均有比較密切的合作,體現(xiàn)了其在SIF研究領(lǐng)域的重要地位。中國科學(xué)院遙感與數(shù)字地球研究所的Liu (劉良云)團(tuán)隊(duì)也對(duì)SIF研究做出了突出貢獻(xiàn),主要研究方向是SIF的尺度轉(zhuǎn)換及其與作物光合作用的關(guān)系[37?39],以及從中國CO2觀測衛(wèi)星任務(wù)TanSat實(shí)現(xiàn)SIF反演[40?41]。西北農(nóng)林科技大學(xué)Lv(呂肖良)團(tuán)隊(duì)在SIF領(lǐng)域的貢獻(xiàn)主要是基于較完備的實(shí)驗(yàn)系統(tǒng)來探究葉綠素?zé)晒馀c光合作用的內(nèi)在聯(lián)系機(jī)制,改進(jìn)SIF與GPP的關(guān)聯(lián)模型,提高多尺度SIF評(píng)估光合活動(dòng)的準(zhǔn)確性[42?43]。
2.2.4 主要期刊
關(guān)于SIF的研究主要發(fā)表在地球科學(xué)、生態(tài)學(xué)、農(nóng)學(xué)、植物生理學(xué)等領(lǐng)域的期刊上。表5列出了該領(lǐng)域發(fā)表文章最多的10種期刊的發(fā)表統(tǒng)計(jì)數(shù)據(jù)。其中Remote Sensing of Environment憑借92篇的發(fā)文量成為全球SIF研究領(lǐng)域發(fā)文量最高的期刊,該期刊2021年的影響因子為13.850,是遙感領(lǐng)域被普遍認(rèn)可的頂級(jí)期刊之一。此外,該期刊還擁有最高的H指數(shù)(40),貢獻(xiàn)了最多的高被引文章數(shù)量(15篇)。發(fā)表論文數(shù)排名第8位的Global Change Biology篇均被引次數(shù)最多(65.6次),其次是發(fā)表論文數(shù)排名第5位的Geophysical Research Letters,平均每篇被引次數(shù)為64次,這兩種期刊各發(fā)表了6篇高被引文章數(shù)量,說明它們?cè)谠擃I(lǐng)域中具有較大的影響力。發(fā)表論文數(shù)排名第2位的Remote Sensing共發(fā)表了77篇關(guān)于SIF研究的文章,H指數(shù)為20,但篇均被引(13.6次)較低,且無高被引文章發(fā)表。發(fā)表論文數(shù)排名第3、4位的是兩種會(huì)議期刊,分別為國際地球科學(xué)和遙感專題研討會(huì)(IGARSS)和SPIE會(huì)議錄?國際光學(xué)工程學(xué)會(huì),它們開始SIF領(lǐng)域研究的時(shí)間都較早,分別為1993年和1992年。
圖3 關(guān)于SIF研究的主要機(jī)構(gòu)之間的學(xué)術(shù)合作Fig. 3 Academic cooperation among major institutions on the research of SIF
注:圖譜中共有5個(gè)聚類,39個(gè)圓圈,270條連線;不同顏色代表由不同研究機(jī)構(gòu)組成的聚類;圓圈代表不同研究機(jī)構(gòu),圓圈越大表示該機(jī)構(gòu)發(fā)文數(shù)量越多;連線代表研究機(jī)構(gòu)之間的合作關(guān)系(不同機(jī)構(gòu)作者出現(xiàn)在同一篇文獻(xiàn)中),連線越粗表示合作越密切。
Note:There are 5 clusters, 39 circles, and 270 connecting lines. Colors represent clusters of different research institutions. Circles represent different research institutions, and bigger circles represent more articles published in this institution. Lines represent the cooperative relationship between research institutions (authors from different institutions appear in the same article), and thicker lines indicate more and closer cooperation between institutions.
2.3.1 關(guān)鍵詞聚類
關(guān)鍵詞是文獻(xiàn)研究核心內(nèi)容的濃縮與提煉,高頻關(guān)鍵詞分析可以反映該領(lǐng)域的研究發(fā)展和前沿變化以及該領(lǐng)域與其他領(lǐng)域的相關(guān)性[44]。本研究利用VOSviewer選取出現(xiàn)次數(shù)在10次以上的關(guān)鍵詞進(jìn)行共現(xiàn)分析,由圖5可見,關(guān)鍵詞總體聚類為4類,其中橙色聚類共有熒光、葉綠素、植被3個(gè)關(guān)鍵詞,可看作SIF涉及的不同研究領(lǐng)域。
表4 關(guān)于SIF研究的10個(gè)最高產(chǎn)作者的綜合統(tǒng)計(jì)
注:ID是Scopus為每個(gè)作者分配的唯一編號(hào);TP是發(fā)表文章的總數(shù)量;TC是總被引數(shù);TC/TP是篇均被引數(shù); NHCP是高被引文章數(shù)量(≥引用100次);SY和EY分別是該作者首次和最后發(fā)表相關(guān)文章的年份;國家是該作者發(fā)文最多的所屬機(jī)構(gòu)所在國家;機(jī)構(gòu)是該作者目前任職的機(jī)構(gòu)。
Note: ID is the Scopus author identifier; TP is the total number of publications; TC is the total number of citations; TC/TP is citations per publication; NHCP is the number of highly cited publications (≥100 citations); SY and EY are the starting and ending publication years, respectively; The country is where the author published the most articles; The institution is where the author currently works.
