于玲,劉清文
基于有限元的法蘭軸結(jié)構(gòu)件塑性成形工藝分析
于玲,劉清文
(河南工業(yè)職業(yè)技術(shù)學(xué)院 機(jī)械工程學(xué)院,河南 南陽(yáng) 473000)
針對(duì)法蘭軸結(jié)構(gòu)件塑性成形過(guò)程復(fù)雜、工序繁瑣、成形效率低、材料易折疊等問(wèn)題,基于塑性成形理論,對(duì)汽車(chē)法蘭軸零件進(jìn)行工藝分析,提出2種冷鐓成形方案,對(duì)法蘭軸結(jié)構(gòu)件進(jìn)行塑性成形工藝研究。分析汽車(chē)法蘭軸的幾何特征,采用有限元分析軟件對(duì)2種冷鐓成形方案的成形載荷進(jìn)行模擬比較,確定較為合理的工藝方案,通過(guò)正交試驗(yàn)設(shè)計(jì)進(jìn)一步進(jìn)行工藝參數(shù)的優(yōu)化,選取預(yù)成形角度、摩擦因數(shù)、冷鐓速度、終成形圓角直徑作為4個(gè)因素,每個(gè)因素對(duì)應(yīng)3個(gè)水平,并以成形載荷大小作為考核指標(biāo)。通過(guò)有限元數(shù)值模擬技術(shù),得到工藝1各工序載荷分別為403、521 kN,工藝2各工序載荷分別為226、518 kN??芍に?比工藝1效率高,模具使用壽命更長(zhǎng)。最后通過(guò)正交試驗(yàn)法獲得各因素對(duì)成形載荷影響大小的排序?yàn)椋耗Σ烈驍?shù)>冷鐓速度>終成形圓角直徑>預(yù)成形角度,最優(yōu)工藝組合為:預(yù)成形角度19°,摩擦因數(shù)0.2,冷鐓速度15 mm/s,終成形圓角直徑3 mm。工藝2的冷鐓成形方案縮短了鍛件生產(chǎn)試驗(yàn)過(guò)程和修模時(shí)間,能夠滿(mǎn)足設(shè)計(jì)要求,為實(shí)際生產(chǎn)金屬零部件提供了理論依據(jù)。
法蘭軸結(jié)構(gòu)件;塑性成形;材料折疊;幾何特征;摩擦因數(shù);冷鐓速度;預(yù)成形角度;終成形圓角直徑
目前,我國(guó)汽車(chē)企業(yè)面臨巨大的市場(chǎng)壓力,汽車(chē)零部件供應(yīng)商之間競(jìng)爭(zhēng)激烈,為突顯產(chǎn)品的優(yōu)勢(shì),各企業(yè)對(duì)生產(chǎn)方式、生產(chǎn)效率、產(chǎn)品性能和質(zhì)量等方面進(jìn)行了大量研究。轎車(chē)法蘭軸是汽車(chē)傳動(dòng)系統(tǒng)中的關(guān)鍵零件,其強(qiáng)度和精度要求高,市場(chǎng)需求量大?,F(xiàn)在市面上常用的車(chē)削加工方法不僅生產(chǎn)效率低,還會(huì)降低產(chǎn)品的表面質(zhì)量和力學(xué)性能,為此,需要研究一種切削用量少、材料利用率高、產(chǎn)品質(zhì)量好、加工性能優(yōu)良的加工方法,以提高法蘭軸結(jié)構(gòu)件的性能。國(guó)內(nèi)外許多學(xué)者對(duì)冷鐓、擠壓技術(shù)進(jìn)行了大量研究,獲得了較多的研究成果。陳鑫等[1]針對(duì)汽車(chē)變速器帶輪軸鍛件多齒形、階梯軸、帶法蘭等難成形的特點(diǎn),通過(guò)數(shù)值分析獲得了坯料在終鍛工序中的應(yīng)變場(chǎng)和模具應(yīng)力場(chǎng),并預(yù)測(cè)了終鍛缺陷,研究表明,當(dāng)優(yōu)化工藝參數(shù)組合為:坯料溫度1 070 ℃、摩擦因數(shù)0.22、凸模速度33 mm/s時(shí),終鍛成形質(zhì)量最好。江五貴等[2]完成了金屬材料熱變形過(guò)程中再結(jié)晶動(dòng)力學(xué)與晶粒長(zhǎng)大模型的研究,編制用戶(hù)子程序并嵌入到DEFORM– TM程序中。