崔 嵩,李 斐,劉志琨
新煙堿類殺蟲劑污染特征及其毒性效應(yīng)
崔 嵩*,李 斐,劉志琨
(東北農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院,國際持久性有毒物質(zhì)聯(lián)合研究中心,東北農(nóng)業(yè)大學(xué)松花江流域生態(tài)環(huán)境保護(hù)研究中心,黑龍江 哈爾濱 150030)
綜述了新煙堿類殺蟲劑在土壤、水體和大氣中的賦存現(xiàn)狀及其對無脊椎動物、脊椎動物和人類的毒性效應(yīng).新煙堿類殺蟲劑普遍存在于多介質(zhì)環(huán)境中,特別在農(nóng)業(yè)種植區(qū)具有較高的殘留濃度.新煙堿類殺蟲劑對非靶標(biāo)動物的影響主要表現(xiàn)在氧化應(yīng)激、抑制活動能力、損傷DNA和生育功能;亦會對人類的生育、生殖、神經(jīng)以及臟器功能帶來風(fēng)險.因此,今后亟需系統(tǒng)研究新煙堿類殺蟲劑在多環(huán)境介質(zhì)中的賦存及污染狀況,深入探討新煙堿類殺蟲劑對非靶標(biāo)生物的健康危害,以便全面了解此類殺蟲劑對生態(tài)環(huán)境及非靶標(biāo)生物造成的潛在風(fēng)險.
新煙堿類殺蟲劑;污染特征;非靶標(biāo)生物;毒性效應(yīng)
新煙堿類殺蟲劑自20世紀(jì)80年代上市以來,便因其具有高效、廣譜和低毒等特點而逐漸取代傳統(tǒng)有機(jī)磷和氨基甲酸酯等農(nóng)藥[1].該類殺蟲劑能選擇性作用于昆蟲中樞神經(jīng)系統(tǒng)的煙堿乙酰膽堿受體(nAChR)及其周圍神經(jīng),并有效阻斷昆蟲中樞神經(jīng)的傳導(dǎo),使昆蟲持續(xù)興奮、麻痹而后導(dǎo)致死亡,現(xiàn)主要應(yīng)用于農(nóng)業(yè)、城市綠化、家庭和寵物等害蟲控制[2-3].目前,主要使用的新煙堿類殺蟲劑有7種,包括吡蟲啉(Imidacloprid)、噻蟲嗪(Thiamethoxam)、噻蟲胺(Clothianidin)、呋蟲胺(Dinotefuran)、啶蟲脒(Acetamiprid)、噻蟲啉(Thiacloprid)、烯啶蟲胺(Nitenpyram)等[2].
據(jù)統(tǒng)計,新煙堿類殺蟲劑已被允許在120多個國家注冊使用,2014年全球銷售額高達(dá)33.45億美元,占全球殺蟲劑銷售總額的18%,全球農(nóng)藥銷售總額的5.3%[4].由于新煙堿類殺蟲劑的大量使用及其具有低揮發(fā)性、高水溶性和土壤中半衰期較長等特點,導(dǎo)致該類殺蟲劑在全球范圍內(nèi)不同環(huán)境介質(zhì)中被頻繁檢出,如土壤、灰塵、地表水、沉積物、地下水等環(huán)境介質(zhì)均受到不同程度污染,而由此帶來的生態(tài)環(huán)境問題也已引起全球范圍內(nèi)的廣泛關(guān)注[5].現(xiàn)有研究已證實,環(huán)境中殘留的新煙堿類殺蟲劑可對非靶標(biāo)生物(直接或間接受到新煙堿類殺蟲劑影響卻非原本要作用物種)的行為、遺傳、繁殖和生理水平產(chǎn)生影響,擾亂神經(jīng)元的正常發(fā)育并引起神經(jīng)毒性[6-8],特別在野外暴露情況下對昆蟲可產(chǎn)生嚴(yán)重的亞致死/致死效應(yīng)[9].為應(yīng)對此問題,歐盟、加拿大、巴西、美國、印度等國家和地區(qū)相繼出臺禁限令,以緩解該類殺蟲劑給生態(tài)環(huán)境安全所帶來的危害[10].鑒于新煙堿類殺蟲劑在全球市場的高占有率以及給生態(tài)環(huán)境安全帶來的挑戰(zhàn),本文根據(jù)目前國內(nèi)外現(xiàn)有研究文獻(xiàn),系統(tǒng)綜述了新煙堿類殺蟲劑在環(huán)境中的污染現(xiàn)狀及其對非靶標(biāo)生物的潛在危害,明晰當(dāng)前研究中的不足,進(jìn)而為我國新煙堿類殺蟲劑未來研究和合理使用提供借鑒和參考依據(jù).
新煙堿類殺蟲劑在使用后,大部分母體藥物會通過噴霧漂移、拌種等方式進(jìn)入土壤環(huán)境中,進(jìn)而發(fā)生淋溶、地表徑流和植物吸收等運移過程(圖1),由于其在土壤中半衰期最高可達(dá)幾百天(表1),因此即使在施用發(fā)生數(shù)年后的土壤中仍可檢測到新煙堿類殺蟲劑的殘留[11].Yu等[12]對珠江三角洲農(nóng)業(yè)區(qū)三種不同作物種植土壤進(jìn)行了研究,共檢出6種新煙堿類殺蟲劑,其中蔬菜種植區(qū)土壤殘留濃度最高(濃度范圍:0.26~390ng/g,中值:23ng/g),其次是水稻(濃度范圍0.26~280ng/g,中值:6.1ng/g)和水果(濃度范圍:0.26~150ng/g,中值:5ng/g)種植土壤.Schaafsma等[13]研究發(fā)現(xiàn)加拿大安大略省西南部地區(qū)土壤中新煙堿類殺蟲劑的平均殘留濃度為4.0ng/g,總濃度范圍為0.07~20.3ng/g.Stewart等[14]通過對美國中南部農(nóng)業(yè)生產(chǎn)區(qū)土壤進(jìn)行采樣檢測,結(jié)果表明吡蟲啉、噻蟲胺和噻蟲嗪三種殺蟲劑在土壤中的平均殘留濃度分別為4.0,3.4和2.3ng/g. Botías等[15]于2015年對英國油菜和小麥種植土壤進(jìn)行分析,發(fā)現(xiàn)吡蟲啉、噻蟲胺、噻蟲嗪、噻蟲啉是土壤中主要存在的新煙堿類殺蟲劑,濃度范圍分別為£0.07~7.90,0.41~ 28.6,£0.04~9.75和£0.01~0.22ng/g.Heimbach等[16]對德國北部油菜田的研究發(fā)現(xiàn),土壤中噻蟲胺的殘留濃度范圍為0.8~3.4ng/g.Wu等[17]對山東壽光種植番茄和黃瓜的溫室土壤進(jìn)行檢測,在種植番茄和黃瓜的溫室土壤中分別檢測到了7種和6種新煙堿類殺蟲劑,總濃度范圍分別為0.731~11.383和0.363~19.224ng/g.此外,在非農(nóng)業(yè)土壤中同樣檢測到較高濃度的新煙堿類殺蟲劑殘留.例如,Zhou等[18]利用LC-MS/MS檢測技術(shù),測定了天津市公園和居民區(qū)土壤中7種新煙堿類殺蟲劑的殘留狀況,總濃度范圍分別為0.27~230.76和0.23~132.66ng/g.無論源區(qū)(主要指農(nóng)業(yè)種植區(qū)域)還是非源區(qū),新煙堿類殺蟲劑均普遍存在于土壤環(huán)境中.相比之下,我國土壤中新煙堿類殺蟲劑殘留種類和濃度均高于歐美國家,產(chǎn)生這一現(xiàn)象的主要原因可以歸納為:一是歐美國家對部分新煙堿類殺蟲劑的使用實施了嚴(yán)格禁令;二是我國是一個農(nóng)業(yè)大國,農(nóng)作物種植面積較廣,導(dǎo)致新煙堿類殺蟲劑使用量也相應(yīng)增加.據(jù)統(tǒng)計,我國新煙堿類殺蟲劑的年使用量(折百)在2010~ 2020年之間,從不足每年2000t增加到每年7000t[19];三是受到種植結(jié)構(gòu)、蟲害種類和土壤類型等有關(guān)因素的影響;四是缺乏科學(xué)合理的施用模式,導(dǎo)致存在過量使用和利用率低的現(xiàn)象.因此,針對我國當(dāng)前土壤中高新煙堿類殺蟲劑的污染現(xiàn)狀,有必要制定更加有效的管控制度和使用規(guī)范,以緩解新煙堿類殺蟲劑污染的不斷加劇.