圖4 關(guān)于SIF研究的主要作者之間的學(xué)術(shù)合作
注:圖譜中共有5個(gè)聚類,57個(gè)圓圈,541條連線;不同顏色代表由不同作者組成的聚類;圓圈代表不同作者,圓圈越大表示該作者發(fā)文數(shù)量越多;連線代表作者之間的合作關(guān)系(不同作者出現(xiàn)在同一篇文獻(xiàn)中),連線越粗表示合作越密切。
Note:There are 5 clusters, 57 circles, and 541 connecting lines. Colors represent clusters of different authors. Circles represents different authors, and bigger circles represent more articles published by this author. Lines represent the cooperative relationship between authors (different authors appear in the same article), and thicker lines indicate more and closer cooperation between authors.
表5 關(guān)于SIF研究的10個(gè)最高產(chǎn)期刊的綜合統(tǒng)計(jì)
注:IF為該期刊2021年度的影響因子;TP為發(fā)表文章的總數(shù)量;TC為總被引數(shù);TC/TP為篇均被引次數(shù); NHCP是高被引文章數(shù)量(≥引用100次);SY是該期刊首次發(fā)表相關(guān)文章的年份。
Note: IF is the impact factor of the journal in 2021; TP is the total number of publications; TC is the total number of citations; TC/TP is citations per publication; NHCP is the number of highly cited publications (≥100 citations); SY is the starting publication years.
圖5 關(guān)于SIF研究的關(guān)鍵詞共現(xiàn)圖譜
注:圖譜中共有4個(gè)聚類,34個(gè)圓圈,288條連線;不同顏色代表由不同關(guān)鍵詞組成的聚類;圓圈代表不同關(guān)鍵詞,圓圈越大表示該關(guān)鍵詞出現(xiàn)的頻次越高;連線代表關(guān)鍵詞之間的共現(xiàn)關(guān)系(不同關(guān)鍵詞出現(xiàn)在同一篇文獻(xiàn)中),連線越粗表示共現(xiàn)頻次越高。
Note:There are 4 clusters, 34 circles, and 288 connecting lines. Colors represent clusters of different keywords. Circles represent different keywords, and bigger circles represent higher frequency of the keywords. Lines represent the co-occurrence relationship between keywords (different keywords appear in the same article), and thicker lines indicate higher and closer co-occurrence between keywords.
藍(lán)色聚類共有9個(gè)關(guān)鍵詞,主要包括葉綠素?zé)晒?、光合作用、干旱、光抑制、水分脅迫等,涉及葉綠素?zé)晒獾纳硖匦约懊{迫監(jiān)測等方面。在光系統(tǒng)水平,葉綠素?zé)晒獍ü庀到y(tǒng)I(PSI)和光系統(tǒng)II(PSII)熒光釋放,通常認(rèn)為PSII熒光與光合作用及熱耗散NPQ(nonphotochemical quenching)過程相互關(guān)聯(lián)[12],其分別對(duì)應(yīng)的熒光效率、光化學(xué)效率以及NPQ效率在能量分配上具有緊密的機(jī)理聯(lián)系[45]。因此葉綠素?zé)晒饪梢钥醋髦甘局脖还夂献饔脧?qiáng)弱的理想“探針”,在量化光合碳同化量、表征植物生理健康狀態(tài)及指示光合所受脅迫程度大小的相關(guān)研究方面有著巨大的應(yīng)用潛力[46]。例如,在葉片尺度上,研究人員基于盆栽或田間水分脅迫實(shí)驗(yàn),發(fā)現(xiàn)熒光參數(shù)對(duì)水分脅迫響應(yīng)迅速,水分虧缺的生理效應(yīng)會(huì)導(dǎo)致光化學(xué)效率和熒光效率顯著下降[47?50]。同樣在高溫脅迫下,熒光效率表現(xiàn)為降低的趨勢(shì)[51?52]。而在低溫條件下,光合活性降低使得大部分葉片光化學(xué)效率降低,同時(shí)NPQ降低,從而導(dǎo)致熒光效率升高[53]。近年來SIF研究在區(qū)域及全球尺度的脅迫監(jiān)測方面也取得了重要進(jìn)展。與傳統(tǒng)基于反射率的植被“綠度”指數(shù)不同,植被冠層遙感SIF對(duì)環(huán)境脅迫的響應(yīng)更加敏感[54]。遙感SIF在干旱和水分脅迫下表現(xiàn)出顯著的下降趨勢(shì)[54?56],水分脅迫下植被生產(chǎn)力的變化與熒光效率的相關(guān)性高于與傳統(tǒng)植被指數(shù)的相關(guān)性[55],可能是因?yàn)閭鹘y(tǒng)植被指數(shù)存在“飽和”現(xiàn)象,從而無法及時(shí)檢測到由環(huán)境脅迫引起的植被光合生理的快速變化[57]。在不同空間尺度(光系統(tǒng)、葉片、冠層、區(qū)域遙感)下,由于葉綠素?zé)晒饽軌驅(qū)χ脖还夂献饔玫淖兓龀黾皶r(shí)響應(yīng),使得SIF在植物生理、生態(tài)及遙感領(lǐng)域得到廣泛應(yīng)用。
