国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

氨基功能化抗菌碳量子點(diǎn)的制備及抗菌性能研究

2023-03-14 12:21崔方超周閃閃王當(dāng)豐檀茜倩李秋瑩李婷婷勵(lì)建榮
包裝工程 2023年5期
關(guān)鍵詞:碳點(diǎn)精胺功能化

崔方超,周閃閃,王當(dāng)豐,檀茜倩,李秋瑩,李婷婷,勵(lì)建榮

氨基功能化抗菌碳量子點(diǎn)的制備及抗菌性能研究

崔方超1,周閃閃1,王當(dāng)豐1,檀茜倩1,李秋瑩1,李婷婷2,勵(lì)建榮1

(1.渤海大學(xué) a.食品科學(xué)與工程學(xué)院 b.生鮮農(nóng)產(chǎn)品貯藏加工及安全控制技術(shù)國(guó)家地方聯(lián)合工程研究中心,遼寧 錦州 121013;2.大連民族大學(xué) 生命科學(xué)學(xué)院,遼寧 大連 116600)

以精胺、多巴胺為原材料合成氨基功能化抗菌碳量子點(diǎn),為進(jìn)一步將其應(yīng)用于食源性致病菌消除領(lǐng)域提供參考。利用精胺、多巴胺通過熱解法合成精胺碳點(diǎn)、多巴胺碳點(diǎn)和精胺/多巴胺碳點(diǎn)(SPM–CDs、DA–CDs、SPM/DA–CDs),通過透射掃描電鏡,X射線光電子能譜、紅外光譜、Zeta電位、紫外光譜和熒光光譜對(duì)碳點(diǎn)進(jìn)行表征,選取食源性致病菌金黃色葡萄球菌和大腸桿菌作為供試菌株,采用微量肉湯稀釋法研究碳點(diǎn)及前體物的抗菌性能。SPM–CDs、DA–CDs、SPM/DA–CDs的分散性好,平均粒徑分別為(4.25±0.89)、(3.90±0.67)、(4.0±0.96)nm;在365 nm紫外燈照射下3種碳點(diǎn)均能發(fā)出熒光,表面都帶有較高的正電荷并且含有C=C、C?O、O?H等化學(xué)鍵;抗菌實(shí)驗(yàn)表明,SPM/DA–CDs對(duì)金黃色葡萄球菌和大腸桿菌抑制效果顯著,最小抑菌質(zhì)量濃度分別為0.25 mg/mL和0.5 mg/mL,而SPM–CDs、DA–CDs和前體物對(duì)2種菌的抑制效果較差;SEM結(jié)果表明碳點(diǎn)能造成細(xì)菌表面凹陷、破裂,從而導(dǎo)致細(xì)菌死亡。本研究合成的氨基功能化抗菌碳點(diǎn)具有優(yōu)異的抗菌效果,有望應(yīng)用于食源性致病菌的防治領(lǐng)域,降低食品中致病菌帶來的安全隱患,保障食品安全和人類身體健康。

碳量子點(diǎn);熱解法;食源性致病菌;抗菌;抗菌機(jī)制

食源性致病菌是影響食品安全的最主要原因[1],每年全球食源性疾病導(dǎo)致42萬(wàn)人死亡,有70%以上食源性疾病患者是由于食物或飲用水中的微生物感染所致[2],因此,解決食源性疾病問題首先要消滅致病菌。近年來,由于抗生素的廣泛使用,使許多細(xì)菌產(chǎn)生了耐藥性,使情況變得更加惡劣,因此,急需找到一種新型抗菌藥物去維持身體健康和保證食品安全[3]。

隨著納米科技的發(fā)展,納米粒子被開發(fā)用于抗菌領(lǐng)域。金[4]、銀[5]、氧化銅[6]、二氧化鈦[7]等納米粒子具有優(yōu)異的抗菌性能,由于NPs高的膜滲透性、多重抗菌效果和能夠作為細(xì)菌外排泵抑制劑等能力,不易使細(xì)菌產(chǎn)生耐藥性,但是在使用時(shí),金屬和金屬氧化物NPs會(huì)釋放出金屬離子,對(duì)哺乳動(dòng)物細(xì)胞造成損傷[8-9],因此,需要開發(fā)一種有效、安全且不易引起細(xì)菌耐藥性的新型抗菌物質(zhì)。