表1 主要新煙堿類殺蟲劑的理化性質(zhì)
注:數(shù)據(jù)來源于農(nóng)藥性質(zhì)數(shù)據(jù)庫(Pesticide Properties DataBase, http://sitem.herts.ac.uk/aeru/ppdb/index.htm);a為20℃;b為pH=7.
新煙堿類殺蟲劑擁有較高的溶解度(表1),使其極易通過地表徑流、淋溶等方式進(jìn)入地表水和地下水并造成污染(圖1).現(xiàn)有研究表明,全球水體均不同程度受到新煙堿類殺蟲劑的污染[20-21].例如,Casillas等[22]采集了西班牙Tagus流域的19個水體樣品,測定了5種新煙堿類殺蟲劑(吡蟲啉、噻蟲嗪、噻蟲胺、啶蟲脒、噻蟲啉)的殘留狀況,整體濃度范圍為<8.3~16.8ng/L,其中89%樣品中至少含有一種新煙堿類殺蟲劑.研究發(fā)現(xiàn),水體中新煙堿類殺蟲劑的殘留濃度與功能區(qū)域有密切關(guān)聯(lián),位于農(nóng)業(yè)種植區(qū)水體中的新煙堿類殺蟲劑殘留濃度更高.該結(jié)果得到了一項針對美國各地河流的全國性調(diào)查結(jié)果的證實,即水體中噻蟲胺和噻蟲嗪污染水平與周圍作物的種植比例呈顯著正相關(guān)[23].而我國由于新煙堿類殺蟲劑造成的水體污染現(xiàn)象也普遍存在.Naumann等[24]對中國渤海周邊河流中新煙堿類殺蟲劑賦存特征的研究表明,淡水中5種常見新煙堿類殺蟲劑(吡蟲啉、噻蟲嗪、噻蟲胺、啶蟲脒、噻蟲啉)的檢出濃度為<0.02~128ng/L,檢出頻率為42%~100%. Liu等[25]在松花江哈爾濱段地表水中檢測到了7種新煙堿類殺蟲劑(啶蟲脒、噻蟲胺、呋蟲胺、吡蟲啉、噻蟲啉、噻蟲嗪、烯啶蟲胺),總濃度范圍為30.8~135ng/L;在沉積物中則檢測到了4種目標(biāo)研究物(啶蟲脒、噻蟲胺、噻蟲嗪、吡蟲啉),總濃度范圍為0.61~14.7ng/g.Huang等[26]采集了我國南方農(nóng)業(yè)和城市地區(qū)58份沉積物樣本,共檢測到6種新煙堿類殺蟲劑,其總體濃度范圍為<0.5~23.8ng/g.Zhang等[27]則對廣州市農(nóng)村水-沉積物系統(tǒng)中新煙堿類殺蟲劑的殘留與分布進(jìn)行了調(diào)查,農(nóng)村地區(qū)水和沉積物中污染程度均高于城市地區(qū),其中新煙堿類殺蟲劑主在地表水中的總濃度為(7.94~636ng/L),在沉積物中的總濃度(0.017~31.3ng/g).
相關(guān)研究已經(jīng)證實,新煙堿類殺蟲劑在酸性或中性環(huán)境下降解緩慢,能夠在水中穩(wěn)定存在,一旦水體受到新煙堿類殺蟲劑的污染尚無十分有效的方法去除[28].Qi等[29]報道了北京5家污水處理廠進(jìn)、出水中的吡蟲啉濃度范圍分別為45~100和45~ 106ng/L,造成出水中吡蟲啉濃度高于進(jìn)水的原因可能是污水處理設(shè)備中有吡蟲啉的殘留,該結(jié)果表明進(jìn)入水體中的新煙堿類殺蟲劑難以被去除,并可隨再生水排放重新進(jìn)入受納水體導(dǎo)致地表水和地下水,尤其是飲用水源的二次污染.當(dāng)前新煙堿類殺蟲劑在水體中的殘留面臨著污染分布廣泛和難以去除的特點.因此,如何高效降解和去除水體中的新煙堿類殺蟲劑的殘留仍是未來研究的重點.
圖1 新煙堿類殺蟲劑的環(huán)境歸趨
大氣環(huán)境中的新煙堿類殺蟲劑主要來源于農(nóng)藥的噴灑和包衣種子播種過程.由于其揮發(fā)性較低,主要以大氣顆粒物的形式存在,可隨大氣顆粒物進(jìn)行傳輸和遷移,并通過干濕沉降對土壤和水體造成污染[30].Luis等[31]使用大氣采樣器對加拿大安大略省西南部空氣中的新煙堿類殺蟲劑進(jìn)行檢測,結(jié)果表明使用主動大氣采樣器采集的樣品中噻蟲胺和噻蟲嗪檢出率分別為100%和88.6%,在種植和耕作兩個階段懸浮顆粒物中新煙堿類殺蟲劑的濃度分別為16.22和1.91ng/m3.Zhou等[32]研究了鄭州市區(qū)及農(nóng)村地區(qū)春季和秋季大氣細(xì)顆粒物(PM2.5)中新煙堿類殺蟲劑的濃度,包括吡蟲啉、啶蟲脒、噻蟲嗪和噻蟲胺在內(nèi)的4種新煙堿類殺蟲劑檢出率均為100%,其中吡蟲啉含量最高,城市和農(nóng)村地區(qū)平均濃度分別為31.9 和48.0pg/m3.呼吸攝入是非靶標(biāo)動物和人體直接暴露于新煙堿類殺蟲劑的主要途徑之一,研究證實該類殺蟲劑會對人體肺功能產(chǎn)生一定的影響[33].然而,監(jiān)測數(shù)據(jù)的缺乏限制了對新煙堿類殺蟲劑環(huán)境行為與風(fēng)險評估的深入研究,這也為進(jìn)一步開展相關(guān)研究及彌補(bǔ)科學(xué)認(rèn)知提供了機(jī)會.
殘留在環(huán)境中的新煙堿類殺蟲劑會對非靶標(biāo)動物的行為、生殖、遺傳、神經(jīng)和臟器等產(chǎn)生毒性,其行為毒性表現(xiàn)在影響非靶標(biāo)動物的生長發(fā)育和活動能力;生殖毒性主要是降低精子質(zhì)量、影響睪丸發(fā)育、損傷生殖功能甚至造成胎兒畸形等;遺傳毒性表現(xiàn)在對DNA造成損傷;神經(jīng)毒性通過影響大腦發(fā)育,進(jìn)而削弱非靶標(biāo)動物的嗅覺以及反應(yīng)靈敏度;臟器毒性主要是造成肝臟、腎臟、心臟的氧化損傷.
表2 不同環(huán)境介質(zhì)中新煙堿類殺蟲劑濃度
注:a為平均濃度;IMI為吡蟲啉,TMX為噻蟲嗪,CLO為噻蟲胺,DIN為呋蟲胺,ACE為啶蟲脒,THC為噻蟲啉,NIT為烯啶蟲胺,FLO為氟啶蟲酰胺,IMIT為氯噻啉.
蜜蜂是生態(tài)系統(tǒng)中重要的傳粉者,在維持生物多樣性和糧食生產(chǎn)方面發(fā)揮著至關(guān)重要的作用,因此在新煙堿類殺蟲劑對無脊椎動物的研究中,大多以蜜蜂為研究對象[34-35].新煙堿類殺蟲劑對蜜蜂的影響可伴隨其一生,幼蟲期暴露于新煙堿類殺蟲劑會干擾大腦皮質(zhì)、觸角神經(jīng)等功能區(qū)的發(fā)育,致使蜜蜂成年后嗅覺受損,同時對大腦中蘑菇體的生長產(chǎn)生抑制,進(jìn)而對活動行為產(chǎn)生影響[36-37];成蟲期暴露于吡蟲啉會降低工蜂的哺育率、減少巢內(nèi)活動、改變巢內(nèi)空間占用率(向巢穴外圍移動),同時能夠削弱群體的體溫調(diào)節(jié)能力,干擾保溫蠟罩的建造[38];以及影響蜜蜂的學(xué)習(xí)、記憶和定位[39]、減少精子活性、損害免疫系統(tǒng).Henry等[40]發(fā)現(xiàn)噻蟲嗪能夠減弱覓食蜜蜂的歸巢能力,導(dǎo)致蜂群中覓食蜜蜂的數(shù)量大量減少,從而增加蜜蜂死亡率.Fischer等[41]將成年蜜蜂暴露于亞致死劑量的新煙堿類殺蟲劑后,用雷達(dá)對蜜蜂的飛行路徑進(jìn)行追蹤,發(fā)現(xiàn)蜜蜂在歸巢飛行中的返回率顯著降低,主要是由于新煙堿類殺蟲劑干擾了蜜蜂的記憶能力.Verena等[42]將角壁蜂()暴露于不同濃度(1.5,4.5,10ng/g)的噻蟲嗪中,發(fā)現(xiàn)精子數(shù)量和活力分別下降了57%和42%,這主要是因新煙堿類殺蟲劑引起的氧化應(yīng)激造成精子中線粒體功能受損或精液蛋白豐度降低.值得注意的是,在最低實驗濃度(1.5ng/g)下對精子影響最為嚴(yán)重,使活精子總數(shù)下降了90%,目前這種非線性劑量反應(yīng)中的低劑量比高劑量影響更為嚴(yán)重已得到部分研究的證實,但其根本原因尚不清楚.Tsvetkov等[43]進(jìn)行一項為期2a的研究,量化了加拿大玉米種植區(qū)新煙堿類殺蟲劑暴露的持續(xù)時間和程度,利用該數(shù)據(jù)進(jìn)行了相關(guān)實驗設(shè)計,并評估了田間新煙堿類殺蟲劑暴露對蜜蜂健康的影響;對照組與實驗組之間的對比結(jié)果發(fā)現(xiàn),新煙堿類殺蟲劑會導(dǎo)致工蜂壽命縮短,并通過降低蜜蜂的衛(wèi)生行為(一種可遺傳行為)來損害蜜蜂的群體免疫系統(tǒng).綜上來看,新煙堿類殺蟲劑對蜜蜂產(chǎn)生的亞致死影響是系統(tǒng)的、連貫的并可伴隨蜜蜂生長發(fā)育的各個階段.