綠色聚類共有11個(gè)關(guān)鍵詞,主要包括SIF、遙感、高光譜、輻射傳輸模型、SCOPE等,涉及SIF的獲取方式等方面。SIF數(shù)據(jù)最初是由地面光譜儀測量得到,隨著攜帶高光譜傳感器遙感衛(wèi)星的發(fā)展以及熒光探測項(xiàng)目FLEX的推進(jìn),近十年研究人員已經(jīng)從多個(gè)航空和衛(wèi)星高光譜遙感數(shù)據(jù)中成功反演了SIF[7,25,31?32,35,40,58?59]。遙感反演SIF算法多基于夫瑯和費(fèi)線提取算法FLD(fraunhofer line discrimination)[60],總體可以分為兩類,即基于大氣輻射傳輸機(jī)理過程的反演算法[25,58,61?62]和基于統(tǒng)計(jì)的反演算法[31,35,63]。由于SIF的激發(fā)及輻射傳輸過程受多重因素影響,在葉片、冠層和生態(tài)系統(tǒng)尺度上,SIF對(duì)環(huán)境因子(光照、溫度、飽和水汽壓差等)和光合生理因素的響應(yīng)均較為復(fù)雜,因此,研究者們通過構(gòu)建不同尺度的SIF輻射傳輸模型,來研究葉片生理和冠層結(jié)構(gòu)以及不同環(huán)境因子對(duì)SIF輻射傳輸和光合作用的耦合程度,從而更好地解釋和利用SIF遙感信號(hào)。其中最為典型的是一維冠層熒光輻射傳輸SCOPE(Soil Canopy Observation,Photochemistry and Energy fluxes)模型[64],該模型在考慮土壤背景影響的條件下,將熒光從葉片到冠層的輻射傳輸過程與光合作用機(jī)理耦合進(jìn)行綜合模擬[65?66],目前是FLUXNET團(tuán)隊(duì)利用通量數(shù)據(jù)估測輻射傳輸過程的主要模型工具之一[37]。
圖5中紅色聚類共有11個(gè)關(guān)鍵詞,主要包括GPP、植被指數(shù)、碳循環(huán)和氣候變化和物候?qū)W等,主要涉及SIF的遙感應(yīng)用(如碳循環(huán))方面。GPP是表征生物圈和大氣圈能量平衡的重要變量之一[67]。在估算陸地生態(tài)系統(tǒng)GPP方面,應(yīng)用遙感數(shù)據(jù)的光能利用率LUE模型是當(dāng)前的主流方法之一[68],由于SIF與GPP均是由冠層吸收的光合有效輻射APAR驅(qū)動(dòng),因此具有較強(qiáng)的相關(guān)性[69],通過塔基光譜儀的觀測表明,SIF與APAR、LUE、GPP的日變化和季節(jié)變化具有一致性和相關(guān)性[70?73],同時(shí)在遙感尺度上,可通過GOSAT、GOME-2、OCO-2和TROPOMI等傳感器反演得到的SIF遙感數(shù)據(jù)[25,31?32,35]來快速精確地估算植被GPP,其估算精度優(yōu)于采用傳統(tǒng)植被指數(shù)(如NDVI)的估算方法[8,74],在農(nóng)業(yè)生產(chǎn)力及作物產(chǎn)量估算方面發(fā)揮著重要作用。在大氣CO2濃度監(jiān)測方面,衛(wèi)星SIF數(shù)據(jù)可以很好地模擬CO2的季節(jié)性變化,并且可以對(duì)厄爾尼諾、拉尼娜等大氣環(huán)流異?,F(xiàn)象做出及時(shí)的響應(yīng)[72,75?77]。在追蹤植被的物候信息方面,SIF由于同時(shí)包含了物候信息和熒光效率所反映的脅迫狀況信息,同樣被廣泛應(yīng)用于捕捉植被的季節(jié)性變化[69,73,78],用以提高全球光合模型精度[56,79?80]以及揭示植被?氣候交互作用等[81?82]。
2.3.2 學(xué)科發(fā)展
由于2011年首次在全球尺度實(shí)現(xiàn)SIF衛(wèi)星遙感反演,因此被稱為“SIF元年”。將1982?2021年分為1982?2010、2011?2015和2016?2021年3個(gè)研究時(shí)期,選取各時(shí)期內(nèi)出現(xiàn)次數(shù)在5次以上的作者關(guān)鍵詞進(jìn)行共現(xiàn)分析(圖6),以探究某一時(shí)期內(nèi)SIF的研究熱點(diǎn)與應(yīng)用特點(diǎn)。
圖6 1982?2010年(a)、2011?2015年(b)、2016?2021年(c)關(guān)于SIF研究的關(guān)鍵詞共現(xiàn)圖譜Fig. 6 The co-occurrence map of keywords on the research of SIF during 1982?2010(a)、2011?2015(b)、2016?2021(c)
注:不同顏色代表由不同關(guān)鍵詞組成的聚類;圓圈代表不同關(guān)鍵詞,圓圈越大表示該關(guān)鍵詞出現(xiàn)的頻次越高;連線代表關(guān)鍵詞之間的共現(xiàn)關(guān)系(不同關(guān)鍵詞出現(xiàn)在同一篇文獻(xiàn)中),連線越粗表示共現(xiàn)頻次越高。
Note:Colors represent clusters of different keywords. Circles represent different keywords, and bigger circles represent higher frequency of the keywords. Lines represent the co-occurrence relationship between keywords (different keywords appear in the same article), and thicker lines indicate higher and closer co-occurrence between keywords.