碳量子點(diǎn)(碳點(diǎn))是一類新型零維納米材料,平均粒徑小于10 nm。因其尺寸小、易于合成、熒光性能優(yōu)異和生物相容性好等優(yōu)點(diǎn)而備受關(guān)注[10],這些特點(diǎn)使碳點(diǎn)能夠應(yīng)用于催化劑[11]、藥物遞送[12]、細(xì)胞成像[13]、光動(dòng)力治療[8]、生物傳感[14]等多個(gè)領(lǐng)域。碳點(diǎn)的合成方法根據(jù)碳源不同可分為“自上而下”和“自下而上”2種方法[15]?!白陨隙隆钡暮铣煞椒ㄊ且源笮透缓嫉牟牧蠟樘荚矗梦锢砘瘜W(xué)方法包括化學(xué)氧化[16]、激光燒蝕[17]等將其分解,然后利用物理方法剝離出碳點(diǎn)?!白韵露稀钡暮铣煞椒▌t用小的前體物質(zhì)通過水熱法[3]、熱分解法[18]、微波法[15]等方法合成碳點(diǎn)。有研究表明,碳點(diǎn)的抗菌性能好,不會(huì)使細(xì)菌產(chǎn)生耐藥性[18],與金屬納米粒子相比,碳點(diǎn)的細(xì)胞毒性更低[19],因此碳點(diǎn)在抗菌方面的研究越來越多。碳點(diǎn)有多種抗菌機(jī)制,包括產(chǎn)生活性氧[20]、抑制細(xì)菌細(xì)胞壁合成[21]、破壞細(xì)菌DNA[22]等。碳點(diǎn)表面有豐富的活性官能團(tuán),在碳點(diǎn)表面修飾特異性基團(tuán)可以提高其抗菌性能。郁靜雯等[23]對(duì)合成的碳點(diǎn)進(jìn)行氟化修飾,抗菌實(shí)驗(yàn)表明修飾后的碳點(diǎn)抗菌性能有顯著提高。Chen等[24]用光敏劑姜黃素對(duì)碳點(diǎn)進(jìn)行修飾,修飾后的碳點(diǎn)能夠光動(dòng)力滅活副溶血弧菌并且能清除生物被膜。

碳點(diǎn)合成來源多樣,如蛋白質(zhì)[25]、細(xì)菌[26]、蛋清[27]和蜂蜜[28]等物質(zhì)都可以用來合成碳點(diǎn)。不同的前體賦予碳點(diǎn)不同的理化和功能特性[29]。有機(jī)碳源的碳點(diǎn)可通過多種方法制備,碳點(diǎn)會(huì)與合成它的有機(jī)試劑具有相似性,但是當(dāng)反應(yīng)溫度過高時(shí),相似性就消失了;納米碳粉和石墨是合成碳點(diǎn)最常用的無機(jī)碳源。石墨制備的碳量子點(diǎn)具有過氧化物酶活性,可催化H2O2分解并生成羥基自由基[30];與合成碳源相比,天然碳源具有生態(tài)友好、經(jīng)濟(jì)高效、易得到等優(yōu)點(diǎn)[31-32]。碳點(diǎn)與其天然碳源的相似性主要是由于氧、氮、磷等雜原子的存在。雜原子存在的差異導(dǎo)致天然來源的碳點(diǎn)具有不同的性質(zhì)。Li等[33]使用賴氨酸和精氨酸通過熱解法一步合成碳點(diǎn),該碳點(diǎn)具有良好的抗菌和抑制生物被膜的效果,而且無細(xì)胞毒性,并且對(duì)哺乳動(dòng)物組織修復(fù)有促進(jìn)效果。Wang等[21]利用雙季銨鹽通過水熱法合成了碳點(diǎn),合成的碳點(diǎn)對(duì)抗藥性金黃色葡萄球菌具有顯著的抑制效果,并且能抑制和清除生物被膜。Zhao等[34]利用二甲基二烯丙基氯化銨和葡萄糖合成了季胺化碳點(diǎn),通過實(shí)驗(yàn)證明,該碳點(diǎn)具有優(yōu)異的抗菌性能,在混合菌感染創(chuàng)面小鼠模型中,碳點(diǎn)能明顯恢復(fù)小鼠體重,顯著降低嚴(yán)重感染導(dǎo)致小鼠死亡,促進(jìn)感染創(chuàng)面恢復(fù)愈合,因此,選用碳點(diǎn)進(jìn)行抗菌方面研究。

本研究以多巴胺和精胺為前體物,采用熱解法合成3種氨基功能化抗菌碳點(diǎn),通過TEM、XPS、Zeta電位、紅外光譜、紫外光譜等方法對(duì)碳點(diǎn)結(jié)構(gòu)和光學(xué)性能進(jìn)行表征,采用微量肉湯微量稀釋法研究3種氨基功能化碳點(diǎn)對(duì)食源性致病菌(金黃色葡萄球菌和大腸桿菌)的抗菌性能,并初步探索抗菌機(jī)制。研究發(fā)現(xiàn)碳點(diǎn)的抗菌效果隨合成材料的改變而發(fā)生變化,可以選擇合適的材料合成高效抗菌碳點(diǎn)作為抗生素替代品應(yīng)用于食源性致病菌消除領(lǐng)域。

