陶文靜,張子婷,劉媛,宋丹,李向臣
N-乙酰半胱氨酸對(duì)雙酚A誘導(dǎo)的豬腎細(xì)胞凋亡和炎癥反應(yīng)的抑制作用
陶文靜,張子婷,劉媛,宋丹,李向臣
浙江農(nóng)林大學(xué)動(dòng)物科技學(xué)院/動(dòng)物醫(yī)學(xué)院/浙江省畜禽綠色生態(tài)健康養(yǎng)殖應(yīng)用技術(shù)研究重點(diǎn)實(shí)驗(yàn)室,杭州 311300
【背景】雙酚A(BPA)廣泛應(yīng)用于塑料材料工業(yè)制造,其從塑料制品中滲出,暴露在食物、水、土壤和空氣等多種環(huán)境介質(zhì)中,導(dǎo)致動(dòng)物長(zhǎng)期接觸,并經(jīng)過胎盤和母乳傳遞給后代,干擾動(dòng)物生長(zhǎng)和發(fā)育,對(duì)動(dòng)物生長(zhǎng)性能和生產(chǎn)效率產(chǎn)生不利影響。N-乙酰半胱氨酸(NAC)作為公認(rèn)的強(qiáng)效抗氧化劑,能夠調(diào)節(jié)氧化應(yīng)激、細(xì)胞凋亡、炎癥等多種病理生理過程。然而,NAC對(duì)BPA誘導(dǎo)的豬腎細(xì)胞損傷的調(diào)節(jié)作用尚不清楚。【目的】探究抗氧化劑NAC在BPA誘導(dǎo)的PK15細(xì)胞凋亡和炎癥反應(yīng)中的潛在作用,為NAC在對(duì)抗BPA誘導(dǎo)的豬腎細(xì)胞損傷中的應(yīng)用研究提供科學(xué)依據(jù)?!痉椒ā窟x取PK15細(xì)胞為試驗(yàn)材料,采用相應(yīng)的抗氧化檢測(cè)試劑盒分別測(cè)定細(xì)胞內(nèi)過氧化氫酶(CAT)、總超氧化物歧化酶(T-SOD)和谷胱甘肽過氧化物酶(GSH-Px)活性變化;設(shè)置不同濃度NAC(0、2、5和10 mmol·L-1)預(yù)處理,并與BPA共處理PK15細(xì)胞,CCK-8檢測(cè)細(xì)胞活力以篩選最佳的NAC作用濃度;實(shí)時(shí)熒光定量PCR(qRT-PCR)檢測(cè)凋亡相關(guān)基因(、和)表達(dá)和炎癥相關(guān)基因(、、和)mRNA相對(duì)表達(dá)量,蛋白免疫印跡檢測(cè)凋亡相關(guān)蛋白(BAX、BCL-2、cleaved-Caspase3)水平;免疫熒光染色檢測(cè)凋亡細(xì)胞數(shù)量和核因子κB(NF-κB)核易位?!窘Y(jié)果】與對(duì)照組相比,BPA處理顯著降低了細(xì)胞內(nèi)CAT、T-SOD和GSH-Px活性(<0.05)。CCK-8結(jié)果顯示,與對(duì)照組相比,BPA顯著降低PK15細(xì)胞活力,而不同濃度的NAC均能顯著促進(jìn)PK15細(xì)胞活力(<0.05),且與BPA單獨(dú)處理相比,5和10 mmol·L-1NAC預(yù)處理均能顯著促進(jìn)PK15細(xì)胞活力(<0.05);qRT-PCR和蛋白免疫印跡結(jié)果顯示,BPA處理顯著增加了BAX、Caspase3 mRNA相對(duì)表達(dá)量以及蛋白表達(dá)水平,減少了BCL-2 mRNA相對(duì)表達(dá)量和蛋白表達(dá)(<0.05),而NAC預(yù)處理能夠減少BPA誘導(dǎo)增加的BAX、Caspase3基因和蛋白表達(dá),增加BCL-2基因和蛋白表達(dá);Hoechst 33258熒光染色顯示,BPA處理的細(xì)胞呈現(xiàn)強(qiáng)藍(lán)色熒光染色且有明顯的核皺縮,而NAC預(yù)處理后呈現(xiàn)較弱的藍(lán)色熒光;BPA處理顯著增加炎癥相關(guān)因子(和)mRNA相對(duì)表達(dá)量(<0.05),而NAC預(yù)處理抑制BPA誘導(dǎo)增加的炎癥相關(guān)因子(、和)mRNA相對(duì)表達(dá)量,免疫熒光檢測(cè)NF-κB核易位顯示,對(duì)照組的NF-κB主要分布在細(xì)胞質(zhì)中,而BPA處理后的NF-κB主要分布在細(xì)胞核,NAC預(yù)處理明顯減少核NF-κB的表達(dá)?!窘Y(jié)論】NAC顯著提高BPA誘導(dǎo)降低的PK15細(xì)胞活力,抑制BPA誘導(dǎo)的PK15細(xì)胞凋亡和炎癥反應(yīng)。
雙酚A;N-乙酰半胱氨酸;細(xì)胞凋亡;炎癥反應(yīng);PK15細(xì)胞;氧化應(yīng)激