從3個(gè)研究時(shí)期作者關(guān)鍵詞的共現(xiàn)圖譜中,可以歸納出SIF研究的大致發(fā)展特點(diǎn):(1)1982?2010年的關(guān)鍵詞(圖6a)主要是葉綠素?zé)晒?、熒光、光合作用、光抑制等,此時(shí)的研究大多是通過葉綠素?zé)晒鈦硖骄恐参锏纳硖匦曰蜻^程,如光系統(tǒng)II、電子傳遞速率、葉黃素循環(huán)等。遙感作為關(guān)鍵詞的出現(xiàn),說明高光譜技術(shù)和衛(wèi)星遙感技術(shù)在當(dāng)時(shí)也已得到發(fā)展并應(yīng)用于SIF研究。(2)2011?2015年(圖6b)開始出現(xiàn)GPP、FLEX、FLD等詞,這表明伴隨著全球高光譜傳感器的發(fā)展,特別是Frankenberg等[25]利用日本溫室氣體觀測衛(wèi)星GOSAT首次從太空觀測到全球陸地葉綠素?zé)晒獾募竟?jié)變化,并反演出全球首張陸地SIF地圖后,大尺度SIF的空間反演以及光合作用總初級(jí)生產(chǎn)力的量化評(píng)估等研究開始穩(wěn)步發(fā)展,SIF的研究不再停留于生理層面,開始面向?qū)嶋H應(yīng)用。(3)2016?2021年的關(guān)鍵詞(圖6c)相比前兩時(shí)期明顯增加,表明近年來關(guān)于SIF研究的發(fā)展迅速且全面。高頻關(guān)鍵詞SCOPE的出現(xiàn)說明應(yīng)用模型已成為估測輻射傳輸過程的常用方法。在全球氣候變化背景下,碳循環(huán)、氣候變化、干旱、水分脅迫、物候等關(guān)鍵詞即為當(dāng)前SIF研究的熱點(diǎn)領(lǐng)域。
作為植被遙感領(lǐng)域最具突破性的研究前沿之一,SIF的研究已進(jìn)入蓬勃發(fā)展階段。從研究結(jié)果來看,美國、德國、意大利等發(fā)達(dá)國家在SIF領(lǐng)域的研究實(shí)力處于領(lǐng)先地位。Remote Sensing of Environment、Geophysical Research Letters和Global Change Biology等優(yōu)質(zhì)期刊都發(fā)表了大量SIF領(lǐng)域的研究成果。文獻(xiàn)關(guān)鍵詞聚類的結(jié)果表明,光合作用、GPP、葉綠素?zé)晒?、遙感、碳循環(huán)和高光譜等是SIF領(lǐng)域的研究熱點(diǎn)詞匯,主要涉及三個(gè)方面:葉綠素?zé)晒獾纳硖匦约懊{迫監(jiān)測、SIF的獲取方式和SIF的遙感應(yīng)用(如碳循環(huán)),這也大致對(duì)應(yīng)了SIF研究領(lǐng)域的學(xué)科發(fā)展過程。
中國的相關(guān)研究起步較晚,但在眾多優(yōu)秀研究者的努力下發(fā)展迅速,當(dāng)前發(fā)文數(shù)高居全球第二,且在Remote Sensing of Environment等期刊上發(fā)表過大量優(yōu)秀論文,現(xiàn)如今整體研究實(shí)力走在世界前列。在未來研究中,中國研究者仍需加強(qiáng)與其他國家的合作,在增加文章發(fā)表數(shù)量的同時(shí)注重提高研究質(zhì)量,進(jìn)一步提高研究的影響力。
本研究基于文獻(xiàn)計(jì)量分析和可視化計(jì)量分析,系統(tǒng)總結(jié)了1982?2021年SIF領(lǐng)域的發(fā)展趨勢(shì),并從國家、機(jī)構(gòu)、作者、期刊和關(guān)鍵詞等方面進(jìn)行了分析,為深入了解SIF研究提供一個(gè)全面的視角。相關(guān)結(jié)論將有助于后續(xù)研究更明確地開展研究選題、創(chuàng)新研究方法,并為其他領(lǐng)域開展此類文獻(xiàn)計(jì)量學(xué)研究提供一定借鑒。分析中所使用的英文文獻(xiàn)數(shù)據(jù)來自Scopus數(shù)據(jù)庫,重點(diǎn)考慮了世界范圍內(nèi)SIF領(lǐng)域的基本研究情況,但會(huì)導(dǎo)致對(duì)非英語國家研究水平的低估。在文獻(xiàn)檢索時(shí),檢索條件設(shè)置為同時(shí)滿足“sun induced”和“chlorophyll fluorescence”或其同義詞,但檢索到的早期文獻(xiàn)主要是考慮到太陽光照影響的葉綠素?zé)晒庋芯?,并非?dāng)前研究嚴(yán)格意義上的SIF。此外,一些作者可能先后任職于不同機(jī)構(gòu),一些機(jī)構(gòu)的名稱在不同文獻(xiàn)中可能也有差異,這會(huì)影響作者和機(jī)構(gòu)的綜合統(tǒng)計(jì)分析結(jié)果。未來的相關(guān)研究可結(jié)合Scopus與Web of Science、CNKI和CSCD等數(shù)據(jù)庫,著重進(jìn)行SIF領(lǐng)域熱點(diǎn)演變的對(duì)比探討,深入全面分析該領(lǐng)域的發(fā)展特點(diǎn)。
隨著理論的不斷完善,高光譜技術(shù)和衛(wèi)星遙感技術(shù)的快速發(fā)展,當(dāng)前SIF研究空間尺度更大,數(shù)據(jù)更精確,研究視角更深入透徹。但SIF數(shù)據(jù)仍然存在空間分辨率較粗、信號(hào)噪聲較大以及提取算法存在局限性等問題,為了提高模型模擬精度并擴(kuò)大熒光遙感的應(yīng)用范圍,未來可在以下幾個(gè)方向著重開展相關(guān)研究:(1)進(jìn)一步發(fā)展SIF衛(wèi)星遙感傳感器技術(shù),在提高傳感器信噪比的同時(shí),盡可能提高時(shí)空分辨率;(2)深入研究SIF與植物光合生理過程的關(guān)聯(lián)機(jī)理,明確不同時(shí)空尺度條件、不同生態(tài)系統(tǒng)類型下的SIF和GPP內(nèi)在機(jī)理關(guān)系;(3)耦合熒光模型與其他生態(tài)系統(tǒng)模型,優(yōu)化模型關(guān)鍵參數(shù),加快SIF數(shù)據(jù)產(chǎn)品的生產(chǎn),并結(jié)合多源遙感數(shù)據(jù)和機(jī)器學(xué)習(xí)等方法擴(kuò)展SIF數(shù)據(jù)的應(yīng)用范圍。以上研究方向?qū)⒂兄诟玫赜^測植被生長狀態(tài),準(zhǔn)確預(yù)測糧食產(chǎn)量,保障國家糧食安全,并在全球氣候變化的大背景下為中國實(shí)現(xiàn)“碳達(dá)峰”和“碳中和”愿景提供可靠的估算依據(jù)。
[1] Lichtenthaler H K,Buschmann C,Rinderle U,et al. App- lication of chlorophyll fluorescence in ecophysiology[J]. Radiation and Environmental Biophysics,1986,25(4):297- 308.