除蜜蜂外,土壤中新煙堿類殺蟲劑的濃度即使在低于安全劑量的情況下,仍可對土壤中無脊椎動物產(chǎn)生較高的毒性,從而損害其在土壤生態(tài)系統(tǒng)中的功能[44].新煙堿類殺蟲劑對蚯蚓的亞致死效應(yīng)主要表現(xiàn)在氧化應(yīng)激以及DNA損傷[45-46].Yan等[47]研究表明將蚯蚓暴露在新煙堿類殺蟲劑中28d后,體內(nèi)丙二醛含量增加,這是由于當(dāng)生物體處于環(huán)境壓力下時,內(nèi)穩(wěn)態(tài)和細(xì)胞功能會受到損害,造成活性氧物質(zhì)(ROS)急劇增加,對生物體產(chǎn)生氧化應(yīng)激,造成細(xì)胞信息傳遞障礙,細(xì)胞膜受到破壞,最終導(dǎo)致脂質(zhì)過氧化.Zhang等[48]研究發(fā)現(xiàn)烯啶蟲胺對蚯蚓體腔細(xì)胞的DNA具有明顯的損傷作用,主要是由于蚯蚓體內(nèi)的ROS的含量在早期受抗氧化酶作用開始發(fā)生變化,導(dǎo)致蚯蚓體內(nèi)丙二醛含量增加,DNA鏈斷裂.
水生無脊椎動物是水生生態(tài)系統(tǒng)中的重要組成部分,由于新煙堿類殺蟲劑的高水溶性而導(dǎo)致部分水生生物無法避免地受到該類殺蟲劑帶來的危害.一項數(shù)據(jù)分析發(fā)現(xiàn),無脊椎動物的種群豐度與附近的吡蟲啉濃度呈顯著負(fù)相關(guān)[49].另一項對美國內(nèi)布拉斯加州農(nóng)業(yè)區(qū)濕地水樣的調(diào)查中發(fā)現(xiàn),水生無脊椎動物的生物量隨吡蟲啉和噻蟲胺濃度的增加而減少[50].現(xiàn)有研究表明,新煙堿類殺蟲劑對水生無脊椎動物的亞致死毒性表現(xiàn)在影響生長、酶活性和活動能力.姚媛媛等[51]以紅裸須搖蚊()為研究對象,發(fā)現(xiàn)暴露在亞致死濃度的新煙堿類殺蟲劑下,幼蟲的體長和濕重均會受到不同程度的影響,其中啶蟲脒對體長影響最大,吡蟲啉對濕重影響最為顯著.Butcherine等[52-53]針對四種新煙堿類殺蟲劑對斑節(jié)對蝦()影響的研究結(jié)果表明,新煙堿類殺蟲劑會在斑節(jié)對蝦腹部組織積累,降低乙酰膽堿酯酶、過氧化氫酶和谷胱甘肽S轉(zhuǎn)移酶(GST)的活性.同時,長期暴露于吡蟲啉亞致死濃度下的成年斑節(jié)對蝦則會導(dǎo)致總脂質(zhì)含量和體重顯著降低,以及脂肪酸組成發(fā)生改變,最終導(dǎo)致營養(yǎng)不足,從而影響斑節(jié)對蝦的生產(chǎn)能力和食用品質(zhì).Stara等[54]研究發(fā)現(xiàn),暴露在噻蟲啉中會使貽貝()消化腺和鰓中過氧化氫酶活性顯著失衡,當(dāng)噻蟲啉濃度達(dá)到5mg/L時,則會導(dǎo)致貽貝足絲纖維的產(chǎn)量降低,誘導(dǎo)貽貝從底部脫離,并且不再相互附著.Macaulay等[55]研究發(fā)現(xiàn)暴露于12.5 μg/L的吡蟲啉則會對蜉蝣目昆蟲產(chǎn)生亞致死效應(yīng),導(dǎo)致存活率和活動能力下降,并造成蜉蝣目昆蟲損傷和蛻皮,隨著溫度的升高,亞致死作用變強(qiáng);當(dāng)濃度為31.5 μg/L時,則會對蜉蝣目昆蟲產(chǎn)生致死效應(yīng).Siregar等[56]將中華鋸齒米蝦暴露于不同濃度的吡蟲啉24,48,72h后,發(fā)現(xiàn)在低濃度(0.03125mg/L)下導(dǎo)致中華鋸齒米蝦()的活動減緩,高濃度(>0.5mg/L)下則會造成心率降低、鰓呼吸減弱等影響,并最終導(dǎo)致死亡.整體來看,新煙堿類殺蟲劑會對非靶標(biāo)無脊椎動物的生理和生存產(chǎn)生負(fù)面影響.其對于陸生無脊椎動物的影響主要表現(xiàn)在干擾大腦中神經(jīng)系統(tǒng)的發(fā)育以及對生物體產(chǎn)生氧化應(yīng)激造成DNA損傷;對于水生無脊椎動物的影響則主要表現(xiàn)在抑制活動能力,造成心率下降以及呼吸減弱等問題.但現(xiàn)有針對無脊椎動物的研究還相對有限,未來仍需要擴(kuò)展無脊椎動物的研究種類.
相比之下,新煙堿類殺蟲劑對脊椎動物的毒性低于無脊椎動物,但仍會對脊椎動物產(chǎn)生不利影響.由于某些nAChR亞基存在于哺乳動物的睪丸和精子中,因此新煙堿類殺蟲劑除對哺乳動物中樞神經(jīng)系統(tǒng)的損傷之外可能還存在其他影響.目前的研究已經(jīng)證實,新煙堿類殺蟲劑會對大鼠的睪丸發(fā)育和生殖產(chǎn)生影響,例如,暴露于啶蟲脒中會使大鼠血清中一氧化氮水平增加以及超氧化物歧化酶和過氧化氫酶的抗氧化活性降低,從而引起睪丸的毒性[57].Lovakovi′c[58]等將實驗組大鼠連續(xù)28d口服不同劑量的吡蟲啉,結(jié)果發(fā)現(xiàn)高劑量(2.25mg/kg)下實驗組大鼠的睪丸絕對重量顯著低于陰性對照組和低劑量組(0.06和0.8mg/kg),考慮到這些器官生長和功能的正常運行需要雄性激素的持續(xù)維持,因此睪丸和附睪重量降低是吡蟲啉造成血清睪酮和總蛋白含量下降的直接結(jié)果.Ramazan等[59]對大鼠進(jìn)行不同劑量(2,8,32mg/kg)的噻蟲胺灌胃處理,研究發(fā)現(xiàn)新煙堿類殺蟲劑會對大鼠的生殖系統(tǒng)產(chǎn)生損害,主要表現(xiàn)在大鼠的睪丸功能障礙和精子指標(biāo)混亂,增加凋亡率.除對生殖系統(tǒng)的影響外,對個體生長發(fā)育也會產(chǎn)生影響,Lalita等[60]為了研究新煙堿類殺蟲劑對大鼠不同生長階段的影響,設(shè)計3種不同劑量(10,30,90mg/kg)吡蟲啉對大鼠不同發(fā)育時期(胎兒器官發(fā)育期、哺乳期和斷奶期)的毒性實驗,暴露于新煙堿類殺蟲劑的妊娠20d的母鼠子宮胎兒出現(xiàn)骨骼發(fā)育畸形;產(chǎn)后第21d天斷奶的幼鼠體內(nèi)血紅蛋白呈下降趨勢,血小板和淋巴細(xì)胞百分比顯著增加;暴露于吡蟲啉至斷奶后42d的小鼠體重減輕,體內(nèi)總白細(xì)胞數(shù)顯著下降,淋巴細(xì)胞和血小板計數(shù)百分比呈下降趨勢.