通過(guò)法蘭軸的熱鍛過(guò)程中微觀組織演變的實(shí)例,驗(yàn)證了程序的可行性。柴蓉霞等[3]采用正交試驗(yàn)方法,對(duì)擠壓凸模、凹模結(jié)構(gòu)參數(shù)進(jìn)行了優(yōu)化,使用優(yōu)化的凸模、凹模結(jié)構(gòu)參數(shù),對(duì)法蘭軸進(jìn)行溫?cái)D壓成形試制與驗(yàn)證,得到了合格零件,證明了法蘭軸成形工藝方案的正確性。鄭贛等[4]采用3層拓?fù)浣Y(jié)構(gòu),以凸模擠壓速度、模具與坯料之間的摩擦因數(shù)、階梯軸處圓角半徑為輸入層神經(jīng)元,以折疊角和成形載荷為輸出層神經(jīng)元,構(gòu)建了法蘭軸冷擠壓成形工藝優(yōu)化神經(jīng)網(wǎng)絡(luò)模型,通過(guò)生產(chǎn)驗(yàn)證,優(yōu)化后的工藝方案可有效解決法蘭軸充填不滿(mǎn)和折疊缺陷的問(wèn)題,為解決多變量多響應(yīng)的復(fù)雜多元非線性工程問(wèn)題提供了參考。
文中基于塑性成形理論,對(duì)汽車(chē)法蘭軸零件進(jìn)行工藝分析,提出2種冷鐓成形方案,并通過(guò)有限元軟件進(jìn)行模擬,對(duì)法蘭軸結(jié)構(gòu)件進(jìn)行塑性成形工藝研究。
加工材料使用ML35新材料,其抗拉強(qiáng)度大于530 MPa,伸長(zhǎng)率超過(guò)20%,截面收縮率大于45%,硬度小于92HB,法蘭軸頭厚度為5 mm,直徑為34 mm,最大軸徑為13.40 mm,屬于大高徑比成形件[5],零件結(jié)構(gòu)如圖1所示。
圖1 法蘭軸結(jié)構(gòu)件零件(單位:mm)
采用冷鐓ML35鋼圓盤(pán)條為原料,線徑為10.8 mm。
在冷鐓過(guò)程中,工件的變形程度越大,對(duì)工件的阻力影響越大,變形量必須小于材料允許變形量,否則會(huì)產(chǎn)生裂紋,所以塑性成形前對(duì)原材料進(jìn)行預(yù)處理是十分必要的[6-8]。
在塑性成形前,預(yù)先對(duì)研究的法蘭軸結(jié)構(gòu)件進(jìn)行冷鐓處理,冷鐓前應(yīng)對(duì)原料進(jìn)行前處理[1,9-10],使原料粒度及組織符合要求,并優(yōu)化其塑性指標(biāo)。原料前處理流程為:酸洗→球化→皂化→退火→切料→冷鐓。
在材料允許的變形程度之內(nèi),初步設(shè)計(jì)了2種冷鐓工藝方案,工藝方案1為預(yù)成形錐形結(jié)構(gòu),工藝方案2為預(yù)成形半球結(jié)構(gòu),借助有限元軟件DEFORM– 3D對(duì)這2種工藝方案進(jìn)行模擬仿真,分析并對(duì)比各個(gè)重要參數(shù),以獲得合理的工藝方案[11-14]。
圖2 2種冷鐓方案流程
在ABAQUS中建立法蘭軸結(jié)構(gòu)的塑性成形模型,對(duì)于組件模塊,利用ABAQUS軟件的建模功能,分別建立組件的模架、法蘭環(huán)等[15]。據(jù)此確定每個(gè)成形輥的幾何中心點(diǎn)作為一個(gè)參考點(diǎn),以便后續(xù)設(shè)定成形輥的邊界條件和運(yùn)動(dòng)參數(shù)。
Step模塊主要用來(lái)定義分析流程和輸出,或者建立解決方案的控制和調(diào)整。法蘭軸的塑性成形過(guò)程是一個(gè)熱力耦合的非線性、非對(duì)稱(chēng)、不穩(wěn)定的過(guò)程,所以選擇顯式動(dòng)態(tài)分析法比較合適。在工藝模塊中,通過(guò)對(duì)質(zhì)量比系數(shù)的確定,確保塑性過(guò)程合理進(jìn)行,從而提高生產(chǎn)效率[16-21]。為了滿(mǎn)足法蘭軸塑性成形分析的需要,在分析階段適當(dāng)?shù)卦O(shè)置了輸出變量和歷史輸出變量。選取溫度、當(dāng)量應(yīng)變、力、轉(zhuǎn)矩作為輸出變量,環(huán)動(dòng)能、內(nèi)能作為歷史輸出變量,并分別設(shè)置時(shí)間間隔。