[2] Gu L,Han J,Wood J D,et al.Sun-induced Chl fluorescence and its importance for biophysical modeling of photo- synthesis based on light reactions[J].New Phytologist, 2019,223(3):1179-1191.
[3] 劉良云.植被定量遙感原理與應(yīng)用[M].北京:科學(xué)出版社, 2014.
Liu L Y.Principle and application of vegetation quantitative remote sensing[M].Beijing:Science Press,2014.(in Chinese)
[4] 章釗穎,王松寒,邱博,等.日光誘導(dǎo)葉綠素?zé)晒膺b感反演及碳循環(huán)應(yīng)用進(jìn)展[J].遙感學(xué)報(bào),2019,23(1):37-52.
Zhang Z Y,Wang S H,Qiu B,et al.Retrieval of sun-induced chlorophyll fluorescence and advancements in carbon cycle application[J].Journal of Remote Sensing,2019,23(1):37- 52.(in Chinese)
[5] Guanter L,Frankenberg C,Dudhia A,et al.Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements[J].Remote Sensing of Environment,2012,121:236-251.
[6] Joiner J,Yoshida Y,Vasilkov A P,et al.First observations of global and seasonal terrestrial chlorophyll fluorescence from space[J].Biogeosciences,2011,8(3):637-651.
[7] Joiner J,Yoshida Y,Vasilkov A P,et al.Filling-in of near-infrared solar lines by terrestrial fluorescence and other geophysical effects: simulations and space-based observations from SCIAMACHY and GOSAT[J]. Atmospheric Measurement Techniques,2012,5(4):809- 829.
[8] Guanter L,Zhang Y,Jung M,et al.Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence[J].Proceedings of the National Academy of Sciences,2014,111(14):E1327-1333.
[9] Sun Y,Frankenberg C,Wood J D,et al.OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence[J].Science,2017,358(6360):m5747.
[10] Mohammed G H,Colombo R,Middleton E M,et al.Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress[J].Remote Sensing of Environment,2019,231:111177.
[11] Van Kooten O,Snel J F.The use of chlorophyll fluorescence nomenclature in plant stress physiology[J].Photosynthesis Research,1990,25(3):147-150.
[12] Krause G H,Weis E.Chlorophyll fluorescence and photosynthesis:the basics[J].Annual Review of Plant Biology,1991,42(1):313-349.
[13] Maxwell K,Johnson G N.Chlorophyll fluorescence-a practical guide[J].Journal of Experimental Botany,2000, 51(345):659-668.
[14] Meroni M,Rossini M,Guanter L,et al.Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications[J].Remote Sensing of Environment, 2009,113(10):2037-2051.
[15] 詹春暉,章釗穎,張永光.日光誘導(dǎo)葉綠素?zé)晒廨椛鋫鬏斈P脱芯窟M(jìn)展[J].遙感學(xué)報(bào),2020,24(8):945-957.
Zhan C H,Zhang Z Y,Zhang Y G.Recent advances in the radiative transfer models of sun-induced chlorophyll fluorescence[J].Journal of Remote Sensing,2020,24(8): 945-957.(in Chinese)
[16] 孫忠秋,高顯連,杜珊珊,等.全球日光誘導(dǎo)葉綠素?zé)晒庑l(wèi)星遙感產(chǎn)品研究進(jìn)展與展望[J].遙感技術(shù)與應(yīng)用,2021, 36(5):1044-1056.
Sun Z Q,Gao X L,Du S S,et al.Research progress and prospective of global satellite based solar-induced chlorophyll fluorescence products[J].Remote Sensing Technology and Application,2021,36(5):1044-1056.(in Chinese)
[17] Falagas M,Pitsouni E,Malietzis G,et al.Comparison of PubMed, Scopus, Web of Science, and Google Scholar: strengths and weaknesses[J].Faseb Journal Official Publication of the Federation of American Societies for Experimental Biology,2008,22(2):338-342.
[18] Li J,Wang L,Liu Y,et al.The research trends of metal-organic frameworks in environmental science:a review based on bibliometric analysis[J].Environmental Science and Pollution Research,2020,27(16):19265-19284.
[19] Zhang Y,Yu Q,Li J.Bioenergy research under climate change:a bibliometric analysis from a country perspective[J].Environmental Science and Pollution Research,2021,28(21):26427-26440.
[20] Hirsch J E.An index to quantify an individual's scientific research output[J].Proceedings of the National Academy of Sciences,2005,102:16569-16572.
[21] Zhang Y,Yu Q.What is the best article publishing strategy for early career scientists[J].Scientometrics,2020,122(1): 397-408.
[22] Aria M,Cuccurullo C.Bibliometrix:an R-tool for comprehensive science mapping analysis[J].Journal of Informetrics,2017,11(4):959-975.
[23] Van Eck N,Waltman L.Software survey:VOSviewer,a computer program for bibliometric mapping[J]. Scientometrics, 2010,84(2):523-538.
[24] 宋秀芳,遲培娟.Vosviewer與Citespace應(yīng)用比較研究[J].情報(bào)科學(xué),2016,34(7):108-112.
Song X F,Chi P J.Comparative study of the data analysis results by Vosviewer and Citespace[J].Information Science, 2016,34(7):108-112.(in Chinese)
[25] Frankenberg C,Fisher J B,Worden J,et al.New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity [J].Geophysical Research Letters,2011,38(17):L17706.