【研究意義】雙酚A(BPA)是一種典型的環(huán)境內(nèi)分泌干擾物,盡管長(zhǎng)期以來(lái)人們對(duì)其安全性存在疑問,BPA仍然存在于各種消費(fèi)品中,包括食品和飲料容器、兒童玩具、醫(yī)療設(shè)備、電子設(shè)備和熱敏紙等。BPA由于與雌激素相似,可作用于雌激素受體,對(duì)生物體具有多向的負(fù)面影響[1]?!厩叭搜芯窟M(jìn)展】之前的研究已經(jīng)描述了BPA對(duì)人和動(dòng)物的不利影響,如BPA作用于神經(jīng)系統(tǒng)和生殖系統(tǒng),導(dǎo)致神經(jīng)活動(dòng)和發(fā)情周期紊亂[2-3];影響內(nèi)分泌和免疫系統(tǒng),導(dǎo)致各種代謝紊亂和疾病[4]。此外,BPA對(duì)包括肝臟、腸道和腎臟在內(nèi)的多個(gè)器官系統(tǒng)具有毒性[5-8]。腎組織細(xì)胞富含線粒體,對(duì)氧化應(yīng)激極其敏感。本研究團(tuán)隊(duì)之前的研究證明,BPA能夠促進(jìn)豬腎細(xì)胞凋亡和炎癥反應(yīng),并且推測(cè)可能與誘導(dǎo)產(chǎn)生的過量的ROS有關(guān)[9]。N-乙酰半胱氨酸(NAC)是一種有效的抗氧化劑,具有調(diào)節(jié)細(xì)胞代謝、抗細(xì)胞凋亡和抗炎等多種作用[10],長(zhǎng)期以來(lái)一直被認(rèn)為是一種安全、廉價(jià)的藥物。研究表明,NAC預(yù)處理能夠清除多余的ROS、減輕氧化損傷,防止細(xì)胞凋亡[11]。在對(duì)腎臟的潛在影響方面,NAC的有益作用包括減輕造影劑、缺血、梗阻、輻射和毒素等引起的腎損傷[12-13],在不同的急性腎損傷動(dòng)物模型中具有腎保護(hù)作用[14]?!颈狙芯壳腥朦c(diǎn)】NAC通過抗氧化作用對(duì)BPA毒性的保護(hù)作用在大腦[15]和睪丸[16]等多種器官系統(tǒng)中已被報(bào)道,然而NAC對(duì)BPA誘導(dǎo)的豬腎細(xì)胞損傷的調(diào)節(jié)作用尚不清楚?!緮M解決的關(guān)鍵問題】本研究旨在闡明抗氧化劑NAC對(duì)BPA誘導(dǎo)的豬腎細(xì)胞凋亡和炎癥反應(yīng)的保護(hù)作用,為NAC在對(duì)抗BPA誘導(dǎo)的豬腎細(xì)胞損傷中的應(yīng)用提供科學(xué)依據(jù)。
試驗(yàn)于2021年8—10月在浙江省畜禽綠色生態(tài)健康養(yǎng)殖應(yīng)用技術(shù)研究重點(diǎn)實(shí)驗(yàn)室、動(dòng)物遺傳育種與繁殖實(shí)驗(yàn)室完成。
雙酚A(BPA,純度>99.8%)購(gòu)自Aladdin,將BPA溶于二甲基亞砜(DMSO),渦旋混勻配制成1 mol·L-1的貯存液于-20℃保存;NAC(N-乙酰半胱氨酸)購(gòu)自Sigma,NAC用滅菌雙蒸水配制成1 mol·L-1的貯存液,置于-20℃保存;MEM高糖培養(yǎng)基購(gòu)自Hyclone;抗生素購(gòu)自上海語(yǔ)純生物科技有限公司;CCK-8試劑盒購(gòu)自MCE;過氧化氫酶(CAT)購(gòu)自碧云天;谷胱甘肽過氧化物酶(GSH-Px)和總超氧化物歧化酶(T-SOD)試劑盒均購(gòu)自南京建成生物工程研究所;一抗BAX、BCL-2、Caspase-3購(gòu)自Proteintech,Tubulin購(gòu)自Abcepta;山羊抗兔和山羊抗小鼠IgG-HRP二抗購(gòu)自Abbkine;免疫熒光所用抗體NF-κB購(gòu)自杭州華安生物技術(shù)有限公司,山羊抗兔熒光二抗Alexa Fluor488購(gòu)自Thermo Fisher。
PK15細(xì)胞購(gòu)自中國(guó)典型培養(yǎng)物保藏中心,培養(yǎng)于由90% MEM培養(yǎng)基、10%胎牛血清(FBS,PAN-Seratech)、1%抗生素(青霉素-鏈霉素)組成的完全培養(yǎng)基,置于37℃、5% CO2的培養(yǎng)箱。當(dāng)細(xì)胞密度達(dá)到80%時(shí),將消化后的細(xì)胞以同等密度根據(jù)實(shí)驗(yàn)?zāi)康牟煌謩e接種到96孔板、6孔板或60 mm培養(yǎng)皿進(jìn)行后續(xù)試驗(yàn)。
參照CCK-8試劑盒說(shuō)明書測(cè)定細(xì)胞活力。PK15細(xì)胞在96孔板中培養(yǎng),分別添加不同濃度NAC(0、2、5、10 mmol·L-1)處理12 h,200 μmol·L-1BPA處理6 h,以及5 mmol·L-1NAC預(yù)處理6 h后再與200 μmol·L-1BPA共處理6 h,之后每孔加入10 μL CCK-8,在37℃、5% CO2培養(yǎng)箱中孵育4 h,使用酶標(biāo)儀測(cè)定450 nm波長(zhǎng)處吸光度,以評(píng)估細(xì)胞活力。細(xì)胞存活率 (%) = [(As-Ab)/(Ac-Ab)]×100,其中As、Ab和Ac分別代表實(shí)驗(yàn)孔、空白孔和對(duì)照孔。