1 實(shí)驗(yàn)

1.1 材料與儀器

主要材料:金黃色葡萄球菌()、大腸桿菌(),遼寧省渤海大學(xué)食品安全重點(diǎn)實(shí)驗(yàn)室提供,在37 ℃,160 r/min下培養(yǎng)。多巴胺鹽酸鹽,上海源葉生物科技有限公司;精胺鹽酸鹽,上海阿拉丁生化科技股份有限公司;LB肉湯、LB營(yíng)養(yǎng)瓊脂,青島海博生物科技有限公司;氯化鈉,福辰化學(xué)試劑有限公司。

主要儀器:DHP–9082電熱恒溫培養(yǎng)箱,上海齊欣科學(xué)儀器有限公司;1000TM梯度PCR儀,美國(guó)BIO–RAD公司;PowerPacTMBasic電泳儀,美國(guó)BIO–RAD公司。

1.2 方法

1.2.1 氨基功能化抗菌碳量子點(diǎn)的制備

稱取0.5 g的精胺和0.5 g的多巴胺,1 g精胺和1 g多巴胺分別放入坩堝,各加入1 mL的超純水,放入馬弗爐中250 ℃加熱2 h,待坩堝溫度降到室溫之后,將20 mL的水加到坩堝中并超聲1 h使固態(tài)物質(zhì)溶解。然后在12 000 r/min下離心1 h,將上清液用500 u透析袋透析5 h,每隔1 h換一次水。透析后的碳點(diǎn)溶液置于4 ℃保存或凍干后使用。

1.2.2 氨基功能化抗菌碳量子點(diǎn)的表征

使用FEI–Talos F200X透射電子顯微鏡(TEM)分析碳點(diǎn)的形貌;使用NICOLET iS10傅里葉變換紅外光譜儀表征碳點(diǎn)的紅外光譜(FTIR);使用UV–2550紫外–可見分光光度計(jì)記錄碳點(diǎn)的紫外吸收光譜;使用970CRT型熒光分光光度計(jì)測(cè)碳點(diǎn)的熒光光譜;使用賽默飛 EscaLab 250Xi X射線光電子能譜儀(XPS)測(cè)定碳點(diǎn)的元素組成。

1.2.3 氨基功能化抗菌碳量子點(diǎn)的抑菌實(shí)驗(yàn)

參考方福玲等[15]的實(shí)驗(yàn)方法,將培養(yǎng)至對(duì)數(shù)期生物細(xì)菌離心去除培養(yǎng)基,用生理鹽水洗3次后使用。將104CFU/mL的菌液與碳點(diǎn)混合,在160 r/min、37 ℃搖床中培養(yǎng)3 h,然后吸取100 μL菌液涂布于LB營(yíng)養(yǎng)瓊脂,放入37 ℃培養(yǎng)16 h。每組3個(gè)平行,將能完全(>99%)抑制細(xì)菌生長(zhǎng)的最低濃度定義為最小抑菌濃度(min)。

1.2.4 細(xì)菌形態(tài)觀察(SEM)

參考梅佳林等[35]的方法,將培養(yǎng)至對(duì)數(shù)生長(zhǎng)期的和離心(6 000 r/min,10 min),并用生理鹽水洗3次收集菌體,然后將108CFU/mL的菌液與碳點(diǎn)混合,使碳點(diǎn)最終濃度為1min、2min,置于搖床中培養(yǎng)6 h后離心,并用生理鹽水洗3次,以5 mm×5 mm的鋅片為載體,用體積分?jǐn)?shù)為2.5%的戊二醛固定4 h,最后依次用體積分?jǐn)?shù)為30%、50%、70%、90%、100%的乙醇對(duì)鋅片梯度洗脫,每個(gè)濃度靜置處理15 min,將樣品放在室溫干燥,將干燥后的鋅片進(jìn)行噴金處理,然后用掃描電鏡觀察細(xì)胞形態(tài)。

2 結(jié)果與分析

2.1 氨基功能化抗菌碳點(diǎn)的結(jié)構(gòu)形態(tài)表征

2.1.1 透射電鏡分析

由圖1的量子點(diǎn)透射電鏡觀察可知,所得到的3種碳點(diǎn)均為類球狀,分布均勻,沒有聚集。SPM–CDs、DA–CDs、SPM/DA–CDs平均粒徑分別為(4.25±0.89)、(3.90±0.67)、(4.0±0.96)nm。從高分辨TEM圖像表明SPM–CDs、DA–CDs、SPM/DA–CDs有明顯的晶格條紋,晶格間距分別為0.21、0.24、0.26 nm,對(duì)應(yīng)石墨(102)(100)(020)的衍射面[19],表明成功合成了碳點(diǎn)。超小的粒徑可以使碳點(diǎn)通過細(xì)胞壁、細(xì)胞膜進(jìn)入細(xì)胞,起到殺菌的效果。