[26] Zhang Y,Guanter L,Berry J A,et al.Model-based analysis of the relationship between sun-induced chlorophyll fluorescence and gross primary production for remote sensing applications[J].Remote Sensing of Environment, 2016,187:145-155.
[27] Zhang Y,Guanter L,Berry J A,et al.Estimation of vegetation photosynthetic capacity from space-based measurements of chlorophyll fluorescence for terrestrial biosphere models[J]. Global Change Biology,2014,20(12):3727-3742.
[28] Zhang Y,Xiao X,Jin C,et al.Consistency between sun-induced chlorophyll fluorescence and gross primary production of vegetation in North America[J].Remote Sensing of Environment,2016,183:154-169.
[29] Yang H,Yang X,Zhang Y,et al.Chlorophyll fluorescence tracks seasonal variations of photosynthesis from leaf to canopy in a temperate forest[J].Global Change Biology, 2017,23(7):2874-2886.
[30] Shan N,Zhang Y,Chen J M,et al.A model for estimating transpiration from remotely sensed solar-induced chlorophyll fluorescence[J].Remote Sensing of Environment, 2021,252:112134.
[31] Frankenberg C,O'Dell C,Berry J,et al.Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon Observatory-2[J].Remote Sensing of Environment, 2014,147:1-12.
[32] K?hler P,Frankenberg C,Magney T S,et al.Global retrievals of solar-induced chlorophyll fluorescence with TROPOMI: first results and intersensor comparison to OCO-2[J]. Geophysical Research Letters,2018,45(19):10- 456.
[33] Guanter L,Rossini M,Colombo R,et al.Using field spectroscopy to assess the potential of statistical approaches for the retrieval of sun-induced chlorophyll fluorescence from ground and space[J].Remote Sensing of Environment,2013,133:52-61.
[34] Guanter L,Bacour C,Schneider A,et al.The TROPOSIF global sun-induced fluorescence dataset from the Sentinel-5P TROPOMI mission[J].Earth System Science Data,2021,13(11):5423-5440.
[35] Joiner J,Guanter L,Lindstrot R,et al.Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral- resolution near-infrared satellite measurements:methodology, simulations,and application to GOME-2[J].Atmospheric Measurement Techniques,2013,6(10):2803-2823.
[36] Joiner J,Yoshida Y,K?ehler P,et al.Systematic orbital geometry-dependent variations in satellite solar-induced fluorescence (SIF) retrievals[J].Remote Sensing,2020,12 (15):2346.
[37] Liu L,Liu X,Wang Z,et al.Measurement and analysis of bidirectional SIF emissions in wheat canopies[J].IEEE Transactions on Geoscience and Remote Sensing,2015,54 (5):2640-2651.
[38] Liu L,Guan L,Liu X.Directly estimating diurnal changes in GPP for C3 and C4 crops using far-red sun-induced chlorophyll fluorescence[J].Agricultural and Forest Meteorology, 2017,232:1-9.
[39] Liu X,Guanter L,Liu L,et al.Downscaling of solar-induced chlorophyll fluorescence from canopy level to photosystem level using a random forest model[J].Remote Sensing of Environment,2019,231:110772.
[40] Du S,Liu L,Liu X,et al.Retrieval of global terrestrial solar-induced chlorophyll fluorescence from TanSat satellite[J].Science Bulletin,2018,63(22):1502-1512.
[41] Ma Y,Liu L,Chen R,et al.Generation of a global spatially continuous TanSat solar-induced chlorophyll fluorescence product by considering the impact of the solar radiation intensity[J].Remote Sensing,2020,12(13):2167.
[42] Lu X,Liu Z,Zhao F,et al.Comparison of total emitted solar-induced chlorophyll fluorescence (SIF) and top-of-canopy (TOC) SIF in estimating photosynthesis[J]. Remote Sensing of Environment,2020,251:112083.
[43] Liu Z,Zhao F,Liu X,et al.Direct estimation of photosynthetic CO2 assimilation from solar-induced chlorophyll fluorescence (SIF)[J].Remote Sensing of Environment,2022,271: 112893.
[44] 黃承芳,李寧,劉麗,等.氣候變化下農(nóng)業(yè)領(lǐng)域的國際文獻(xiàn)特征與熱點(diǎn)演變:基于CiteSpace V的文獻(xiàn)計(jì)量分析[J].中國農(nóng)業(yè)氣象,2019,40(8):477-488.
Huang C F,Li N,Liu L,et al.International literature characteristics and hotspots evolution of agricultural under climate change:bibliometrics analysis based on CiteSpace V[J].Chinese Journal of Agrometeorology,2019,40(8):477- 488.(in Chinese)
[45] 程占慧,劉良云.基于葉綠素?zé)晒獍l(fā)射光譜的光能利用率探測[J].農(nóng)業(yè)工程學(xué)報(bào),2010(S2):74-80.
Cheng Z H,Liu L Y.Detection of vegetation light use efficiency based on chlorophyll fluorescence spectrum[J]. Transactions of the Chinese Society of Agricultural Engineering.2010(S2):74-80.(in Chinese)
[46] Baker N R.Chlorophyll fluorescence:a probe of photosynthesis in vivo[J].Annual Review of Plant Biology,2008,59:89- 113.
[47] Cendrero-Mateo M P,Carmo-Silva A E,Porcar-Castell A,et al.Dynamic response of plant chlorophyll fluorescence to light,water and nutrient availability[J].Functional Plant Biology,2015,42(8):746-757.
[48] 張曼義,楊再強(qiáng),侯夢(mèng)媛.土壤水分脅迫對(duì)設(shè)施黃瓜葉片光合及抗氧化酶系統(tǒng)的影響[J].中國農(nóng)業(yè)氣象,2017,38(1): 21-30.