PK15細(xì)胞培養(yǎng)于60 mm培養(yǎng)皿中,收集處理后的細(xì)胞,PBS清洗1次,每孔加1 mL RNAiso plus(Takara)裂解細(xì)胞,移入1.5 mL離心管,加入0.2 mL氯仿混勻靜置3 min,12 000×,4℃離心15 min,取上清液并加入等體積異丙醇,混勻冰上靜置10 min,之后12 000×,4℃離心10 min,棄上清;加入1 mL 75%乙醇清洗一遍,再次12 000×,4℃離心5 min,棄上清;加入20 μL焦碳酸二乙酯(DEPC)水溶解沉淀并輕輕吹打混勻。后續(xù)測(cè)定細(xì)胞RNA濃度和純度用于反轉(zhuǎn)錄,按照PrimeScript? RT Master Mix(Takara)對(duì)RNA進(jìn)行反轉(zhuǎn)錄獲得cDNA并放于-20℃保存。按照TB Green?Premix Ex TaqTM Ⅱ(Takara)加入各反應(yīng)試劑,Bio-Rad CFX96 Touch系統(tǒng)上進(jìn)行檢測(cè)。GAPDH作為參考基因,試驗(yàn)數(shù)據(jù)采用 2-△△Ct法進(jìn)行相對(duì)定量計(jì)算[17],使用Primer Premier 5 設(shè)計(jì)引物(表1),并由浙江有康生物科技有限公司合成。
表1 實(shí)時(shí)熒光定量PCR引物
收集對(duì)照組、BPA處理組、BPA+NAC處理組細(xì)胞蛋白樣品,金屬浴100℃煮沸10 min以變性,10%或12% SDS-PAGE凝膠電泳在80 V電壓下進(jìn)行20 min,轉(zhuǎn)到120 V進(jìn)行40 min,濕轉(zhuǎn)到0.25 μm聚偏二氟乙烯(PVDF,Millipore,Billerica)2 h,5%脫脂奶粉在室溫下封閉2 h,4℃過夜孵育一抗(BAX、BCL-2、Caspase-3、Tubulin)。TBST搖床洗滌3次,每次10 min,之后與相應(yīng)的二抗在室溫?fù)u床孵育1 h。TBST洗滌3次,ECL(Millipore)化學(xué)發(fā)光顯色,Tubulin作為對(duì)照參考。
PK15細(xì)胞接種于60 mm培養(yǎng)皿,200 μmol·L-1BPA處理細(xì)胞6 h后,吸棄舊培養(yǎng)基,PBS清洗1次,加入western及IP細(xì)胞裂解液(碧云天)在冰上裂解細(xì)胞并用槍頭吹打數(shù)下,轉(zhuǎn)移至2 mL離心管,測(cè)定細(xì)胞過氧化氫酶(CAT)、總超氧化物歧化酶(T-SOD)、谷胱甘肽過氧化物酶(GSH-Px)活性,測(cè)定方法參照相應(yīng)的試劑盒說(shuō)明書。
將細(xì)胞爬片提前放入6 孔板,加入PK15細(xì)胞懸液,待細(xì)胞處理后,吸出培養(yǎng)基,PBS清洗3次;加入4%多聚甲醛室溫固定15 min,PBS清洗3次。Hoechst33258染色液與PK15細(xì)胞在室溫下避光孵育5 min,加入PBS于搖床避光清洗3次,每次5 min。封片,熒光顯微鏡檢測(cè)熒光強(qiáng)度并拍照。
將細(xì)胞爬片提前放入6孔板,加入PK15細(xì)胞懸液,待細(xì)胞處理后,吸出培養(yǎng)基,PBS清洗3次;加入4%多聚甲醛室溫固定15 min,PBS清洗3次??贵w稀釋液以1﹕100稀釋NF-κB一抗,4℃孵育過夜;次日,PBS清洗3次,每次10 min;室溫避光孵育熒光二抗1 h;PBS再次清洗3次,每次10 min;避光孵育4',6-二脒基-2-苯基吲哚(DAPI)染液30 min,PBS清洗后封片,激光共聚焦顯微鏡檢測(cè)熒光強(qiáng)度并拍照。
所有試驗(yàn)均獨(dú)立重復(fù)至少3次,使用GraphPad Prism軟件(8.0.2)分析數(shù)據(jù)顯著性,當(dāng)<0.05時(shí),被認(rèn)為具有統(tǒng)計(jì)學(xué)意義。
結(jié)果如圖1所示,與對(duì)照組相比,200 μmol·L-1BPA處理組的細(xì)胞內(nèi)CAT、T-SOD和GSH-Px活性顯著降低(<0.05)。
圖1 BPA對(duì)PK15細(xì)胞中抗氧化酶活性的影響
結(jié)果如圖2-A所示,PK15細(xì)胞活力隨NAC濃度的增加呈現(xiàn)顯著增加的趨勢(shì)(<0.05)。隨后,不同濃度NAC預(yù)處理PK15細(xì)胞6 h,再BPA共處理6 h,CCK-8檢測(cè)細(xì)胞活力。如圖2-B所示,與對(duì)照組相比,BPA顯著降低細(xì)胞活力(<0.05);與BPA處理組相比,低劑量(2 mmol·L-1)NAC預(yù)處理對(duì)BPA誘導(dǎo)的細(xì)胞活力沒有顯著影響(>0.05),5 mmol·L-1和10 mmol·L-1NAC預(yù)處理后均能顯著提高細(xì)胞活力(<0.05),本研究選取5 mmol·L-1NAC用于后續(xù)試驗(yàn)。