鳥類可以通過呼吸、梳理羽毛上的噴霧液滴、飲用殘留農(nóng)藥水體以及攝食受污染食物(昆蟲、種子、植物果實)等暴露于新煙堿類殺蟲劑.亞致死劑量的新煙堿類殺蟲劑主要通過兩方面影響和減少鳥類種群數(shù)量,一是對鳥類生存活動影響,主要表現(xiàn)在抑制其活動能力、減少攝食、增加被捕食風(fēng)險等;二是對生殖功能的影響,造成精子損傷或抑制胚胎發(fā)育,降低后代的質(zhì)量和數(shù)量.鳥類食量減少和體重下降被認(rèn)為是一種亞致死效應(yīng)現(xiàn)象,Eng等[61]利用捕獲野生鳥類的控制劑量與自動無線電遙測相結(jié)合的方法,跟蹤了暴露于吡蟲啉的白冠帶鹀()遷徙活動,發(fā)現(xiàn)攝入濃度為1.2~3.6mg/kg的吡蟲啉會導(dǎo)致其食量、體重和脂肪迅速減少,造成遷徙過程的停留時間增加和應(yīng)對惡劣氣候的能力變?nèi)?導(dǎo)致被捕食的風(fēng)險上升.此外,較晚到達(dá)遷徙地的鳥類后代的數(shù)量會更少.Simon等[62]發(fā)現(xiàn)蜂鳥暴露在亞致死水平的吡蟲啉環(huán)境中(1,2,2.5 μg/g)的活動能力、能量消耗會隨著劑量的增加而減少.Poliserpi等[63]對暴露于吡蟲啉4,12,24和48h后栗翅牛鸝()肝臟、腎臟和血漿中吡蟲啉的濃度進(jìn)行測定,發(fā)現(xiàn)美洲灰海灣鳥攝入35mg/kg劑量藥品后5min出現(xiàn)中毒跡象和活動能力下降,表現(xiàn)出肌肉和血漿中膽堿酯酶活性的改變,以及血漿、大腦、肝臟和肌肉中谷胱甘肽S轉(zhuǎn)移酶(GST)活性的改變.Tokumoto等[64]研究了每日口服噻蟲胺對成年雄性鵪鶉的生殖功能的影響,分別口服不同劑量的噻蟲胺(0.02,1, 50mg/kg),讓雄性鵪鶉與未經(jīng)處理的雌性交配后,測定卵重、受精率和正常發(fā)育情況,結(jié)果發(fā)現(xiàn)噻蟲胺可能通過氧化應(yīng)激使精子DNA斷裂而抑制或延緩胚胎發(fā)育,新煙堿類殺蟲劑對鵪鶉的生殖功能具有嚴(yán)重影響.新煙堿類殺蟲劑對陸生脊椎動物的影響主要為生理毒性和生殖毒性,并且毒性的產(chǎn)生可能與氧化應(yīng)激有關(guān),通過降低體內(nèi)酶的抗氧化活性對陸生脊椎動物的生長活動以及生殖功能產(chǎn)生影響,通常表現(xiàn)在抑制其活動能力和對睪丸發(fā)育、精子質(zhì)量產(chǎn)生負(fù)面影響.
目前,關(guān)于新煙堿類殺蟲劑對兩棲動物的影響研究較少,通常兩棲動物具有復(fù)雜的生命周期,在幼蟲階段以水體為棲息地,在成年階段則以陸地為棲息地.因此,兩棲動物在生長發(fā)育過程中可暴露于不同種類的農(nóng)藥,其高滲透性皮膚和攝入被污染的食物(水)是兩棲動物暴露于新煙堿類殺蟲劑的主要方式.Jordan等[65]將南方豹蛙()蝌蚪分別置于不同濃度下(0,0.375,0.75,1.5,3.0, 6.0μg/L)的噻蟲胺暴露環(huán)境中來觀察其總位移、移動速度和移動時間,結(jié)果發(fā)現(xiàn)雖然暴露于不同濃度下的噻蟲胺并未顯著降低存活率,但改變了蝌蚪的行為,在暴露96h后,蝌蚪的移動距離變短、速度變慢.這些行為的改變不僅會導(dǎo)致蝌蚪錯過最佳的覓食棲息地,同時增加被捕食的風(fēng)險.新煙堿類殺蟲劑同樣會對魚類產(chǎn)生氧化應(yīng)激,并對DNA造成損傷.Tian等[66]將我國稀有鮈鯽()暴露在3種不同濃度(0.1,0.5, 2.0mg/L)的新煙堿類殺蟲劑中60d,發(fā)現(xiàn)幼魚抗氧化酶活性降低,mRNA表達(dá)水平發(fā)生改變,造成肝臟DNA損傷.Yan等[67]為了研究噻蟲嗪對斑馬魚()肝臟氧化應(yīng)激和抗氧化能力的影響,將斑馬魚暴露于不同濃度(0.30,1.25和5.00mg/ L)噻蟲嗪中,發(fā)現(xiàn)活性氧(ROS)水平在暴露期間升高;同時噻蟲嗪對斑馬魚肝臟DNA也會造成損傷,其損傷程度與噻蟲嗪的濃度和時間成正比關(guān)系. Vieira等[68]研究發(fā)現(xiàn)暴露在吡蟲啉下會引起不同組織中生物轉(zhuǎn)化和抗氧化酶活性的變化,暴露于不同濃度的吡蟲啉后,組織的氧化還原平衡受到影響,對肝臟、鰓、腎臟和大腦造成脂質(zhì)過氧化以及蛋白質(zhì)羰基化等氧化損傷,此過程中肝臟和腎臟往往受影響最為明顯.此外,新煙堿類殺蟲劑對魚類的亞致死效應(yīng)還表現(xiàn)在對其生長發(fā)育、活動能力以及神經(jīng)系統(tǒng)等方面.例如,一項在對斑馬魚()和青鳉()相同發(fā)育階段時體內(nèi)吡蟲啉濃度和生理組織改變程度的研究發(fā)現(xiàn),吡蟲啉對二者均有亞致死效應(yīng),但對青鳉的亞致死作用更強(qiáng),會誘導(dǎo)發(fā)育畸形、皮膚損傷和生長減緩等[69];Victoria等[70]探究不同濃度(0.02~ 200μg/L)的噻蟲嗪對呆鰷魚()胚胎期和孵化后幼魚神經(jīng)毒性的研究結(jié)果表明,相較于孵化后,胚胎期暴露噻蟲嗪更容易引起明顯的神經(jīng)行為變化.表3系統(tǒng)歸納了新煙堿類殺蟲劑對非靶標(biāo)動物的亞致死效應(yīng).
表3 新煙堿類殺蟲劑對非靶標(biāo)動物的亞致死效應(yīng)
注:IMI為吡蟲啉,TMX為噻蟲嗪,CLO為噻蟲胺,DIN為呋蟲胺,ACE為啶蟲脒,THC為噻蟲啉,NIT為烯啶蟲胺,SUL為氟啶蟲胺腈,CYC為環(huán)氧蟲啶.
新煙堿類殺蟲劑對不同物種之間產(chǎn)生毒性的劑量差異較大,最大劑量的為陸生脊椎動物(0.06~ 90mg/kg),最小劑量為陸生無脊椎動物(0.001~6mg/L, 0.025~ 2mg/kg).同時從產(chǎn)生毒性的劑量上可以得出,吡蟲啉相較于其他種類的新煙堿類殺蟲劑對非靶標(biāo)動物產(chǎn)生的毒性均較大.例如,以新煙堿類殺蟲劑對紅裸須搖蚊)的體長和濕重影響為例,吡蟲啉和噻蟲嗪設(shè)置的濃度范圍為分別為3~48和320~5120μg/L,劑量相差100倍左右.這種毒性的差異在不同種類的殺蟲劑及物種之間普遍存在,今后需進(jìn)行相關(guān)研究來論證新煙堿類殺蟲劑在不同環(huán)境因素條件下對不同種類非靶標(biāo)動物的毒性效應(yīng)及其發(fā)生機(jī)制.