交互式功能模塊主要用來(lái)定義部件組裝的相互作用和約束。在塑性成形過(guò)程中,法蘭軸成形輥接觸鑄坯法蘭環(huán)表面,產(chǎn)生摩擦和換熱現(xiàn)象。此互動(dòng)模組有6對(duì)觸點(diǎn),即芯輥接觸鑄坯法蘭軸內(nèi)表面、驅(qū)動(dòng)輥及鑄坯法蘭環(huán)外表面;上、下端輥分別與鑄坯法蘭環(huán)上表面相接觸;下面觸頭、2個(gè)導(dǎo)輥與鑄坯法蘭環(huán)表面接觸。摩擦安裝時(shí),主動(dòng)輥、芯輥、端輥、套圈之間都有摩擦形式,導(dǎo)輥、法蘭環(huán)外表面的摩擦形式對(duì)摩擦過(guò)程影響很小,所以不需設(shè)摩擦形式。在實(shí)際塑性成形過(guò)程中,由于存在一定程度的滑移現(xiàn)象,分析時(shí)存在任意分離、滑移、旋轉(zhuǎn)等情況,故選用有限滑移公式。
將工件設(shè)為模型,將網(wǎng)格線劃分成15 000個(gè)四面體圖形單元。上模、下模設(shè)為20 ℃,冷鐓溫度設(shè)為20 ℃。在摩擦力邊界條件為剪切摩擦力的情況下,忽略摩擦力在變形時(shí)所產(chǎn)生的溫度效應(yīng),使臺(tái)階面增加1/3。確保每個(gè)成形步驟都不會(huì)涉及模具的變形,并進(jìn)行有限元仿真模擬。
采用有限元分析軟件對(duì)成形載荷進(jìn)行模擬比較,確定了較為合理的工藝方案,對(duì)比結(jié)果如圖3所示。
圖3顯示了2個(gè)不同工藝方案各工位的復(fù)合成形曲線。工藝1載荷為403、521 kN;工藝2載荷為226、518 kN。由模擬結(jié)果分析可知,工藝2比工藝1成形載荷更低,模具使用壽命更長(zhǎng)。綜上所述,工藝方案2是較為合理的法蘭軸冷鐓成形方案。
圖3 不同工藝方案各工位的復(fù)合成形曲線
采用冷鐓設(shè)備法蘭軸結(jié)構(gòu)件進(jìn)行試制,參考最優(yōu)的工藝方案2參數(shù)組合,所使用的坯料為盤(pán)條線材,表面經(jīng)磷化皂化處理,在采用工藝方案2的條件上,通過(guò)正交試驗(yàn)設(shè)計(jì)來(lái)進(jìn)一步進(jìn)行工藝參數(shù)的優(yōu)化,選取預(yù)成形角度、摩擦因數(shù)、冷鐓速度、終成形圓角直徑作為4因素,每個(gè)因素對(duì)應(yīng)3個(gè)水平,并以成形載荷大小作為考核指標(biāo)[22-25],具體試驗(yàn)設(shè)計(jì)和結(jié)果統(tǒng)計(jì)如表1所示。
從表1可以看出,各因素對(duì)成形載荷影響大小的排序?yàn)椋耗Σ烈驍?shù)>冷鐓速度>終成形圓角直徑>預(yù)成形角度,最優(yōu)工藝組合為:預(yù)成形角度19°,摩擦因數(shù)0.2,冷鐓速度15 mm/s,終成形圓角直徑3 mm。
表1 正交試驗(yàn)設(shè)計(jì)及結(jié)果統(tǒng)計(jì)
Tab.1 Orthogonal experimental design and results