圖1 碳點(diǎn)的透射電鏡圖像

注:左下角插圖為碳點(diǎn)HR–TEM晶格條紋圖像。

2.1.2 紅外光譜分析

通過紅外光譜對(duì)3種碳點(diǎn)表面基團(tuán)進(jìn)一步進(jìn)行分析,從圖2可以看出,3種碳點(diǎn)保留了許多前體的化學(xué)結(jié)構(gòu),都在3 300~3 500 cm?1有吸收峰,表明3種碳點(diǎn)都含有N?H和O?H,在2 950 nm?1處的峰是由于C?H的伸縮振動(dòng),1 610、1 382、1 238 nm?1分別對(duì)應(yīng)C=C、C?N、C?O拉伸振動(dòng)峰[10, 36]。在1 610 nm?1處,SPM–CDs、DA–CDs、SPM/DA–CDs對(duì)應(yīng)的峰強(qiáng)度逐漸增加,可能是由于石墨化程度的不同所致。從表1中可以看出,3種碳點(diǎn)中SPM/ DA?CDs碳元素含量最高,表明SPM/DA?CDs石墨化程度最高。

2.1.3 X射線光電子能譜分析

使用XPS測(cè)定了碳點(diǎn)表面的元素組成,由圖3a、b、c可以看出,3種碳點(diǎn)主要包含C(285 eV)、N(400 eV)、O(531 eV)3種元素。從高分辨圖譜C1s可以看出,3種碳點(diǎn)均含有C?C(284.4 eV±0.08 eV)、C=C(284.2 eV± 0.22 eV)、C?O(285.9 eV±0.26 eV)、C?N(285.2 eV± 0.28 eV)鍵,表明3種碳點(diǎn)表面均含有親水基團(tuán)。從高分辨圖譜N1s可以看出,3種碳點(diǎn)均保留了前體的氨基,DA–CDs和SPM/DA–CDs 2種碳點(diǎn)都有吡咯氮和石墨氮結(jié)構(gòu)的形成,表明N原子成功摻雜到碳核中[37],SPM–CDs表面酰亞胺鍵可能是由于精胺在高溫條件下發(fā)生縮合反應(yīng)形成的。高分辨O1s顯示3種碳點(diǎn)均含有C?O、O?H鍵。XPS結(jié)果與FTIR結(jié)果一致。

圖2 精胺、多巴胺、SPM–CDs、DA–CDs、 SPM/DA–CDs的FTIR光譜

表1 DA–CDs、SPM–CDs、SPM/DA–CDs的元素含量和zeta電位

Tab.1 Element content and zeta potential of DA–CDs, SPM–CDs and SPM/DA–CDs

表1為碳點(diǎn)所含3種元素的具體含量和碳點(diǎn)的電位。由表1可知,3種碳點(diǎn)均帶有較高的正電荷,可能是由于碳點(diǎn)表面有大量氨基的存在,高的電位使得碳點(diǎn)的水溶液有一個(gè)良好的穩(wěn)定性,正電荷使碳點(diǎn)能與細(xì)菌通過靜電作用結(jié)合,發(fā)揮抗菌作用。碳點(diǎn)的抗菌效果與表面電荷和所帶電荷量相關(guān),帶正電的碳點(diǎn)的抗菌能力強(qiáng)于帶負(fù)電和不帶電碳點(diǎn)的抗菌能力[38]。

2.2 氨基功能化抗菌碳點(diǎn)的光學(xué)性質(zhì)

由圖4a可以看出,3種碳點(diǎn)在365 nm紫外燈照射下均發(fā)出熒光,多巴胺在加入亞精胺后,合成的碳點(diǎn)熒光強(qiáng)度變強(qiáng)。通過紫外–可見吸收光譜(圖4b)可以看出,3種碳點(diǎn)在280 nm都有吸收峰,歸因于共軛C=C的π–π*躍遷,在300 nm的吸收峰歸因于C?N的n–π轉(zhuǎn)移[3, 19]。由熒光光譜可知(圖4c),在360 nm的激發(fā)波長(zhǎng)下,SPM/DA–CDs的熒光強(qiáng)度最強(qiáng),這與在365 nm紫外燈下看到的結(jié)果一致,可能是由于碳點(diǎn)表面基團(tuán)的改變和元素的摻雜導(dǎo)致熒光強(qiáng)度的變化。