飲食被認(rèn)為是人體暴露于新煙堿類殺蟲劑的主要途徑.由于新煙堿類殺蟲劑被植物吸收后可到達(dá)植物體內(nèi)的不同部位[71],即在作物生長期經(jīng)過新煙堿類殺蟲劑處理后會存在于各組織器官(根、莖、葉、花、果實和種子)中.Wang等[72]對黑龍江、內(nèi)蒙古和云南3個糧食主產(chǎn)區(qū)的4種糧食作物進(jìn)行研究表明,在黑龍江、內(nèi)蒙古和云南的糙米和燕麥中分別檢測到了吡蟲啉和噻蟲嗪的殘留,其中噻蟲嗪在內(nèi)蒙古糙米中的殘留量達(dá)0.102μg/g,高于歐盟的最大殘留限量(大米0.05μg/g).Chen等[73]測定了我國24個省份528份復(fù)合膳食樣品中10種新煙堿類殺蟲劑的殘留水平,發(fā)現(xiàn)大部分食物樣品中存在目標(biāo)污染物,而吡蟲啉和啶蟲脒是最常見的新煙堿類殺蟲劑.此外,通過該調(diào)查發(fā)現(xiàn)新煙堿類殺蟲劑的平均日攝入量達(dá)到710.38ng/kg,低于目前美國環(huán)境保護(hù)署(EPA)提供的慢性參考劑量57μg/(kg×d)[30].Chauzat等[74]在2002年10月~2005年9月期間對法國24個地點檢測了239個蜂蜜樣本,其中吡蟲啉的檢出率最高為21.8%,平均濃度為0.7ng/g.
圖2 人體暴露及健康風(fēng)險
飲水?dāng)z入也是人體暴露于新煙堿類殺蟲劑的重要途徑之一[75].Klarich等[76]在愛荷華大學(xué)采集了飲用水樣本,其中噻蟲胺、吡蟲啉和噻蟲嗪的檢出率為100%,濃度分別為3.89~57.3, 1.22~39.5和0.24~4.15ng/L.Zhang等[77]對來自中國6個地區(qū)的自來水、井水、直飲水和瓶裝水中存在的5種典型新煙堿類殺蟲劑的污染水平進(jìn)行了分析,發(fā)現(xiàn)所有水樣中檢測到的新煙堿類殺蟲劑的幾何平均濃度(ng/L)由高到低為:吡蟲啉(1.76)>噻蟲嗪(1.20)>噻蟲胺(0.73)>啶蟲脒(0.47)>噻蟲啉(0.01).其中,自來水中5種典型新煙堿類殺蟲劑的濃度中位數(shù)均高于其他3種飲用水,不同類型水中該類殺蟲劑的濃度(ng/L)大小依次為:自來水(11.3)>井水(4.56)>直飲水(2.57)>瓶裝水(0.28).自來水作為人們?nèi)粘I畹闹饕?每天會被人們大量攝入,雖然在飲用前會對其進(jìn)行加熱煮沸,但從目前有限的研究來看,似乎對水中新煙堿類殺蟲劑的消除無明顯作用.因此,如何能夠有效去除飲用水中的新煙堿類殺蟲劑是未來值得研究的重點.此外,Liu等[78]在浙江省某農(nóng)業(yè)區(qū)采集的25個茶葉樣品中檢測出吡蟲啉和啶蟲脒兩種新煙堿類殺蟲劑.其中11個樣品中啶蟲脒的含量為0.2~10ng/g,3個樣品中吡蟲啉的含量為2.8~6.3ng/g.除此之外,人體暴露于此類殺蟲劑的途徑可能還包括呼吸和皮膚接觸等.盡管當(dāng)前研究中飲食和飲水?dāng)z入的新煙堿類殺蟲劑的暴露水平低于當(dāng)前美國環(huán)境保護(hù)署(EPA)提出的吡蟲啉慢性參考劑量57μg/(kg·d)[30],但每日通過不同途徑攝入新煙堿類殺蟲劑的總劑量給人們帶來的風(fēng)險仍然不容忽視.新煙堿類殺蟲劑的人體暴露途徑及可能引起的健康風(fēng)險,如圖2所示.
近年來,關(guān)于新煙堿類殺蟲劑在人體內(nèi)暴露的研究主要集中于尿液、唾液和血液等,也有部分關(guān)于人體頭發(fā)和牙齒的研究.例如,Tao等[79]在中國河南省隨機(jī)抽取43名不同年齡段的新煙堿類殺蟲劑施藥者,在施藥前后進(jìn)行現(xiàn)場尿樣采集,尿液樣本中吡蟲啉的檢出率為100%,施藥前后尿液中吡蟲啉的濃度范圍分別為0.57~8.91和0.38~24.58ng/mL,并進(jìn)一步估算出在農(nóng)藥噴灑前后,施藥者的吡蟲啉每日吸收劑量為0.52~61.66、7.65~248.05μg/(kg·d),均低于世界衛(wèi)生組織/糧農(nóng)組織規(guī)定的急性暴露指標(biāo)400 μg/(kg·d),但噴灑農(nóng)藥后有32.6%的施藥者每日吡蟲啉吸收劑量超過了規(guī)定的慢性暴露指標(biāo)60μg/(kg·d).在日本,Osaka等[80]和Ueyama等[81]分別對兒童和成年人群尿液樣本進(jìn)行了檢測,啶蟲脒、吡蟲啉、噻蟲啉、噻蟲嗪、噻蟲胺、呋蟲胺和烯啶蟲胺7種新煙堿類殺蟲劑均被檢測到,其中呋蟲胺濃度最大,在兒童及成年人尿液樣本中最大濃度分別為62.25和27.4μg/L.相比于亞洲人群,歐美國家人體內(nèi)新煙堿類殺蟲劑的暴露水平相對較低,美國尿液樣本中新煙堿類殺蟲劑的檢出率<40%,整體范圍在 表4 各國人群新煙堿類殺蟲劑的體內(nèi)暴露情況 注:a為幾何平均濃度,LOD為最小檢出限;IMI為吡蟲啉,TMX為噻蟲嗪,CLO為噻蟲胺,DIN為呋蟲胺,ACE為啶蟲脒,THC為噻蟲啉,NIT為烯啶蟲胺. 一般認(rèn)為暴露于低濃度新煙堿類殺蟲劑環(huán)境中對人體健康影響較小,但現(xiàn)有研究表明,長期接觸新煙堿類殺蟲劑會對人類造成生育缺陷、神經(jīng)系統(tǒng)及肝肺功能受損等多方面影響(圖2).Ichikawa等[89]于2019年采集了胎齡23~34周、出生體重500~ 1500g新生兒的116份尿液樣本,發(fā)現(xiàn)低體重嬰兒出生后的48h內(nèi),尿液中新煙堿類殺蟲劑代謝物的檢出率(24.6%)高于出生后14d的檢出率(11.9%);早產(chǎn)兒尿液的檢出率和平均濃度(42.9%,0.04ng/mL)均高于適齡胎兒(14.7%,0.02ng/mL);在對出生48h內(nèi)的嬰兒尿液研究發(fā)現(xiàn),新煙堿類殺蟲劑代謝物水平與出生體重、體長和頭圍存在微弱的負(fù)相關(guān). Wang等[90]在中國石家莊采集了191份精漿樣本,檢測到去甲基啶蟲脒、吡蟲啉-烯烴和去甲基噻蟲胺,其檢出率分別為98.4%,86.5%,70.8%;中值濃度分別為0.052,0.003和0.007ng/mL,此研究表明精子活力的大小與吡蟲啉-烯烴濃度呈顯著負(fù)相關(guān). Loser等[91]通過進(jìn)行人類神經(jīng)元Ca2+成像實驗,發(fā)現(xiàn)去硝基吡蟲啉有類似神經(jīng)毒物尼古丁的作用,能夠通過觸發(fā)α7和非α7nAChRs影響人類神經(jīng)元.Hernández等[92]研究了新煙堿類殺蟲劑人體呼吸道健康的影響,發(fā)現(xiàn)噴霧者和非噴霧者的肺活量及彌散功能在統(tǒng)計學(xué)上存在顯著差異,通過分析認(rèn)為,暴露于新煙堿類殺蟲劑會導(dǎo)致肺容量減少,造成肺功能障礙.Zhang等[93]收集了中國華南地區(qū)374份血液樣本(普通人群100份,肝癌患者274份),發(fā)現(xiàn)肝癌人群血液中新煙堿類殺蟲劑及其代謝物的濃度中位值(0.20~ 2.03ng/mL)高于健康人群(0.19~1.28ng/mL),表明新煙堿類殺蟲劑的暴露與肝癌的發(fā)生存在相關(guān)性.新煙堿類殺蟲劑的暴露能夠?qū)θ祟惖纳?、生殖、神?jīng)以及臟器功能帶來風(fēng)險.該類殺蟲劑可以通過母親傳遞給胎兒,導(dǎo)致胎兒發(fā)育不良,出現(xiàn)早產(chǎn)現(xiàn)象;其在人體內(nèi)產(chǎn)生的代謝物會降低精子質(zhì)量、損傷肺功能以及增加患癌風(fēng)險.目前該領(lǐng)域的相關(guān)研究仍存在一定的局限性,難以提供全面的評估,還需要進(jìn)一步研究對人體健康的影響. 新煙堿類殺蟲劑在多介質(zhì)環(huán)境中的普遍存在給生態(tài)環(huán)境安全和人體健康帶來了威脅和風(fēng)險.環(huán)境中的非靶標(biāo)生物能夠通過攝食、飲水、呼吸和皮膚接觸暴露于該類殺蟲劑,并產(chǎn)生致死或亞致死效應(yīng).新煙堿類殺蟲劑能夠影響蜜蜂的飛行、學(xué)習(xí)和記憶等功能;對蚯蚓的生殖和DNA造成損傷;對脊椎動物的生殖功能和生長發(fā)育產(chǎn)生嚴(yán)重影響;對人體則可以造成新生兒出生缺陷、生殖系統(tǒng)和呼吸系統(tǒng)受損等多方面影響.雖然歐美等國家已經(jīng)相繼出臺禁令,限制新煙堿類殺蟲劑的使用以緩解其給生態(tài)環(huán)境帶來的壓力,但該類殺蟲劑目前仍占有較大的市場份額.因此,未來需要加強(qiáng)研究該類殺蟲劑的環(huán)境污染特征及其對非靶標(biāo)生物毒性效應(yīng)與發(fā)生機(jī)制,尤其是水生生物以及易暴露人群和脆弱人群(老年人、兒童和孕婦等). 目前,有關(guān)大氣中新煙堿類殺蟲劑污染的研究仍處于監(jiān)測數(shù)據(jù)較少的狀況,無法準(zhǔn)確評估呼吸攝入該類殺蟲劑對非靶標(biāo)生物的呼吸系統(tǒng)以及肺功能造成的影響;其次,當(dāng)前有關(guān)暴露水平的研究一般只針對某種新煙堿類殺蟲劑及其代謝產(chǎn)物,對于多種化合物聯(lián)合暴露研究較少,因此無法對該類殺蟲劑的暴露情況以及其毒理性進(jìn)行系統(tǒng)地全面評估,同時應(yīng)加強(qiáng)新煙堿類殺蟲劑與其他農(nóng)藥、化肥和抗生素等聯(lián)合暴露對不同非靶標(biāo)生物的毒性效應(yīng)研究;新煙堿類殺蟲劑極易溶于水,如何高效去除水體中的此類殺蟲劑,防止污水使用或再生水排放等給環(huán)境帶來的二次污染仍是未來應(yīng)研究的重點;此外,仍需要開發(fā)新型、微毒、高效率的替代殺蟲劑,以減少對環(huán)境的污染及對非靶標(biāo)生物造成的影響. [1] Costas-Ferreira C, Faro L R F. Neurotoxic Effects of Neonicotinoids on Mammals: What Is There beyond the Activation of Nicotinic Acetylcholine Receptors?—A Systematic Review [J]. International Journal of Molecular Sciences, 2021,22(16):8413. [2] 張 琪,趙 成,盧曉霞,等.新煙堿類殺蟲劑對非靶標(biāo)生物毒性效應(yīng)的研究進(jìn)展[J]. 生態(tài)毒理學(xué)報, 2020,15(1):56-71. Zhang Q, Zhao C, Lu X X, et al. Advances in research on toxic effects of neonicotinoid insecticides on non-target organisms [J]. Asian Journal of Eco-toxicology, 2020,15(1):56-71. [3] 劉子琪,呼 嘯,李 莉,等.新煙堿類農(nóng)藥呋蟲胺對映體選擇性研究進(jìn)展[J]. 中國環(huán)境科學(xué), 2021,41(10):4811-4819. Liu Z Q, Hu X, Li L, et al. Research progress on the enantioselectivity of a neonicotinoid pesticide dinotefuran [J]. China Environmental Science, 2021,41(10):4811-4819. [4] Bass C, Denholm I, Williamson M S, et al. The global status of insect resistance to neonicotinoid insecticides [J]. Pesticide Biochemistry and Physiology, 2015,121:78-87. [5] Cimino A M, Boyles A L, Thayer K A, et al. Effects of Neonicotinoid Pesticide Exposure on Human Health: A Systematic Review [J]. Environmental Health Perspectives, 2017,125(2):155-162. [6] Malhotra N, Chen K H C, Huang J C, et al. Physiological Effects of Neonicotinoid Insecticides on Non-Target Aquatic Animals—An Updated Review [J]. International Journal of Molecular Sciences, 2021,22(17):9591. [7] Han W C, Tian Y, Shen X M. Human exposure to neonicotinoid insecticides and the evaluation of their potential toxicity: an overview [J]. Chemosphere, 2017,192:59-65. [8] Humann-Guilleminot S, Tassin de Montaigu C, Sire J, et al. A sublethal dose of the neonicotinoid insecticide acetamiprid reduces sperm density in a songbird [J]. Environmental Research, 2019,177: 108589. [9] Gibbons D, Morrissey C, Mineau P. A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife [J]. Environmental Science and Pollution Research, 2015,22(1):103-118. [10] 李田田,鄭珊珊,王 晶,等.新煙堿類農(nóng)藥的污染現(xiàn)狀及轉(zhuǎn)化行為研究進(jìn)展[J]. 生態(tài)毒理學(xué)報, 2018,13(4):9-21. Li T T, Zheng S S, Wang J, et al. A review on occurence and transformation behaviors of neonicotinoid pesticides [J]. Asian Journal of Ecotoxicology, 2018,13(4):9-21. [11] 程浩淼,成 凌,朱騰義,等.