利用有限元軟件對(duì)2種汽車(chē)用法蘭軸進(jìn)行了冷鐓成形數(shù)值模擬,分析了冷鐓成形過(guò)程。對(duì)2種工藝條件下物料流動(dòng)、物料破壞值和成形負(fù)荷進(jìn)行了對(duì)比分析,最后確定了較為合理的工藝方案為預(yù)制半球形結(jié)構(gòu),通過(guò)正交試驗(yàn)法獲得了最優(yōu)工藝參數(shù)組合:預(yù)成形角度19°,摩擦因數(shù)0.2,冷鐓速度15 mm/s,終成形圓角直徑3 mm,可為同類(lèi)型產(chǎn)品的成形加工提供參考。
[1] 陳鑫, 王勻, 張?zhí)? 等. 基于數(shù)值模擬和響應(yīng)面法的CVT帶輪軸終鍛成形優(yōu)化研究[J]. 塑性工程學(xué)報(bào), 2020, 27(12): 30-36.
CHEN Xin, WANG Yun, ZHANG Tai-liang, et al. Research on Optimization of Final Forging Forming of CVT Pulley Shaft Based on Numerical Simulation and Response Surface Method[J]. Journal of Plasticity Engineering, 2020, 27(12): 30-36.
[2] 江五貴, 耿世奇, 扶名福, 等. 法蘭軸熱鍛過(guò)程中的微觀組織演變的數(shù)值模擬[J]. 塑性工程學(xué)報(bào), 2006, 13(4): 59-62.
JIANG Wu-gui, GENG Shi-qi, FU Ming-fu, et al. Numerical Simulation of Microstructure Evolution of Flange Axle during Hot Forging[J]. Journal of Plasticity Engineering, 2006, 13(4): 59-62.
[3] 柴蓉霞, 于力, 郭成. 法蘭軸溫?cái)D壓成形工藝分析與擠壓凸、凹模參數(shù)優(yōu)化[J]. 模具工業(yè), 2012, 38(9): 62-66.
CHAI Rong-xia, YU Li, GUO Cheng. Analysis of Warm Extrusion Process for Flange Shaft and Parameter Optimization of Punch and Die[J]. Die & Mould Industry, 2012, 38(9): 62-66.
[4] 鄭贛, 劉淑梅, 汪東升. 基于神經(jīng)網(wǎng)絡(luò)的法蘭軸冷擠壓成型工藝優(yōu)化[J]. 輕工機(jī)械, 2019, 37(6): 16-20.
ZHENG Gan, LIU Shu-mei, WANG Dong-sheng. Process Optimization of Cold Extrusion Process of Flange Shaft Based on Neural Network[J]. Light Industry Machinery, 2019, 37(6): 16-20.
[5] 姚文俊, 陳松. 汽車(chē)法蘭軸結(jié)構(gòu)件塑性成形工藝分析及改進(jìn)[J]. 鍛壓技術(shù), 2020, 45(11): 7-12.
YAO Wen-jun, CHEN Song. Analysis and Improvement on Plastic Forming Process for Structure Part of Automobile Flange Shaft[J]. Forging & Stamping Technology, 2020, 45(11): 7-12.
[6] 朱晟平, 莫帥, 王霄. 基于Deform與Isight的六角法蘭面螺栓冷鐓模具設(shè)計(jì)與優(yōu)化[J]. 機(jī)械設(shè)計(jì), 2019, 36(3): 50-55.