實(shí)時(shí)熒光定量PCR檢測(cè)凋亡相關(guān)基因表達(dá)顯示(圖3),與對(duì)照組相比,BPA顯著增加了mRNA表達(dá)量(<0.05),顯著減少了mRNA表達(dá)量(<0.05)。與BPA處理組相比,NAC預(yù)處理顯著恢復(fù)了BPA誘導(dǎo)的、和mRNA相對(duì)表達(dá)量變化,即NAC預(yù)處理顯著減少了和mRNA相對(duì)表達(dá)量(<0.05),增加了mRNA相對(duì)表達(dá)量(<0.05)。
蛋白免疫印跡檢測(cè)凋亡相關(guān)蛋白表達(dá)結(jié)果如圖4所示,與對(duì)照組相比,BPA處理后細(xì)胞中BAX和cleaved-Caspase3蛋白表達(dá)均顯著增加(<0.05),而BCL-2蛋白表達(dá)顯著減少(<0.05)。與熒光定量PCR檢測(cè)結(jié)果一致的是,與BPA處理組相比,NAC預(yù)處理在一定程度上恢復(fù)了BPA誘導(dǎo)的BAX和cleaved-Caspase3蛋白表達(dá)變化,雖然NAC對(duì)BCL-2蛋白表達(dá)沒有明顯的增加,但NAC預(yù)處理后BCL-2蛋白表達(dá)量呈上升趨勢(shì)。
A:不同濃度NAC對(duì)PK15細(xì)胞活力的影響;B:NAC對(duì)BPA誘導(dǎo)的PK15細(xì)胞活力的影響
圖3 NAC對(duì)BPA誘導(dǎo)的PK15細(xì)胞凋亡基因表達(dá)的影響
Hoechst 33258染色結(jié)果顯示(圖5),對(duì)照組呈低強(qiáng)度藍(lán)色熒光;與對(duì)照組相比,BPA處理組的細(xì)胞出現(xiàn)明顯的細(xì)胞核濃縮,呈現(xiàn)亮藍(lán)色熒光,提示細(xì)胞凋亡發(fā)生;而NAC預(yù)處理組顯示部分核濃縮,且藍(lán)色熒光較弱。
實(shí)時(shí)熒光定量PCR檢測(cè)炎癥相關(guān)因子的表達(dá),結(jié)果如圖6所示,與對(duì)照組相比,BPA顯著增加了和mRNA相對(duì)表達(dá)量(<0.05),而NAC預(yù)處理顯著減少了BPA誘導(dǎo)增加的、和mRNA相對(duì)表達(dá)量(<0.05)。盡管BPA沒有顯著增加mRNA相對(duì)表達(dá)(>0.05),但NAC預(yù)處理后mRNA相對(duì)表達(dá)量也呈現(xiàn)了下降的趨勢(shì)。
免疫熒光檢測(cè)BPA處理和NAC預(yù)處理PK15細(xì)胞后的NF-κB核易位,結(jié)果如圖7所示,未經(jīng)任何處理的對(duì)照組中,NF-κB綠色熒光主要分布在細(xì)胞質(zhì)中。與對(duì)照組相比,BPA處理組中NF-κB發(fā)生明顯的核易位,綠色熒光主要分布細(xì)胞核中,而NAC預(yù)處理減少了NF-κB的核易位,在細(xì)胞質(zhì)和少量的細(xì)胞核中也觀察到綠色熒光。
A:BAX、BCL-2和cleaved-Caspase3蛋白免疫印跡結(jié)果;B:BAX、BCL-2和cleaved-Caspase3蛋白表達(dá)統(tǒng)計(jì)結(jié)果
圖5 Hoechst33258熒光染色檢測(cè)細(xì)胞凋亡
圖6 NAC對(duì)BPA誘導(dǎo)的PK15細(xì)胞炎癥相關(guān)基因表達(dá)的影響
圖7 NAC對(duì)BPA誘導(dǎo)的PK15細(xì)胞NF-κB核易位的影響
BPA是全球范圍內(nèi)大量使用的工業(yè)化學(xué)品,可誘導(dǎo)機(jī)體各部位的ROS,對(duì)多個(gè)器官系統(tǒng)的健康有不良影響,已被認(rèn)為在許多疾病中發(fā)揮關(guān)鍵作用[18]。一些證據(jù)表明,暴露于BPA后,抗氧化劑的消耗、氧化損傷標(biāo)志物的升高以及氧化應(yīng)激被認(rèn)為是BPA發(fā)病機(jī)制的關(guān)鍵。Chen等研究表明BPA通過增加ROS含量,誘導(dǎo)豬睪丸細(xì)胞氧化應(yīng)激和線粒體凋亡[19]。筆者之前的研究結(jié)果證明BPA以劑量依賴的方式加重對(duì)PK15細(xì)胞的損傷作用,增加細(xì)胞內(nèi)ROS含量[9]。已知機(jī)體組織中增加的ROS能被SOD、CAT和GSH-Px等抗氧化劑清除[20],本研究通過測(cè)定細(xì)胞內(nèi)的抗氧化酶活性顯示,BPA顯著減少了細(xì)胞內(nèi)T-SOD、CAT和GSH-Px活性,這為BPA能夠誘導(dǎo)機(jī)體氧化還原穩(wěn)態(tài)的失衡提供了支持。