Zhang M Y,Yang Z Q,Hou M Y.Effects of soil water stress on photosynthetic characteristics and antioxidant enzyme system of cucumber leaves in greenhouse[J].Chinese Journal of Agrometeorology,2017,38(1):21-30.(in Chinese)
[49] Galmés J,Medrano H,Flexas J.Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms[J].New Phytologist, 2007,175(1):81-93.
[50] Dobrowski S Z,Pushnik J C,Zarco-Tejada P J,et al.Simple reflectance indices track heat and water stress-induced changes in steady-state chlorophyll fluorescence at the canopy scale[J].Remote Sensing of Environment,2005,97(3): 403-414.
[51] 陸思宇,楊再強(qiáng),張?jiān)催_(dá),等.高溫條件下光周期對(duì)鮮切菊花葉片光合系統(tǒng)熒光特性的影響[J].中國農(nóng)業(yè)氣象,2020, 41(10):632-643.
Lu S Y,Yang Z Q,Zhang Y D,et al.Effect of Photoperiod on fluorescence characteristics of photosynthetic system of fresh-cut chrysanthemum leaves under high temperature[J]. Chinese Journal of Agrometeorology,2020,41(10):632- 643.(in Chinese)
[52] 胡文海,胡雪華,閆小紅,等.低溫脅迫及恢復(fù)對(duì)番茄快速葉綠素?zé)晒庹T導(dǎo)動(dòng)力學(xué)特征的影響[J].中國農(nóng)業(yè)氣象, 2021,42(10):859-869.
Hu W H,Hu X H,Yan X H,et al.Response of chlorophyll fluorescence transient in leaves of tomato under chilling stress and subsequent recovery[J].Chinese Journal of Agrometeorology,2021,42(10):859-869.(in Chinese)
[53] Pérez-Priego O,Zarco-Tejada P J,Miller J R,et al.Detection of water stress in orchard trees with a high-resolution spectrometer through chlorophyll fluorescence in-filling of the O2-A band[J].IEEE Transactions on Geoscience and Remote Sensing,2005,43(12):2860-2869.
[54] Lee J,Frankenberg C,van der Tol C,et al.Forest productivity and water stress in Amazonia:observations from GOSAT chlorophyll fluorescence[J].Proceedings of the Royal Society B:Biological Sciences,2013,280(1761):20130171.
[55] Wagle P,Zhang Y,Jin C,et al.Comparison of solar-induced chlorophyll fluorescence,light-use efficiency,and process- based GPP models in maize[J].Ecological Applications, 2016,26(4):1211-1222.
[56] Yoshida Y,Joiner J,Tucker C,et al.The 2010 Russian drought impact on satellite measurements of solar-induced chlorophyll fluorescence:insights from modeling and comparisons with parameters derived from satellite reflectances[J].Remote Sensing of Environment,2015,166: 163-177.
[57] Song L,Guanter L,Guan K,et al.Satellite sun-induced chlorophyll fluorescence detects early response of winter wheat to heat stress in the Indian Indo-Gangetic Plains[J].Global Change Biology,2018,24(9):4023-4037.
[58] K?hler P,Guanter L,Joiner J.A linear method for the retrieval of sun-induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data[J].Atmospheric Measurement Techniques,2015,8(6):2589-2608.
[59] Li X,Xiao J.A global,0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2,MODIS,and reanalysis data[J].Remote Sensing,2019,11(5):517.
[60] Plascyk J A,Gabriel F C.The Fraunhofer line discriminator MKII-an airborne instrument for precise and standardized ecological luminescence measurement[J].IEEE Transactions on Instrumentation and Measurement,1975, 24(4):306-313.
[61] Guanter L,Alonso L,Gómez Chova L,et al.Estimation of solar-induced vegetation fluorescence from space measurements[J].Geophysical Research Letters,2007,34(8). DOI:10.1029/2007GL029289.
[62] Damm A,Guanter L,Verhoef W,et al.Impact of varying irradiance on vegetation indices and chlorophyll fluorescence derived from spectroscopy data[J].Remote Sensing of Environment,2015,156:202-215.
[63] Guanter L,Aben I,Tol P,et al.Potential of the TROPOspheric Monitoring Instrument(TROPOMI) onboard the Sentinel-5 Precursor for the monitoring of terrestrial chlorophyll fluorescence[J].Atmospheric Measurement Techniques, 2015,8(3):1337-1352.
[64] Van der Tol C,Verhoef W,Timmermans J,et al.An integrated model of soil-canopy spectral radiances, photosynthesis,fluorescence,temperature and energy balance [J].Biogeosciences,2009,6(12):3109-3129.
[65] Hu J,Liu X,Liu L,et al.Evaluating the performance of the SCOPE model in simulating canopy solar-induced chlorophyll fluorescence[J].Remote Sensing,2018,10(2): 250.
[66] Verrelst J,Rivera J P,van der Tol C,et al.Global sensitivity analysis of the SCOPE model:what drives simulated canopy-leaving sun-induced fluorescence[J].Remote Sensing of Environment,2015,166:8-21.
[67] Beer C,Reichstein M,Tomelleri E,et al.Terrestrial gross carbon dioxide uptake:global distribution and covariation with climate[J].Science,2010,329(5993):834-838.
[68] Monteith J L.Solar radiation and productivity in tropical ecosystems[J].Journal of Applied Ecology,1972,9(3):747- 766.
[69] Joiner J,Yoshida Y,Vasilkov A P,et al.The seasonal cycle of satellite chlorophyll fluorescence observations and its relationship to vegetation phenology and ecosystem atmosphere carbon exchange[J].Remote Sensing of Environment,2014,152:375-391.
[70] Damm A,Elbers J,Erler A,et al.Remote sensing of sun-induced fluorescence to improve modeling of diurnal courses of gross primary production (GPP)[J].Global Change Biology,2010,16(1):171-186.