2.3 氨基功能化抗菌碳量子點(diǎn)抗菌性能測(cè)試

以和為代表菌種,評(píng)估3種氨基功能化碳點(diǎn)和前體物的抗菌能力,如圖5所示,在相同質(zhì)量濃度(2 mg/mL)下,SPM/DA–CDs抗菌效果最好,DA–CDs有一定的抗菌效果,而SPM–CDs、精胺和多巴胺沒有抗菌效果。

SPM/DA–CD具有顯著的抗菌效果,測(cè)定了其對(duì)2種菌的最小抑菌濃度。由圖6可知,隨著碳點(diǎn)濃度的增加,平板上2種菌的菌落數(shù)量在逐漸減少,從涂布結(jié)果可以得出SPM/DA–CDs對(duì)金黃色葡萄球菌的最小抑菌濃度為0.25 mg/mL,對(duì)大腸桿菌的最小抑菌濃度為0.5 mg/mL。碳點(diǎn)對(duì)2種菌抑制效果的差異可能與細(xì)菌細(xì)胞壁結(jié)構(gòu)的差異有關(guān)。革蘭氏陽(yáng)性菌表面有一層由肽聚糖和磷壁酸構(gòu)成的單層膜結(jié)構(gòu),磷壁酸所帶的負(fù)電荷使碳點(diǎn)表面的氨基能快速結(jié)合,從而破壞細(xì)菌細(xì)胞壁使細(xì)胞內(nèi)物質(zhì)泄漏導(dǎo)致細(xì)胞死亡。革蘭氏陰性菌表面具有雙層膜結(jié)構(gòu),外層含有通過與正價(jià)鍵交聯(lián)的脂多糖,使碳點(diǎn)與菌的結(jié)合較弱[39-40]。

圖3 碳點(diǎn)的XPS結(jié)果

圖4 碳點(diǎn)光學(xué)性能表征結(jié)果

圖5 對(duì)照組和用不同材料處理的S.aureus和E.coli在LB瓊脂板上形成的代表性菌落

圖6 SPM/DA–CDs對(duì)S.aureus和E.coli的最小抑菌濃度

2.4 抑菌機(jī)理

為了探究碳點(diǎn)抗菌機(jī)理,使用掃描電鏡觀察不同濃度SPM/DA–CDs處理后的細(xì)菌形貌。從圖7可以看出,碳點(diǎn)處理前,金黃色葡萄球菌和大腸桿菌邊緣清晰,細(xì)胞壁完整。金黃色葡萄球菌呈球形結(jié)構(gòu),大腸桿菌呈桿狀結(jié)構(gòu),而經(jīng)過碳點(diǎn)處理的細(xì)胞膜受到嚴(yán)重破壞,隨著碳點(diǎn)濃度的增加,細(xì)菌被破壞的程度增大。當(dāng)碳點(diǎn)濃度為1min時(shí),細(xì)胞表面變得粗糙并且出現(xiàn)凹陷,當(dāng)碳點(diǎn)濃度達(dá)到2min時(shí),菌體遭到嚴(yán)重破壞,細(xì)菌細(xì)胞中內(nèi)容物流出,由此推測(cè)可能由于碳點(diǎn)表面的正電荷使其能快速與帶負(fù)電的細(xì)菌結(jié)合,破壞細(xì)菌細(xì)胞結(jié)構(gòu),導(dǎo)致細(xì)胞內(nèi)物質(zhì)泄漏,碳點(diǎn)進(jìn)入細(xì)胞后,也會(huì)破壞細(xì)菌蛋白質(zhì)和核酸,最終導(dǎo)致細(xì)菌死亡[41]。

圖7 碳點(diǎn)處理前后S.aureus和E.coli的SEM圖像

圖8 碳點(diǎn)抗菌機(jī)制

3 結(jié)語(yǔ)