抗氧化劑在預(yù)防氧化應(yīng)激相關(guān)疾病方面是非常重要的,并有希望作為治療藥物[21]。由于NAC的抗氧化特性,一些研究已經(jīng)證實(shí)了NAC可以保護(hù)各種器官組織免受氧化應(yīng)激誘導(dǎo)的損傷[22-23]。以前的研究報(bào)道,從0.5—10 mmol·L-1劑量范圍的NAC足以在不同的細(xì)胞系中誘導(dǎo)細(xì)胞毒性[24],但ZHANG等的研究表明,0.5、1.0和2.0 mmol·L-1NAC都不會(huì)減少PK15細(xì)胞活力[25]。在本研究中,利用CCK-8檢測(cè)細(xì)胞活力以評(píng)估不同濃度的NAC對(duì)細(xì)胞活力的影響,結(jié)果顯示2、5、10 mmol·L-1NAC對(duì)細(xì)胞均無(wú)毒,且均可顯著促進(jìn)細(xì)胞活力。與BPA處理組相比,5 和10 mmol·L-1NAC預(yù)處理均能夠顯著促進(jìn)細(xì)胞活力,說(shuō)明NAC對(duì)BPA誘導(dǎo)的細(xì)胞毒性具有保護(hù)作用。
為了研究NAC是否是通過減少細(xì)胞凋亡而減輕BPA引起的細(xì)胞毒性,本研究檢測(cè)了凋亡相關(guān)基因和蛋白表達(dá)。在固有凋亡途徑中,BCL-2家族蛋白起著至關(guān)重要的作用。這個(gè)家族由兩種蛋白質(zhì)組成,一種是抗凋亡蛋白,如BCL-2,另一種是促凋亡蛋白,如BAX,且BCL-2/BAX比值的降低導(dǎo)致Caspase-9和Caspase-3的激活[26]。本研究結(jié)果表明,NAC預(yù)處理可以降低BPA誘導(dǎo)增加的BAX和Caspase3基因和蛋白表達(dá)水平,增加BCL-2基因和蛋白表達(dá)水平。Hochest33258是一種藍(lán)色熒光染料,可以穿透細(xì)胞膜,使活細(xì)胞呈現(xiàn)深藍(lán)色。細(xì)胞凋亡時(shí),細(xì)胞核濃縮,呈亮藍(lán)色。Hoechst33258熒光染色顯示,暴露于BPA顯示強(qiáng)藍(lán)色熒光染色,凋亡細(xì)胞的數(shù)量明顯增加,而NAC預(yù)處理能夠明顯減少凋亡細(xì)胞數(shù)量,即逆轉(zhuǎn)BPA誘導(dǎo)的凋亡反應(yīng)。以上結(jié)果表明,NAC對(duì)BPA誘導(dǎo)的PK15細(xì)胞凋亡具有抑制作用。
氧化應(yīng)激可以促進(jìn)炎癥反應(yīng),筆者之前的研究證實(shí),BPA處理顯著增加IL-6、IL-8和TNF-α的mRNA相對(duì)表達(dá)量,促進(jìn)PK15細(xì)胞炎癥反應(yīng)[9]。NF-κB信號(hào)通路是炎癥反應(yīng)的重要信號(hào)通路[27-28],在非活性狀態(tài)下,NF-κB與kappa B抑制劑(IκBs)家族成員作為復(fù)合物存在于細(xì)胞質(zhì)中[29],在不同促炎刺激下,IκB被IκB激酶(IKK)磷酸化,IκB磷酸化導(dǎo)致IκB的蛋白酶體降解,導(dǎo)致NF-κB的核易位,促進(jìn)多種炎癥因子的轉(zhuǎn)錄激活。因此,磷酸化的NF-κB從細(xì)胞質(zhì)向細(xì)胞核的轉(zhuǎn)移是下游炎癥相關(guān)基因表達(dá)的關(guān)鍵步驟[30]。MAJANO等[31]研究證明,NAC暴露于肝細(xì)胞可抑制NO合酶表達(dá)和NF-κB活性,并具有肝保護(hù)作用。NAC主要通過抑制轉(zhuǎn)錄因子NF-κB的激活來(lái)對(duì)抗氧自由基、抑制白細(xì)胞的激活,并抑制促炎因子的釋放[32]。一致地,本研究結(jié)果顯示,BPA處理組中核NF-κB 表達(dá)顯著增加,胞質(zhì)NF-κB 表達(dá)顯著降低;NAC可顯著改善BPA誘導(dǎo)的氧化應(yīng)激模型中IL-8、IL-6、IL-1β和TNF-α等炎癥因子水平,減少NF-κB核易位。
NAC預(yù)處理顯著增強(qiáng)BPA處理減少的細(xì)胞活力;減少促凋亡基因和蛋白(BAX和Caspase3)的表達(dá)以及凋亡細(xì)胞數(shù)量;增加抗凋亡基因和蛋白(BCL-2)表達(dá),減少促炎因子(IL-8、IL-6、IL-1β和TNF-α)的表達(dá)水平以及NF-κB的核易位。綜上結(jié)果表明,NAC在BPA誘導(dǎo)的PK15細(xì)胞氧化損傷中具有抗凋亡和抗炎雙重作用,可以保護(hù)PK15細(xì)胞免受BPA的毒性作用,該研究結(jié)果為NAC在豬腎細(xì)胞氧化損傷中的潛在應(yīng)用提供了證據(jù)。
[1] FAN X T, HOU T T, JIA J, TANG K, WEI X F, WANG Z Z. Discrepant dose responses of bisphenol A on oxidative stress and DNA methylation in grass carp ovary cells. Chemosphere, 2020, 248: 126110. doi:10.1016/j.chemosphere.2020.126110.