[71] Du S,Liu L,Liu X,et al.Response of canopy solar-induced chlorophyll fluorescence to the absorbed photosynthetically active radiation absorbed by chlorophyll[J].Remote Sensing,2017,9(9):911.
[72] Liu J,Bowman K W,Schimel D S,et al.Contrasting carbon cycle responses of the tropical continents to the 2015-2016 El Ni?o[J].Science,2017,358(6360):m5690.
[73] Yang X,Tang J,Mustard J F,et al.Solar-induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest[J].Geophysical Research Letters,2015,42(8):2977- 2987.
[74] Guan K,Berry J A,Zhang Y,et al.Improving the monitoring of crop productivity using spaceborne solar‐induced fluorescence[J].Global Change Biology,2016,22(2):716- 726.
[75] Parazoo N C,Bowman K,Frankenberg C,et al.Interpreting seasonal changes in the carbon balance of southern Amazonia using measurements of XCO2and chlorophyll fluorescence from GOSAT[J].Geophysical Research Letters,2013,40(11):2829-2833.
[76] Detmers R G,Hasekamp O,Aben I,et al.Anomalous carbon uptake in Australia as seen by GOSAT[J].Geophysical Research Letters,2015,42(19):8177-8184.
[77] Luus K A,Commane R,Parazoo N C,et al.Tundra photosynthesis captured by satellite-observed solar-induced chlorophyll fluorescence[J].Geophysical Research Letters, 2017,44(3):1564-1573.
[78] Jeong S,Schimel D,Frankenberg C,et al.Application of satellite solar-induced chlorophyll fluorescence to understanding large-scale variations in vegetation phenology and function over northern high latitude forests[J].Remote Sensing of Environment,2017,190: 178-187.
[79] Rossini M,Nedbal L,Guanter L,et al.Red and far red Sun-induced chlorophyll fluorescence as a measure of plant photosynthesis[J].Geophysical research letters,2015, 42(6):1632-1639.
[80] Walther S,Voigt M,Thum T,et al.Satellite chlorophyll fluorescence measurements reveal large-scale decoupling of photosynthesis and greenness dynamics in boreal evergreen forests[J].Global Change Biology,2016,22(9): 2979-2996.
[81] Detmers R G,Hasekamp O,Aben I,et al.Anomalous carbon uptake in Australia as seen by GOSAT[J].Geophysical Research Letters,2015,42(19):8177-8184.
[82] Green J K,Konings A G,Alemohammad S H,et al. Regionally strong feedbacks between the atmosphere and terrestrial biosphere[J].Nature Geoscience,2017,10(6): 410-414.
Bibliometric Analysis of Research and Application of Solar-Induced Chlorophyll Fluorescence
YAN Yu-xing1, LV Xiao-liang2, WANG Ya-kai1, YU Qiang2
(1. College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China;2. State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100)
As an ideal ‘indicator’ for directly monitoring plant photosynthesis, solar-induced chlorophyll fluorescence(SIF) has a rapid response to variations in plant physiological status. SIF is becoming one of the most active research direction in vegetation remote sensing.This study conducted a systematic literature review on topics of relevance to SIF. To do so, there are 786 SIF-related papers published during 1982?2021 were collected from the Scopus database. Based on VOSviewer, the visual bibliometric analysis was applied to analyze these papers from the perspective of country, institution, author, journal and keyword. The results show that the number of SIF articles published per year is rising rapidly. Among all the countries, United States, China and Germany published 285, 263, and 166, making them the top three countries that have the most SIF papers during the study period. Germany has the highest citations per publication (56.2) and the largest number of cooperative countries(36). Nanjing University, California Institute of Technology, and University of Valencia have made outstanding contributions to the development of this field as they have not only the large number of publications but also the high h-indices Among the scholars in this area, Guanter L(Polytechnic University of Valencia), Zhang Y(Nanjing University), Frankenberg C(California Institute of Technology), Liu L(Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences), and Rascher U(Jülich Research Centre), are currently the most productive, having published more than 40 papers. The Journal Remote Sensing of Environment has the highest number of SIF articles (92) and the highest H-index (40), and Global Change Biology has the highest citations per publication (65.6) in this field. The keyword analysis shows that SIF is a highly multidisciplinary area mainly involving geoscience, ecology, agronomy, plant physiology across a range of spatial and temporal scales. Currently, the most active research topics are the monitor of plant physiological status and stress condition, the acquisition methods of SIF measurements, and the applications of SIF in remote sensing such as terrestrial carbon cycle. China leads the world of overall research focus in this field, which, however, still should have a further improvement of its influence.
Solar-induced chlorophyll fluorescence; Vegetation remote sensing; Bibliometric analysis; VOSviewer
10.3969/j.issn.1000-6362.2023.02.003
閆雨杏,呂肖良,王亞凱,等.日光誘導(dǎo)葉綠素?zé)晒庋芯考皯?yīng)用的文獻(xiàn)計(jì)量分析[J].中國農(nóng)業(yè)氣象,2023,44(2):106-122
收稿日期:2022?03?10
國家自然科學(xué)基金項(xiàng)目“作物日光誘導(dǎo)葉綠素?zé)晒馀c光合作用對(duì)環(huán)境脅迫的協(xié)同響應(yīng)及多尺度關(guān)聯(lián)機(jī)制估算”(42071328)
通訊作者:于強(qiáng),教授,主要從事生態(tài)系統(tǒng)模型研究,涉及氣候變化對(duì)農(nóng)業(yè)影響、陸面過程與生態(tài)系統(tǒng)碳氮循環(huán)、水資源管理和糧食安全,E-mail: yuq@nwafu.edu.cn
閆雨杏,E-mail: bjyanyuxing@163.com