新煙堿類農(nóng)藥在土壤中環(huán)境行為的研究進(jìn)展[J]. 中國環(huán)境科學(xué), 2020,40(2):736-747. Cheng H M, Cheng L, Zhu T Y, et al. Research progress on environmental behaviors of neonicotinoids in the soil [J]. China Environmental Science, 2020,40(2):736-747. [12] Yu Z, Li X F, Wang, S, et al. The human and ecological risks of neonicotinoid insecticides in soils of an agricultural zone within the Pearl River Delta, South China [J]. Environmental Pollution, 2021, 284:117358. [13] Schaafsma A, Victor L R, Xue Y. et al. Field-scale examination of neonicotinoid insecticide persistence in soil as a result of seed treatment use in commercial maize (corn) fields in southwestern Ontario [J]. Environmental Toxicology and Chemistry, 2016,35(2): 295-302. [14] Stewart S D, Lorenz G M, Catchot A L. et al. Potential exposure of pollinators to neonicotinoid insecticides from the use of insecticide seed treatments in the Mid-Southern United States [J]. Environmental Science & Technology, 2014,48(16):9762-9769. [15] Botías C, David A, Horwood J, et al. Neonicotinoid residues in wildflowers, a potential route of chronic exposure for bees [J]. Environmental Science & Technology, 2015,49:12731-12740. [16] Heimbach F, Russ A, Schimmer M. et al. Large-scale monitoring of effects of clothianidin dressed oilseed rape seeds on pollinating insects in Northern Germany: implementation of the monitoring project and its representativeness [J]. Ecotoxicology, 2016,25(9):1630-1647. [17] Wu R L, He W, Li Y L, et al. Residual concentrations and ecological risks of neonicotinoid insecticides in the soils of tomato and cucumber greenhouses in Shouguang, Shandong Province, East China [J]. Science of The Total Environment, 2020,738:140248. [18] Zhou Y, Lu X X,Fu, X F, et al. Development of a fast and sensitive method for measuring multiple neonicotinoid insecticide residues in soil and the application in parks and residential areas [J]. Analytica Chimica Acta, 2018,1016:19-28. [19] 秦萌,任宗杰,張帥,等.從“農(nóng)藥零增長行動”看“農(nóng)藥減量化”發(fā)展[J]. 中國植保導(dǎo)刊, 2021,41(11):89-94. Qin M, Ren Z J, Zhang S, et al. Development of “Pesticide Reduction” from the Perspective of “Pesticide Zero Growth Action” [J]. China Plant Protection, 2021,41(11):89-94. [20] Liu Z K, Zhang L M, Zhang Z L, et al. A review of spatiotemporal patterns of neonicotinoid insecticides in water, sediment, and soil across China [J]. Environmental Science and Pollution Research, 2022,29(37):55336-55347. [21] Morrissey C A, Mineau P, Devries J H, et al. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review [J]. Environment International, 2015(74):291- 303. [22] Casillas A, Torre A D,Navarro I, et al. Environmental risk assessment of neonicotinoids in surface water [J]. Science of the Total Environment, 2022,809:151161. [23] Hladik M L, Kolpin D W. First national-scale reconnaissance of neonicotinoid insecticides in streams across the USA [J]. Environmental Chemistry, 2016,13(1):12-20. [24] Naumanna T, Bento C M, Andreas W, et al. Occurrence and ecological risk assessment of neonicotinoids and related insecticides in the Bohai Sea and its surrounding rivers, China [J]. Water Research, 2022,209: 117912. [25] Liu Z, Cui S, Zhang L M, et al. Occurrence, variations, and risk assessment of neonicotinoid insecticides in Harbin section of the Songhua River, northeast China [J]. Environmental Science and Ecotechnology, 2021,8:100128. [26] Huang Z B, Li H Z, Wei Y L, et al. Distribution and ecological risk of neonicotinoid insecticides in sediment in South China: Impact of regional characteristics and chemical properties [J]. Science of The Total Environment, 2020,714:136878. [27] Zhang C, Yi X H, Chen C, et al. Contamination of neonicotinoid insecticides in soil-water-sediment systems of the urban and rural areas in a rapidly developing region: Guangzhou, South China [J]. Environment International, 2020,139:105719. [28] Pietrzak D, Kania J, Kmiecik E, et al. Fate of selected neonicotinoid insecticides in soil-water systems: current state of the art and knowledge gaps [J]. Chemosphere, 2020,255:126981. [29] Qi W X, Singer H, Berg M, et al. Elimination of polar micropollutants and anthropogenic markers by wastewater treatment in Beijing, China [J]. Chemosphere, 2015,119:1054-1061. [30] 韓明慧,方虹霽,王園平,等.新煙堿類農(nóng)藥污染和人體暴露及有害效應(yīng)研究[J]. 上海預(yù)防醫(yī)學(xué), 2021,33(6):534-543. Han M H, Fang H J, Wang Y P, et al. Pollution, human exposure and harmful effects of neonicotinoid pesticides [J]. Shanghai Journal of Preventive Medicine, 2021,33(6):534-543. [31] Forero L G, Limay-Rios V, Xue Y E, et al. Concentration and movement of neonicotinoids as particulate matter downwind during agricultural practices using air samplers in southwestern Ontario, Canada [J]. Chemosphere, 2017,188:130-138. [32] Zhou Y, Guo J Y, Wang, Z K, et al. Levels and inhalation health risk of neonicotinoid insecticides in fine particulate matter (PM2.5) in urban and rural areas of China [J]. Environment International, 2020,142: 105822. [33] Hernández A F, Casado I, Pena G, et al. Low level of exposure to pesticides leads to lung dysfunction in occupationally exposed subjects [J], Inhalation Toxicology, 2008,20(9):839-849. [34] Breeze T D, Bailey A P, Balcombe K G, et al. Pollination services in the UK: How important are honeybees? [J]. Agriculture Ecosystems Environment, 2011,142:137-143. [35] Choudhary A, Mohindru B, Karedla A K, et al. Sub-lethal effects of thiamethoxam onLinnaeus [J]. Toxin Reviews, 2022, 41(3):1044-1057. [36] Yang E C, Chang H C, Wu W Y, et al. Impaired olfactory associative behavior of honeybee workers due to contamination of imidacloprid in the larval stage [J]. Plos One, 2012,7(11):e49472. [37] Tomé H V V, Martins G F, Lima M A P, et al. Imidacloprid induced impairment of mushroom bodies and behavior of the native stingless bee[J]. Plos One, 2012,7(6): e38406. [38] Crall J D, Switzer C M, Oppenheimer R L, et al. Neonicotinoid exposure disrupts bumblebee nest behavior, social networks, and thermoregulation [J]. Science, 2018,362(6415):683-686. [39] Pisa L. W, Amaral-Rogers V, Belzunces L P, et al. Effects of neonicotinoids and fipronil on non-target invertebrates [J]. Environmental Science and Pollution Research, 2015,22(1):68-102. [40] Henry M, Beguin M, Requier F, et al. A common pesticide decreases foraging success and survival