[2] SZYMANSKA K, MAKOWSKA K, GONKOWSKI S. The influence of high and low doses of bisphenol A (BPA) on the enteric nervous system of the porcine ileum. International Journal of Molecular Sciences, 2018, 19(3): 917. doi:10.3390/ijms19030917.
[3] XIAO S, DIAO H L, SMITH M A, SONG X, YE X Q. Preimplantation exposure to bisphenol A (BPA) affects embryo transport, preimplantation embryo development, and uterine receptivity in mice. Reproductive Toxicology, 2011, 32(4): 434-441. doi:10. 1016/j.reprotox.2011.08.010.
[4] RANCIèRE F, LYONS J G, LOH V H Y, BOTTON J, GALLOWAY T, WANG T G, SHAW J E, MAGLIANO D J. Bisphenol A and the risk of cardiometabolic disorders: a systematic review with meta- analysis of the epidemiological evidence. Environmental Health: a Global Access Science Source, 2015, 14: 46. doi:10.1186/s12940- 015-0036-5.
[5] THOENE M, RYTEL L, DZIKA E, W?ODARCZYK A, KRUMINIS- KASZKIEL E, KONRAD P, WOJTKIEWICZ J. Bisphenol A causes liver damage and selectively alters the neurochemical coding of intrahepatic parasympathetic nerves in juvenile porcine models under physiological conditions. International Journal of Molecular Sciences, 2017, 18(12): 2726. doi:10.3390/ijms18122726.
[6] CARCHIA E, PORRECA I, ALMEIDA P J, D'ANGELO F, CUOMO D, CECCARELLI M, DE FELICE M, MALLARDO M, AMBROSINO C. Evaluation of low doses BPA-induced perturbation of glycemia by toxicogenomics points to a primary role of pancreatic islets and to the mechanism of toxicity. Cell Death & Disease, 2015, 6(10): e1959. doi:10.1038/cddis.2015.319.
[7] GONZáLEZ-PARRA E, HERRERO J A, ELEWA U, BOSCH R J, ARDUáN A O, EGIDO J. Bisphenol A in chronic kidney disease. International Journal of Nephrology, 2013, 2013: 437857. doi:10. 1155/2013/437857.
[8] WANG K, QIU L, ZHU J J, SUN Q, QU W, YU Y F, ZHAO Z G, YU Y F, SHAO G Y. Environmental contaminant BPA causes intestinal damage by disrupting cellular repair and injury homeostasis in vivo and in vitro. Biomedicine & Pharmacotherapy, 2021, 137: 111270. doi:10.1016/j.biopha.2021.111270.
[9] 周羽, 劉媛, 汪序忠, 周曉龍, 楊松柏, 段星, 宋丹, 李向臣. 雙酚A對(duì)豬腎細(xì)胞炎性因子表達(dá)及凋亡的影響. 中國(guó)畜牧雜志, 2021, 57(12): 223-227, 233. doi:10.19556/j.0258-7033.20210311-03.
ZHOU Y, LIU Y, WANG X Z, ZHOU X L, YANG S B, DUAN X, SONG D, LI X C. The effect of bisphenol A on the expression and apoptosis of porcine kidney cells. Chinese Journal of Animal Science, 2021, 57(12): 223-227, 233. doi:10.19556/j.0258-7033.20210311-03. (in Chinese)
[10] CUSUMANO G, ROMAGNOLI J, LIUZZO G, CIAVARELLA L P, SEVERINO A, COPPONI G, MANCHI M, GIUBILATO S, ZANNONI G F, STIGLIANO E, CARISTO M E, CREA F, CITTERIO F. N-acetylcysteine and high-dose atorvastatin reduce oxidative stress in an ischemia-reperfusion model in the rat kidney. Transplantation Proceedings, 2015, 47(9): 2757-2762. doi:10.1016/j.transproceed. 2015.09.035.
[11] ZHAO S J, LIU Y, WANG F, XU D X, XIE P. N-acetylcysteine protects against microcystin-LR-induced endoplasmic reticulum stress and germ cell apoptosis in zebrafish testes. Chemosphere, 2018, 204: 463-473. doi:10.1016/j.chemosphere.2018.04.020.
[12] MOIST L, SONTROP J M, GALLO K, MAINRA R, CUTLER M, FREEMAN D, HOUSE A A. Effect of N-acetylcysteine on serum creatinine and kidney function: results of a randomized controlled trial. American Journal of Kidney Diseases, 2010, 56(4): 643-650. doi:10.1053/j.ajkd.2010.03.028.
[13] MERCANTEPE T, TOPCU A, RAKICI S, TUMKAYA L, YILMAZ A, MERCANTEPE F. The radioprotective effect of N-acetylcysteine against x-radiation-induced renal injury in rats. Environmental Science and Pollution Research International, 2019, 26(28): 29085-29094. doi:10. 1007/s11356-019-06110-0.
[14] PEERAPANYASUT W, KOBROOB A, PALEE S, CHATTIPAKORN N, WONGMEKIAT O. N-acetylcysteine attenuates the increasing severity of distant organ liver dysfunction after acute kidney injury in rats exposed to bisphenol A. Antioxidants (Basel, Switzerland), 2019, 8(10): 497. doi:10.3390/antiox8100497.