文中以多巴胺和精胺為原料,采用熱解法合成了3種氨基功能化碳點(diǎn),并對(duì)碳點(diǎn)進(jìn)行表征。結(jié)果顯示,SPM–CDs、DA–CDs、SPM/DA–CDs平均粒徑分別為(4.25±0.89)、(3.90±0.67)、(4.0±0.96)nm,3種碳點(diǎn)表面富含C=C、C?H、N?H等官能團(tuán),碳點(diǎn)表面大量氨基的存在使合成的3種碳點(diǎn)在水溶液中都帶有較高的正電荷,賦予碳點(diǎn)水溶液良好的穩(wěn)定性。3種碳點(diǎn)都具有熒光性能,其中SPM/DA–CDs熒光性能最優(yōu)異,可能是由于亞精胺的加入改變了碳點(diǎn)的表面狀態(tài),從而引起了碳點(diǎn)的變化。抑菌實(shí)驗(yàn)結(jié)果表明,SPM/DA–CDs對(duì)食源性致病菌(金黃色葡萄球菌和大腸桿菌)具有顯著的抑制效果,最小抑菌濃度分別為0.25 mg/mL和0.5 mg/mL。根據(jù)碳點(diǎn)處理后細(xì)菌的掃描電鏡結(jié)果推測(cè),可能是由于碳點(diǎn)的小尺寸以及表面大量的正電荷使碳點(diǎn)能快速與細(xì)菌結(jié)合并進(jìn)入細(xì)菌細(xì)胞內(nèi),從而破壞細(xì)菌細(xì)胞結(jié)構(gòu),造成胞內(nèi)物質(zhì)泄漏,導(dǎo)致細(xì)菌死亡。根據(jù)實(shí)驗(yàn)結(jié)果可知,SPM/DA–CDs具有良好的熒光性能和抗菌效果,有望在食源性致病菌防治領(lǐng)域得到應(yīng)用。

[1] 王海宏, 鄭琦, 顏偉強(qiáng), 等. 電子束輻照抑制幾種常見食源性致病菌生長(zhǎng)的研究[J]. 食品與生物技術(shù)學(xué)報(bào), 2021, 40(10): 91-97.

WANG Hai-hong, ZHENG Qi, YAN Wei-qiang, et al. Inhibition of Growth of Several Common Food Borne Pathogens by Electron Beam Irradiation[J]. Journal of Food Science and Biotechnology, 2021, 40(10): 91-97.

[2] 陳沈梁, 霍柯宇, 金宇寧, 等. 食源性疾病食物鏈溯源快速檢測(cè)方法綜述[J]. 中國(guó)衛(wèi)生檢驗(yàn)雜志, 2021, 31(16): 2045-2048.

CHEN Shen-liang, HUO Ke-yu, JIN Yu-ning, et al. Summary of Rapid Detection Methods for Food Chain Traceability of Food-Borne Diseases[J]. Chinese Journal of Health Laboratory Technology, 2021, 31(16): 2045-2048.

[3] 崔方超. 多色碳量子點(diǎn)的功能化制備及其在生物成像、食源性致病菌檢測(cè)及抗菌中的應(yīng)用[D]. 無錫: 江南大學(xué), 2020.

CUI Fang-chao. Functional Preparation of Polychromatic Carbon Dots and Its Application in Biological Imaging, Detection of Food-Borne Pathogens and Antibacterial[D]. Wuxi: Jiangnan University, 2020.

[4] NGUYEN T H A, NGUYEN V C, PHAN T N H, et al. Novel Biogenic Silver and Gold Nanoparticles for Multifunctional Applications: Green Synthesis, Catalytic and Antibacterial Activity, and Colorimetric Detection of Fe(III) Ions[J]. Chemosphere, 2022, 287(3): 132271.

[5] BALACHANDAR R, NAVANEETHAN R, BIRUNTHA M, et al. Antibacterial Activity of Silver Nanoparticles Phytosynthesized from Glochidion Candolleanum Leaves[J]. Materials Letters, 2022, 311: 131572.

[6] KANNAN K, RADHIKA D, VIJAYALAKSHMI S, et al. Facile Fabrication of CuO Nanoparticles via Microwave-Assisted Method: Photocatalytic, Antimicrobial and Anticancer Enhancing Performance[J]. International Journal of Environmental Analytical Chemistry, 2022, 102(5): 1095-1108.

[7] JIMOH A, AKPEJI B, AZEEZ S, et al. Biosynthesis of Ag and TiO2Nanoparticles and the Evaluation of Their Antibacterial Activities[J]. Inorganic Chemistry Communications, 2022, 141: 109503.

[8] CHU X, ZHANG P, WANG Y, et al. Near-infrared Carbon Dot-based Platform for Bioimaging and Photothermal/Photodynamic/Quaternary Ammonium Triple Synergistic Sterilization Triggered by Single NIR Light Source[J]. Carbon, 2021, 176: 126-138.

[9] 孔秋晨, 佘慧明, 楊粵軍. 納米抗菌材料的研究進(jìn)展[J]. 生物化工, 2022, 8(1): 158-163.

KONG Qiu-chen, SHE Hui-ming, YANG Yue-jun. Research Progress of Nanometer Antibacterial Materials[J]. Biological Chemical Engineering, 2022, 8(1): 158-163.

[10] LIANG Jia-rong, LI Wei, CHEN Jian-ying, et al. Antibacterial Activity and Synergetic Mechanism of Carbon Dots Against Gram-Positive and -Negative Bacteria[J]. ACS Applied Bio Materials, 2021, 4(9): 6937-6945.