ZHU Sheng-ping, MO Shuai, WANG Xiao. Design and Optimization of the Cold-Heading Die for Hexagonal Flange Bolts Based on Deform and Isight[J]. Journal of Machine Design, 2019, 36(3): 50-55.
[7] 王友, 熊偉, 梅松, 等. 汽車(chē)輪轂軸承軸端鉚合工藝研究進(jìn)展[J]. 塑性工程學(xué)報(bào), 2020, 27(9): 1-11.
WANG You, XIONG Wei, MEI Song, et al. Research Progress on Shaft-End Riveting Process of Automobile Wheel Hub Bearings[J]. Journal of Plasticity Engineering, 2020, 27(9): 1-11.
[8] 萬(wàn)明珍, 朱乾皓, 吳劍, 等. 超大厚壁法蘭鍛件成形工藝的研發(fā)[J]. 熱加工工藝, 2020, 49(5): 123-125.
WAN Ming-zhen, ZHU Qian-hao, WU Jian, et al. Research and Development of Forming Process for Super Heavy Flange Forgings with Thick Wall[J]. Hot Working Technology, 2020, 49(5): 123-125.
[9] 范文峰, 崔家城, 張大長(zhǎng). 鋼管柔性法蘭軸拉承載力特性研究[J]. 建筑結(jié)構(gòu), 2020, 50(22): 130-136.
FAN Wen-feng, CUI Jia-cheng, ZHANG Da-chang. Research on Bearing Capacity Characteristics of Flexible Flange under Axial Tension[J]. Building Structure, 2020, 50(22): 130-136.
[10] 王國(guó)龍, 李娜, 趙代夫. 基于有限元的電機(jī)法蘭結(jié)構(gòu)強(qiáng)度分析[J]. 電機(jī)與控制應(yīng)用, 2020, 47(2): 72-75.
WANG Guo-long, LI Na, ZHAO Dai-fu. Strength Analysis of Motor Flange Structure Based on Finite Element Method[J]. Electric Machines & Control Application, 2020, 47(2): 72-75.
[11] 顏丹丹, 孟凡榮, 張進(jìn)軍. 發(fā)動(dòng)機(jī)平衡軸壓裝工藝問(wèn)題分析與解決[J]. 制造技術(shù)與機(jī)床, 2020(2): 171-172.
YAN Dan-dan, MENG Fan-rong, ZHANG Jin-jun. Analysis and Solution of Problems in the Process of Engine Balance Shaft[J]. Manufacturing Technology & Machine Tool, 2020(2): 171-172.
[12] 舒?zhèn)ゲ? 楊建國(guó), 徐立培, 等. 輪轂單元軸鉚塑性成形應(yīng)力應(yīng)變和力學(xué)分析[J]. 塑性工程學(xué)報(bào), 2019, 26(4): 220-227.
SHU Wei-cai, YANG Jian-guo, XU Li-pei, et al. Stress-Strain and Mechanical Analysis of Shaft Clinching Plastic Forming of Hub Unit[J]. Journal of Plasticity Engineering, 2019, 26(4): 220-227.
[13] 戴亞, 崔厚坤, 崔鳴誠(chéng), 等. 鋼管柔性法蘭軸拉承載力試驗(yàn)及內(nèi)外角焊縫受力特性分析[J]. 結(jié)構(gòu)工程師, 2019, 35(4): 174-180.
DAI Ya, CUI Hou-kun, CUI Ming-cheng, et al. Axial Tensile Bearing Capacity Test and Stress Analysis of Internal and External Fillet Weld of Flexible Flange[J]. Structural Engineers, 2019, 35(4): 174-180.
[14] 葉鵬飛, 王成勇, 陳錦洪, 等. 基于數(shù)值模擬分析異形工藝孔在汽車(chē)門(mén)內(nèi)板塑性成形過(guò)程中的應(yīng)用研究[J]. 塑性工程學(xué)報(bào), 2019, 26(1): 33-39.