[15] JAIN S, MAHENDRA KUMAR C H, SURANAGI U D, MEDIRATTA P K. Protective effect of N-acetylcysteine on bisphenol A-induced cognitive dysfunction and oxidative stress in rats. Food and Chemical Toxicology, 2011, 49(6): 1404-1409. doi:10.1016/j.fct. 2011.03.032.
[16] YUAN C, WANG L H, ZHU L, RAN B H, XUE X, WANG Z Z. N-acetylcysteine alleviated bisphenol A-induced testicular DNA hypermethylation of rare minnow () by increasing cysteine contents. Ecotoxicology and Environmental Safety, 2019, 173: 243-250. doi:10.1016/j.ecoenv.2019.02.035.
[17] 朱芷葳, 侯淑寧, 郝慶玲, 景炅婕, 呂麗華, 李鵬飛. 牛卵泡AGTR2序列結(jié)構(gòu)及表達(dá)特性分析. 中國(guó)農(nóng)業(yè)科學(xué), 2020, 53(7): 1482-1490. doi:10.3864/j.issn.0578-1752.2020.07.016.
ZHU Z W, HOU S N, HAO Q L, JING J J, Lü L H, LI P F. Sequence structure and expression characteristics analysis of AGTR2 in bovine follicle. Scientia Agricultura Sinica, 2020, 53(7): 1482-1490. doi:10. 3864/j.issn.0578-1752.2020.07.016. (in Chinese)
[18] REZG R, EL-FAZAA S, GHARBI N, MORNAGUI B. Bisphenol A and human chronic diseases: current evidences, possible mechanisms, and future perspectives. Environment International, 2014, 64: 83-90. doi:10.1016/j.envint.2013.12.007.
[19] CHEN H J, CHEN J Q, SHI X, LI L, XU S W. Naringenin protects swine testis cells from bisphenol A-induced apoptosis via Keap1/Nrf2 signaling pathway. BioFactors, 2022, 48(1): 190-203. doi:10.1002/ biof.1814.
[20] MUTHUVEL R, VENKATARAMAN P, KRISHNAMOORTHY G, GUNADHARINI D N, KANAGARAJ P, STANLEY A J, SRINIVASAN N, BALASUBRAMANIAN K, ARULDHAS M M, ARUNAKARAN J. Antioxidant effect of ascorbic acid on PCB (Aroclor 1254) induced oxidative stress in hypothalamus of albino rats. Clinica Chimica Acta, 2006, 365(1/2): 297-303. doi:10.1016/j.cca. 2005.09.006.
[21] PARI L, MURUGAVEL P. Diallyl tetrasulfide improves cadmium induced alterations of acetylcholinesterase, ATPases and oxidative stress in brain of rats. Toxicology, 2007, 234(1/2): 44-50. doi:10. 1016/j.tox.2007.01.021.
[22] MAZIèRE C, CONTE M A, DEGONVILLE J, ALI D, MAZIèRE J C. Cellular enrichment with polyunsaturated fatty acids induces an oxidative stress and activates the transcription factors AP1 and NFκB. Biochemical and Biophysical Research Communications, 1999, 265(1): 116-122. doi:10.1006/bbrc.1999.1644.
[23] 路浩, 達(dá)劍森, 梅莉, 張英, 劉宗平. 母鼠妊娠期鉛鎘聯(lián)合暴露對(duì)新生鼠大腦bcl-2, Bax和c-fos mRNA表達(dá)的影響及NAC保護(hù)效應(yīng). 中國(guó)農(nóng)業(yè)科學(xué), 2010, 43(2): 417-423. doi:10.3864/j.issn.0578- 1752.2010.02.024.
LU H, DA J S, MEI L, ZHANG Y, LIU Z P. Influence of combined exposure to lead and cadmium on bcl-2, Bax and c-fos mRNA expression in neonatal brain and the protective effects of N- acetylcysteine on pregnant rats. Scientia Agricultura Sinica, 2010, 43(2): 417-423. doi:10.3864/j.issn.0578-1752.2010.02.024. (in Chinese)
[24] ZENG X F, LI Q, LI J, WONG N, LI Z, HUANG J, YANG G M, SHAM P C, LI S B, LU G. HIV-1 Tat and methamphetamine co-induced oxidative cellular injury is mitigated by N-acetylcysteine amide (NACA) through rectifying mTOR signaling. Toxicology Letters, 2018, 299: 159-171. doi:10.1016/j.toxlet.2018.09.009.
[25] ZHANG W, ZHANG S H, ZHANG M L, YANG L G, CHENG B J, LI J P, SHAN A S. Individual and combined effects of Fusarium toxins on apoptosis in PK15 cells and the protective role of N- acetylcysteine. Food and Chemical Toxicology, 2018, 111: 27-43. doi:10.1016/j.fct.2017.10.057.
[26] PELICANO H, CARNEY D, HUANG P. ROS stress in cancer cells and therapeutic implications. Drug Resistance Updates, 2004, 7(2): 97-110. doi:10.1016/j.drup.2004.01.004.
[27] CHRISTIAN F, SMITH E, CARMODY R. The regulation of NF-κB subunits by phosphorylation. Cells, 2016, 5(1): 12. doi:10.3390/ cells5010012.
[28] 畢崇亮, 劉俊俊, 王亨, 王娟, 韓照清, 關(guān)立增. 硒對(duì)S.aureus誘導(dǎo)的奶牛乳腺上皮細(xì)胞Nod2/MAPK/mTORs信號(hào)通路關(guān)鍵蛋白表達(dá)的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2019, 52(16): 2891-2898. doi:10.3864/j.issn. 0578-1752.2019.16.014.