[11] 康振輝. 碳點(diǎn)的光電催化特性[J]. 分子科學(xué)學(xué)報(bào), 2021, 37(6): 483-500.

Kang Zhen-hui. The Photoelectrocatalytic Properties of Carbon Dots[J]. Journal of Molecular Science, 2021, 37(6): 483-500.

[12] HUANG S, LI B, ASHRAF U, et al. Quaternized Cationic Carbon Dots as Antigen Delivery Systems for Improving Humoral and Cellular Immune Responses[J]. ACS Applied Nano Materials, 2020, 3(9): 9449-9461.

[13] CHU Xiao-hong, WU Fan, SUN Bao-hong, et al. Genipin Cross-Linked Carbon Dots for Antimicrobial, Bioimaging and Bacterial Discrimination[J]. Colloids and Surfaces B, Biointerfaces, 2020, 190: 110930.

[14] 王煒霞. 熒光碳點(diǎn)和二硫化鎢量子點(diǎn)的制備及其在生物傳感中的應(yīng)用研究[D]. 鄭州: 鄭州大學(xué), 2021.

WANG Wei-xia. Preparation of Fluorescent Carbon Dots and Tungsten Disulfide Quantum Dots and Their Application in Biosensor[D]. Zhengzhou: Zhengzhou University, 2021.

[15] 方福玲. 碳量子點(diǎn)制備與抗菌性能研究及其感染性骨缺損治療應(yīng)用[D]. 上海: 上海大學(xué), 2021.

FANG Fu-ling. Preparation and Antibacterial Properties of Carbon Dots and Its Application in the Treatment of Infectious Bone Defects[D]. Shanghai: Shanghai University, 2021.

[16] ZHOU Xue-jiao, ZHANG Yan, WANG Chong, et al. Photo-Fenton Reaction of Graphene Oxide: A New Strategy to Prepare Graphene Quantum Dots for DNA Cleavage[J]. ACS Nano, 2012, 6(8): 6592-6599.

[17] HU S, LIU J, YANG J, et al. Laser Synthesis and Size Tailor of Carbon Quantum Dots[J]. Journal of Nanoparticle Research, 2011, 13(12): 7247-7252.

[18] LI Pei-li, LIU Shuai, CAO Wei-wei, et al. Low-Toxicity Carbon Quantum Dots Derived from Gentamicin Sulfate to Combat Antibiotic Resistance and Eradicate Mature Biofilms[J]. Chemical Communications (Cambridge, England), 2020, 56(15): 2316-2319.

[19] JIAN H J, WU R S, LIN T Y, et al. Super-Cationic Carbon Quantum Dots Synthesized from Spermidine as an Eye Drop Formulation for Topical Treatment of Bacterial Keratitis[J]. ACS Nano, 2017, 11(7): 6703-6716.

[20] TRAVLOU N A, GIANNAKOUDAKIS D A, ALGARRA M, et al. S-and N-doped Carbon Quantum Dots: Surface Chemistry Dependent Antibacterial Activity[J]. Carbon, 2018, 135: 104-111.

[21] WANG Hua-juan, SONG Zhi-yong, GU Jiang-jiang, et al. Nitrogen-Doped Carbon Quantum Dots for Preventing Biofilm Formation and Eradicating Drug-Resistant Bacteria Infection[J]. ACS Biomaterials Science & Engineering, 2019, 5(9): 4739-4749.

[22] SUN Bao-hong, WU Fan, ZHANG Qi-cheng, et al. Insight into the Effect of Particle Size Distribution Differences on the Antibacterial Activity of Carbon Dots[J]. Journal of Colloid and Interface Science, 2021, 584: 505-519.

[23] 郁靜雯, 呂佳, 程義云. 氟化修飾顯著提高碳點(diǎn)的抗菌活性[J]. 化學(xué)通報(bào), 2020, 83(4): 360-368.

YU Jing-wen, LYU Jia, CHENG Yi-yun. Fluorination Significantly Improves the Antibacterial Activity of Carbon Dots[J]. Chemistry, 2020, 83(4): 360-368.

[24] CHEN B, HUANG J, LI H, et al. Eradication of Planktonic Vibrio Parahaemolyticus and Its Sessile Biofilm by Curcumin-mediated Photodynamic Inactivation[J]. Food Control, 2020, 113: 107181.

[25] ZHAO Dan, LIU Xue-mei, ZHANG Rui, et al. Facile One-Pot Synthesis of Multifunctional Protamine Sulfate-Derived Carbon Dots for Antibacterial Applications and Fluorescence Imaging of Bacteria[J]. New Journal of Chemistry, 2021, 45(2): 1010-1019.