in honey bees [J]. Science, 2012,336 (6079):348-350. [41] Fischer J, Müller T, Spatz A K, et al. Neonicotinoids Interfere with Specific Components of Navigation in Honeybees [J]. Plos One, 2014,9(3):e91364. [42] Verena S, Matthias A, Laura V B. et al. The neonicotinoid thiamethoxam impairs male fertility in solitary bees,[J]. Environmental Pollution, 2021,284:117106. [43] Tsvetkov N, O Samson-Robert, Sood K, et al. Chronic exposure to neonicotinoids reduces honey bee health near corn crops [J]. Science, 2017,356:1395-1397. [44] Bernardino M M, Alves P R, Santo F B, et al. Ecotoxicity of imidacloprid to soil invertebrates in two tropical soils with contrasting texture [J]. Environmental Science and Pollution Research, 2021,28 (22):27655-27665. [45] Zhang X L, Wang X G, Liu Y L, et al. The Toxic Effects of Sulfoxaflor Induced in Earthworms () under Effective Concentrations [J]. International Journal of Environmental Research and Public Health, 2020,17(5):1740. [46] Qi S, Wang D H, Zhu L Z, et al. Effects of a novel neonicotinoid insecticide cycloxaprid on earthworm,[J]. Environmental Science and Pollution Research, 2018,25(14):14138- 14147. [47] Yan X J, Wang J, Zhu L S, et al. Oxidative stress, growth inhibition, and DNA damage in earthworms induced by the combined pollution of typical neonicotinoid insecticides and heavy metals [J]. Science of the Total Environment, 2021,754:141873. [48] Zhang W, Xia X M, Wang J H. et al. Oxidative stress and genotoxicity of nitenpyram to earthworms () [J]. Chemosphere, 2021,264(2):128493. [49] Van Dijk T C, Van Staalduinen M A, Van der Sluijs J P, et al. Macro-Invertebrate Decline in Surface Water Polluted with Imidacloprid [J]. Plos One, 2013,8(5):e62374. [50] Schepker T J, Webb E B, Tillitt D, et al. Neonicotinoid insecticide concentrations in agricultural wetlands and associations with aquatic invertebrate communities [J]. Agriculture, Ecosystems & Environment, 2020,287:106678. [51] 姚媛媛,龍辰,王斌等.5種新煙堿類殺蟲劑對休眠期和發(fā)育期紅裸須搖蚊幼蟲的急性毒性研究[J].安徽農(nóng)業(yè)科學(xué), 2021,49(20):1-5. Yao Y Y, Long C, Wang B, et al. Study on acute toxicity of five neonicotinoid insecticides to the larvae ofin dormant and developmental phase [J]. Anhui Agriculture Science, 2021,49(20):1-5. [52] Butcherine P, Kelaher B P, Taylor M D, et al. Acute toxicity, accumulation and sublethal effects of four neonicotinoids on juvenile black tiger shrimp () [J]. Chemosphere, 2021,275:129918. [53] Butcherine P, Kelaher B P, Taylor M D, et al. Impact of imidacloprid on the nutritional quality of adult black tiger shrimp () [J]. Ecotoxicology and Environmental Safety, 2020,198: 110682. [54] Stara A, Pagano M, Capill G, et al. Acute effects of neonicotinoid insecticides on: A case study with the active compound thiacloprid and the commercial formulation calypso 480SC [J]. Ecotoxicology and Environmental Safety, 2020,203:110980. [55] Macaulay S J, Buchwalter D B, Matthaei C D, et al. Water temperature interacts with the insecticide imidacloprid to alter acute lethal and sublethal toxicity to mayfly larvae [J]. New Zealand Journal of Marine. Freshwater Research, 2019,54(1):115-130. [56] Siregar P, Suryanto M E, Chen K H, et al. Exploiting the freshwater shrimpas aquatic invertebrate model to evaluate nontargeted pesticide induced toxicity by investigating physiologic and biochemical parameters [J]. Antioxidants, 2021,10(3): 391. [57] Heba N, Rasha A, Lamia R, et al. Mechanisms and histopathological impacts of acetamiprid and azoxystrobin in male rats [J]. Environmental Science and Pollution Research, 2022,29:43114- 43125. [58] Lovakovi′c T B, Ka?uba V, Sekovani′c A, et al. Effects of Sub-Chronic Exposure to Imidacloprid and Reproductive Organs of Adult Male Rats: Antioxidant State, DNA Damage, and Levels of Essential Elements [J]. Antioxidants, 2021,10(12):1965. [59] Ramazan B, Gaffari T, ?kke? Y, et al. Effects of clothianidin exposure on sperm quality, testicular apoptosis and fatty acid composition in developing male rats [J]. Cell Biology and Toxicology, 2012,28(3): 187-200. [60] Lalita G, Shruta S, Raghib H, et al. A detailed study of developmental immunotoxicity of imidacloprid in Wistar rats [J]. Food and Chemical Toxicology, 2013,51:61-70. [61] Eng M L, Stutchbury B J M, Morrissey C A. A neonicotinoid insecticide reduces fueling and delays migration in songbirds [J]. Science, 2019,365(6458):1177-1180. [62] English S G, Sandoval-Herrera N I, Bishop C A, et al. Neonicotinoid pesticides exert metabolic effects on avian pollinators [J]. Scientific Reports, 2021,11(1):2914. [63] Poliserpi M B, Cristos D, Perez I J M, et al. Tissue distribution and sublethal effects of imidacloprid in the South American grayish baywing () [J]. Chemosphere, 2021,284:131327. [64] Tokumoto J, Danjo M, Kobayashi Y, et al. Effects of Exposure to Clothianidin on the Reproductive System of Male Quails [J]. Journal of Veterinary Medical science, 2013,75(6):755-760. [65] Jordan N H, Freya E R, Puglis H J, et al. Effects of the Neonicotinoid Insecticide Clothianidin on Southern Leopard Frog () Tadpole Behavior [J]. Bulletin of Environmental Contamination and Toxicology, 2019,103(5):717-722. [66] Tian X, Hong X, Yan S, et al. Neonicotinoids caused oxidative stress and DNA damage in juvenile Chinese rare minnows () [J]. Ecotoxicology and Environmental Safety, 2020,197: 110566. [67] Yan S H, Wang J H,Zhu L S, et al. Thiamethoxam induces oxidative stress and antioxidant response in zebrafish () livers [J]. Environmental Toxicology, 2016,31(12):2006-2015. [68] Vieira C E D, Pérez M R, Acayaba R D, et al. DNA damage and oxidative stress induced by imidacloprid exposure in different tissues of the Neotropical fish[J]. Chemosphere, 2018, 195:125-134. [69] Vignet C, Cappello T,Fu Q G, et al. Imidacloprid induces adverse effects on fish early life stages that are more severe in Japanese medaka () than in zebrafish () [J], Chemosphere, 2019,225:470-478. [70] Victoria S, Duffy S, Harrahy E, et al. Embryonic Exposure to Thiamethoxam Reduces Survival and Alters Neurobehavior of Fathead Minnows [J]. Environmental Toxicology and Chemistry, 2022,41(5): 1276-1285. [71] Bonmatin J M, Giorio C, Girolami V, et al. Environmental fate and exposure; neonicotinoids and fipronil [J]. Environmental Science and Pollution Research, 2015,22(1):35-67. [72] Wang P, Yang X, Wang J, et al. Multi-residue method for determination