YE Peng-fei, WANG Cheng-yong, CHEN Jin-hong, et al. Application Research on Irregular Holes in Plastic Forming of Door Inner Panel for Car Based on Numerical Simulation[J]. Journal of Plasticity Engineering, 2019, 26(1): 33-39.
[15] 焦健, 彭芳. 車(chē)用法蘭螺母冷擠壓成形工藝分析及優(yōu)化[J]. 鍛壓技術(shù), 2020, 45(3): 81-86.
JIAO Jian, PENG Fang. Analysis and Optimization on Cold Extrusion Process of Flange Nuts for Vehicles[J]. Forging & Stamping Technology, 2020, 45(3): 81-86.
[16] 胡一鵬, 黃遵義, 曾玉昆, 等. 內(nèi)嵌式法蘭連接預(yù)制拼裝雙柱墩參數(shù)分析[J]. 震災(zāi)防御技術(shù), 2021, 16(3): 554-565.
HU Yi-peng, HUANG Zun-yi, ZENG Yu-kun, et al. Parameter Analysis of Prefabricated Double Column Piers with Embedded Flange Connection[J]. Technology for Earthquake Disaster Prevention, 2021, 16(3): 554-565.
[17] 蔡翠平, 葛林靜. 汽車(chē)輪轂軸頭制造工藝的分析及應(yīng)用[J]. 礦山機(jī)械, 2008, 36(24): 100-102.
CAI Cui-ping, GE Lin-jing. Analysis and Application of Manufacturing Process for Auto Wheel Hub Gudgeon[J]. Mining & Processing Equipment, 2008, 36(24): 100-102.
[18] 李波, 何芬, 謝彬, 等. 汽輪機(jī)用法蘭鐓鍛成形與模具設(shè)計(jì)[J]. 模具工業(yè), 2022, 48(5): 58-60.
LI Bo, HE Fen, XIE Bin, et al. Upsetting Forming of Steam Turbine Flange and the Die Design[J]. Die & Mould Industry, 2022, 48(5): 58-60.
[19] 楊昌群, 高金杰, 馮智彥, 等. 制動(dòng)管一體式法蘭接頭熱鐓擠成形工藝仿真分析[J]. 精密成形工程, 2022, 14(7): 64-71.
YANG Chang-qun, GAO Jin-jie, FENG Zhi-yan, et al. Numerical Analysis of Hot Upsetting-Extruding Process for Integrated Flange Fitting on Brake Pipe[J]. Journal of Netshape Forming Engineering, 2022, 14(7): 64-71.
[20] 郎利輝, 王永銘, 謝亞蘇, 等. 鋁合金盒形件充液成形法蘭變形特性及其失穩(wěn)影響分析[J]. 材料科學(xué)與工藝, 2013, 21(4): 37-43.
LANG Li-hui, WANG Yong-ming, XIE Ya-su, et al. The Flange Deformation Characteristics and Its Effect on Failure in the Hydroforming Process of Aluminum Alloy Rectangular Cup[J]. Materials Science and Technology, 2013, 21(4): 37-43.
[21] 范淑琴, 趙升噸, 張琦, 等. 直角法蘭雙輥夾持?jǐn)U旋成形有限元模型的確定[J]. 西安交通大學(xué)學(xué)報(bào), 2010, 44(5): 66-70.
FAN Shu-qin, ZHAO Sheng-dun, ZHANG Qi, et al. Finite Element Model Determination of Double Rollers Clamping Expanding Spinning for Right-Angle Flange[J]. Journal of Xi’an Jiaotong University, 2010, 44(5): 66-70.
[22] 諸葛躍, 王家宣, 李春. 5083鋁合金法蘭盤(pán)液態(tài)模鍛成形技術(shù)[J]. 熱加工工藝, 2009, 38(7): 80-82.
ZHUGE Yue, WANG Jia-xuan, LI Chun. Liquid Die Forging Technology for 5083 Aluminium Alloy Flange[J]. Hot Working Technology, 2009, 38(7): 80-82.