BI C L, LIU J J, WANG H, WANG J, HAN Z Q, GUAN L Z. Effects of selenium on the key factors in Nod2/MAPK/mTORs signaling pathways in the bMECs infected. Scientia Agricultura Sinica, 2019, 52(16): 2891-2898. doi:10.3864/j.issn.0578-1752.2019.16.014. (in Chinese)
[29] HUANG S, PETTAWAY C A, UEHARA H, BUCANA C D, FIDLER I J. Blockade of NF-kappaB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene, 2001, 20(31): 4188-4197. doi:10.1038/ sj.onc.1204535.
[30] MA L J, CHEN X J, WANG R X, DUAN H T, WANG L B, LIANG L, NAN Y D, LIU X Y, LIU A, JIN F G. 3, 5, 4'-Tri-O- acetylresveratrol decreases seawater inhalation-induced acute lung injury by interfering with the NF-κB and i-NOS pathways. International Journal of Molecular Medicine, 2016, 37(1): 165-172. doi:10.3892/ ijmm.2015.2403.
[31] MAJANO P L, MEDINA J, ZUB??A I, SUNYER L, LARA-PEZZI E, MALDONADO-RODR??GUEZ A, LóPEZ-CABRERA M, MORENO- OTERO R. N-Acetyl-cysteine modulates inducible nitric oxide synthase gene expression in human hepatocytes. Journal of Hepatology, 2004, 40(4): 632-637. doi:10.1016/j.jhep.2003.12.009.
[32] KELLY G S. Clinical applications of N-acetylcysteine. Alternative Medicine Review: a Journal of Clinical Therapeutic, 1998, 3(2): 114-127.
Inhibitory Effect of N-acetylcysteine on Bisphenol A-Induced Apoptosis and Inflammatory Response in Porcine Kidney Cells
TAO WenJing, ZHANG ZiTing, LIU Yuan, SONG Dan, LI XiangChen
College of Animal Science and Technology/College of Veterinary Medicine, Zhejiang A&F University/Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou 311300
【Background】Bisphenol A (BPA) is widely used in the industrial manufacturing of plastic materials, which seeps out from plastic products and exposes to various environmental media such as food, water, soil, and air, resulting in long-term exposure of animals. It is passed to offspring through the placenta and breast milk, interfering with animal growth and development and adversely affecting animal growth performance and production efficiency. N-acetylcysteine (NAC), as a recognized potent antioxidant, can regulate various pathophysiological processes, such as oxidative stress, apoptosis, and inflammation. However, the regulatory role of NAC on BPA-induced porcine kidney cell injury remains unclear. 【Objective】This study aimed to explore the potential role of the antioxidant NAC on BPA-induced apoptosis and inflammatory responses in PK15 cells.【Method】PK15 cells were selected as experimental materials, and the activities of catalase (CAT), total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-Px) were measured by the corresponding antioxidant detection kits. PK15 cells were treated with different concentrations of NAC (0, 2, 5, 10 mmol·L-1) and then co-treated with BPA, and then the cell viability was detected by CCK-8 to select the optimal concentration of NAC. The expression of apoptosis-related genes (,and) and inflammatory genes (,,and) as well as protein expression were detected by real-time quantitative PCR (qRT-PCR) and western blotting. The number of apoptotic cells and nuclear factor kappa B (NF-κB) nuclear translocation were detected by immunofluorescence staining. 【Result】The results showed that BPA significantly reduced the activities of CAT, T-SOD and GSH-Px in PK15 cells, compared with the control group (<0.05). CCK-8 results showed that BPA significantly decreased PK15 cell viability in contrast to control group, whereas the different concentrations of NAC significantly promoted cell viability, and 5, 10 mmol·L-1NAC pretreatment significantly promoted cell viability when compared with BPA alone. qRT-PCR and western blotting showed that BPA treatment significantly increased BAX and Caspase3 mRNA and protein expression, and decreased the BCL-2 mRNA and protein expression, whereas NAC pretreatment could reduce the increased BAX and Caspase3 expression and increase the decreased BCL-2 expression induced by BPA. Hoechst33258 fluorescence staining indicated that the cells treated with BPA showed strong blue fluorescence staining and obvious nuclear shrinkage, whereas NAC pretreated cell showed weak blue fluorescence. BPA treatment significantly increased the relative mRNA expression of inflammation-related factors (and) (<0.05), whereas NAC pretreatment inhibited BPA-induced increased inflammation-related factors (,andmRNA) relative expression. Immunofluorescence analysis of NF-κB nuclear translocation showed that NF-κB was mainly distributed in cytoplasm in the control group, whereas NF-κB was mainly distributed in the nucleus after BPA treatment and NAC pretreatment reduced nuclear NF-κB expression. 【Conclusion】NAC significantly increased PK15 cell viability and inhibited PK15 cell apoptosis and inflammatory response induced by BPA.
Bisphenol A; N-acetylcysteine; apoptosis; inflammatory response; PK15 cell; oxidative stress
10.3864/j.issn.0578-1752.2023.03.012
2021-11-11;
2022-05-12
浙江省自然科學(xué)基金(LQ22C170001)、浙江農(nóng)林大學(xué)科研發(fā)展基金(22020FR080)、國(guó)家科技基礎(chǔ)條件平臺(tái)子課題(TZDWZYK2019-08)
陶文靜,E-mail:2822780147@qq.com。張子婷,E-mail:3106286165@qq.com。陶文靜和張子婷為同等貢獻(xiàn)作者。通信作者宋丹,E-mail:songdan2020@zafu.edu.cn
(責(zé)任編輯 林鑒非)