of seven neonicotinoid insecticides in grains using dispersive solid-phase extraction and dispersive liquid-liquid micro- extraction by high performance liquid chromatography [J]. Food Chemistry, 2012,134(3):1691-1698. [73] Chen D W, Zhang Y P, Lv B, et al. Dietary exposure to neonicotinoid insecticides and health risks in the Chinese general population through two consecutive total diet studies [J]. Environment International, 2020,135:105399. [74] Chauzat M P, Martel A C, Nicolas C, et al. An assessment of honeybee colony matrices,() to monitor pesticide presence in continental France [J]. Environmental Toxicology Chemistry, 2011,30(1):103-111. [75] Englert D, Zubrod J P, Link M, et al. Does waterborne exposure explain effects caused by neonicotinoid-contaminated plant material in aquatic systems? [J] Environmental Science Technology, 2017,51: 5793-5802. [76] Klarich K L, Pflug N C, DeWald E M, et al. Occurrence of neonicotinoid insecticides in finished drinking water and fate during drinking water treatment [J]. Environmental Science Technology Letters, 2017,4(5):168-173. [77] Zhang C, Yi X H, Xie L, et al. Contamination of drinking water by neonicotinoid insecticides in China: Human exposure potential through drinking water consumption and percutaneous penetration [J]. Environment International, 2021,156:106650. [78] Liu S T, Zhen Z T, Wei F L, et al. Simultaneous Determination of Seven Neonicotinoid Pesticide Residues in Food by Ultraperformance Liquid Chromatography Tandem Mass Spectrometry [J]. Journal of Agricultural and Food Chemistry, 2010,58(6):3271-3278. [79] Tao Y, Phung D, Dong F S, et al. Urinary monitoring of neonicotinoid imidacloprid exposure to pesticide applicators [J], Science of the Total Environment, 2019,669:721-728. [80] Osaka A, Ueyama J, Kondo T, et al. Exposure characterization of three major insecticide lines in urine of young children in Japan— neonicotinoids, organophosphates, and pyrethroids [J]. Environmental Research, 2016,147:89-96. [81] Ueyama J, Nomura H, Kondo T, et al. Biological Monitoring Method for Urinary Neonicotinoid Insecticides Using LC‐MS/MS and Its Application to Japanese Adults [J]. Occupational Health, 2014,56(6): 461-468. [82] Baker S E, Serafim A B, Morales-Agudelo P, et al. Quantification of DEET and neonicotinoid pesticide biomarkers in human urine by online solid-phase extraction high-performance liquid chromatography-tandem mass spectrometry [J]. Analytical and Bioanalytical Chemistry, 2019,411(3):669-678. [83] Kavvalakis M P, Tzatzarakis M N, Theodoropoulou E P, et al. Development and application of LC-APCI-MS method for biomonitoring of animal and human exposure to imidacloprid [J]. Chemosphere, 2013,93(10):2612-2620. [84] Wang L, Liu T Z, Liu F, et al. Occurrence and profile characteristics of the pesticide imidacloprid, preservative parabens, and their metabolites in human urine from rural and urban China [J]. Environmental Science & Technology, 2015,49(24):14633-14640. [85] Wang H X, Yang D J, Fang H J, et al. Predictors, sources, and health risk of exposure to neonicotinoids in Chinese school children: a biomonitoring-based study [J]. Environment International, 2020,143: 105918. [86] Zhang N, Wang B T, Zhang Z P, et al. Occurrence of neonicotinoid insecticides and their metabolites in tooth samples collected from south China: Associations with periodontitis [J]. Chemosphere, 2021,264:128498. [87] Xua M M, Zhang Z P, Li Z Y, et al. Profiles of neonicotinoid insecticides and characteristic metabolites in paired urine and blood samples: Partitioning between urine and blood and implications for human exposure [J]. Science of the Total Environment, 2021,733: 145582. [88] Zhang H, Zhang N, Zhou W, et al. Profiles of neonicotinoid insecticides and their metabolites in paired saliva and periodontal blood samples in human from South China: Association with oxidative stress markers [J]. Ecotoxicology and Environmental Safety, 2021,212: 112001. [89] Ichikawa G, Kuribayashi R, Yoshinori I, et al. LC-ESI/MS/MS analysis of neonicotinoids in urine of very low birth weight infants at birth [J], Plos One, 2019,14(7):e0219208. [90] Wang A Z, Wan Y J, Zhou L X, et al. Neonicotinoid insecticide metabolites in seminal plasma: Associations with semen quality [J]. Science of the Total Environment, 2022, 811:151407. [91] Loser D, Grillberger K, Hinojosa M G, et al. Acute effects of the imidacloprid metabolite desnitro?imidacloprid on human nACh receptors relevant for neuronal signaling [J]. Archives of Toxicology, 2021,95(12):3695-3716. [92] Hernández A F, Casado I, Pena G, et al. Low Level of Exposure to Pesticides Leads to Lung Dysfunction in Occupationally Exposed Subjects [J]. Inhalation Toxicology, 2008,20(9):839-849. [93] Zhang H, Zhang R W,Zeng X J, et al. Exposure to neonicotinoid insecticides and their characteristic metabolites: Association with human liver cancer [J]. Environmental Research, 2022,208:112703. Pollution characteristics and toxic effects of neonicotinoid insecticides. CUI Song*, LI Fei, LIU Zhi-kun (International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin 150030, China)., 2023,43(1):361~373 This paper reviewed the occurrence status of neonicotinoid insecticides in soil, water and atmosphere and their toxic effects on invertebrates, vertebrates, and humans. Neonicotinoids commonly exist in multi-media environments, especially in the agricultural planting areas with high residual concentrations. The effects of neonicotinoids on non-target organisms were mainly manifested in oxidative stress, inhibition of activity, damage to DNA and reproductive function, while they also posed risks to human fertility, reproduction, nerves, and organ functions. Therefore, it is urgent to systematically study the occurrence and pollution of neonicotinoid insecticides in multi-environmental media and explore their health effects on non-target organisms, which could help to fully understand the potential risks of these insecticides on the ecological environment and non-target organisms in the future. neonicotinoid insecticides;pollution characteristics;non-target organisms;toxicity effect X171.5 A 1000-6923(2023)01-0361-13 崔 嵩(1981-),男,黑龍江寶清人,教授,博士,主要從事農(nóng)業(yè)水土資源環(huán)境效應(yīng)研究.發(fā)表論文110余篇 2022-06-07 國家自然科學(xué)基金資助項目(51779047) * 責(zé)任作者, 教授, cuisong-bq@neau.edu.cn4.3 健康風(fēng)險
5 結(jié)語