[23] 滕步剛, 苗啟斌, 董小瑛, 等. 特大型法蘭用復(fù)雜截面工件精確彎曲成形的工藝[J]. 壓力容器, 2003, 20(10): 37-39.
TENG Bu-gang, MIAO Qi-bin, DONG Xiao-ying, et al. Research on Precision Bending of Complicated Cross-Section Workpiece Used for Large Flange[J]. Pressure Vessel Technology, 2003, 20(10): 37-39.
[24] 杜之明, 叢森, 柳君, 等. 鋁合金軸對(duì)稱(chēng)法蘭件熱擠壓成形極限的理論分析[J]. 材料工程, 2011, 39(8): 1-4.
DU Zhi-ming, CONG Sen, LIU Jun, et al. Theory Analysis of Forming Limit for Hot Extrusion Process of Aluminum Alloy Axisymmetric Flange Parts[J]. Journal of Materials Engineering, 2011, 39(8): 1-4.
[25] 黃晶晶. 基于Deform的汽車(chē)法蘭盤(pán)體零件鍛造成形工藝[J]. 鍛壓技術(shù), 2022, 47(6): 81-86.
HUANG Jing-jing. Forging Process for Automobile Flange Body Part Based on Deform[J]. Forging & Stamping Technology, 2022, 47(6): 81-86.
Plastic Forming Process of Flange Shaft Structure Based on Finite Element
YU Ling, LIU Qing-wen
(College of Mechanical Engineering, Henan Polytechnic Institute, Henan Nanyang 473000, China)
The work aims to carry out process analysis of automobile flange shaft parts, propose two cold heading forming schemes, andstudy the plastic forming technology of flange shaft structure based on the theory of plastic forming to solve the problems of complex plastic forming process, cumbersome process, low forming efficiency, and easy folding of materials for flange shaft structure. The geometric characteristics of the automobile flange shaft were analyzed, and the forming loads of the two cold heading forming schemes were simulated and compared with finite element analysis software. A more reasonable process scheme was determined, and the process parameters were further optimized through the orthogonal test design. Preforming angle, friction coefficient, cold heading speed, and final forming fillet diameterwere selected as four factors, with each factor corresponding to three levels. The forming load was used as the assessment index. Through the numerical simulation technology of finite element, the loads of each procedure in process 1 were 403 and 521 kN, respectively, and the loads of each procedure in process 2 were 226 and 518 kN, respectively. It can be seen that the efficiency of process 2 was higher than that of process 1, and the service life of the mold was longer. Finally, the order of the influence of each factor on the forming load obtained by the orthogonal test method was: friction coefficient > cold heading speed > final forming fillet diameter > preforming angle. The optimal process combination was: preforming angle of 19°, friction coefficient of 0.2, cold heading speed of 15 mm/s, and final forming fillet diameter of 3 mm. The cold heading forming scheme of process 2 reduces the test process of forging production and mold repair time, can meet the design requirements, and provides a theoretical basis for actual production of metal parts.
flange shaft structure; plastic forming; material folding; geometric characteristics; friction coefficient; cold heading speed; preforming angle; final forming fillet diameter
10.3969/j.issn.1674-6457.2023.02.025
TP391
A
1674-6457(2023)02-0218-06
2021–06–29
2021-06-29
河南省科技廳自然科學(xué)基金(9412018y1618)
Natural Science Foundation Project of Henan Provincial Science and Technology Department (9412018y1618)
于玲(1978—),女,碩士,副教授,主要研究方向?yàn)椴牧铣尚渭皺C(jī)械設(shè)計(jì)與制造。
YU Ling (1978-), Female, Master, Associate professor, Research focus: material forming and mechanical design and manufacturing.
于玲,劉清文, 等. 基于有限元的法蘭軸結(jié)構(gòu)件塑性成形工藝分析[J]. 精密成形工程, 2023, 15(2): 218-223.
YU Ling,LIU Qing-wen, et al. Plastic Forming Process of Flange Shaft Structure Based on Finite Element[J]. Journal of Netshape Forming Engineering, 2023, 15(2): 218-223.