[26] KOUSHEH S A, MORADI M, TAJIK H, et al. Preparation of Antimicrobial/Ultraviolet Protective Bacterial Nanocellulose Film with Carbon Dots Synthesized from Lactic Acid Bacteria[J]. International Journal of Biological Macromolecules, 2020, 155: 216-225.

[27] ZHANG Z, SUN W, WU P. Highly Photoluminescent Carbon Dots Derived from Egg White: Facile and Green Synthesis, Photoluminescence Properties, and Multiple Applications[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(7): 1412-1418.

[28] MANDANI S, DEY D, SHARMA B, et al. Natural Occurrence of Fluorescent Carbon Dots in Honey[J]. Carbon, 2017, 119: 569-572.

[29] WU Y, LI C, VAN D M H C, et al. Carbon Quantum Dots Derived from Different Carbon Sources for Antibacterial Applications[J]. Antibiotics (Basel, Switzerland), 2021, 10(6): 623.

[30] SUN Han-jun, GAO Nan, DONG Kai, et al. Graphene Quantum Dots-Band-Aids Used for Wound Disinfection[J]. ACS Nano, 2014, 8(6): 6202-6210.

[31] LIN Feng-ming, LI Cheng-cheng, CHEN Zhan. Bacteria-Derived Carbon Dots Inhibit Biofilm Formation ofwithout Affecting Cell Growth[J]. Frontiers in Microbiology, 2018, 9: 259.

[32] WANG Hui-bo, ZHANG Meng-ling, MA Yu-rong, et al. Selective Inactivation of Gram-Negative Bacteria by Carbon Dots Derived from Natural Biomass: Artemisia Argyi Leaves[J]. Journal of Materials Chemistry B, 2020, 8(13): 2666-2672.

[33] LI P, HAN F, CAO W, et al. Carbon Quantum Dots Derived from Lysine and Arginine Simultaneously Scavenge Bacteria and Promote Tissue Repair[J]. Applied Materials Today, 2020, 19: 100601.

[34] ZHAO Cheng-fei, WANG Xue-wen, YU Lu-ying, et al. Quaternized Carbon Quantum Dots with Broad-Spectrum Antibacterial Activity for the Treatment of Wounds Infected with Mixed Bacteria[J]. Acta Biomaterialia, 2022, 138: 528-544.

[35] 梅佳林, 李婷婷, 張星暉, 等. 芳樟醇對(duì)三文魚源莓實(shí)假單胞菌的抑菌機(jī)理[J]. 食品科學(xué), 2022, 43(9): 199-206.

MEI Jia-lin, LI Ting-ting, ZHANG Xing-hui, et al. Antibacterial Mechanism of Linalool Against Pseudomonas Fragi from Salmon[J]. Food Science, 2022, 43(9): 199-206.

[36] YE Zhi-guo, LI Gui-xin, LEI Jing, et al. One-Step and One-Precursor Hydrothermal Synthesis of Carbon Dots with Superior Antibacterial Activity[J]. ACS Applied Bio Materials, 2020, 3(10): 7095-7102.

[37] 杜芳芳. 雜原子摻雜熒光碳點(diǎn)的制備及其多功能應(yīng)用[D]. 太原: 山西大學(xué), 2021.

DU Fang-fang. Preparation and Multifunctional Application of Heteroatom Doped Fluorescent Carbon Dots[D]. Taiyuan: Shanxi University, 2021.

[38] KURIAN M, PAUL A. Recent Trends in the Use of Green Sources for Carbon Dot Synthesis-A Short Review[J]. Carbon Trends, 2021, 3: 100032.

[39] YANG J, GAO G, ZHANG X, et al. One-Step Synthesis of Carbon Dots with Bacterial Contact-Enhanced Fluorescence Emission: Fast Gram-Type Identification and Selective Gram-Positive Bacterial Inactivation[J]. Carbon, 2019, 146: 827-839.

[40] 趙艷. 碳量子點(diǎn)的抑菌性能研究[J]. 延安大學(xué)學(xué)報(bào)(自然科學(xué)版), 2019, 38(4): 50-54.

ZHAO Yan. Synthesis and Antibacterial Activity of Carbon Quantum Dots[J]. Journal of Yan'an University (Natural Science Edition), 2019, 38(4): 50-54.

[41] 黃湘, 周莉佳, 粟小燕, 等. 基于甘草酸的熒光納米碳點(diǎn)的合成及性能研究[J]. 化學(xué)試劑, 2022, 44(8): 1142-1147.

HUANG Xiang, ZHOU Li-jia, SU Xiao-yan, et al. Synthesis, Fluorescence Properties and Antibacterial Activity of Fluorescent Carbon Dots Based on Glycyrrhizic Acid[J]. Chemical Reagents, 2022, 44(8): 1142-1147.

Preparation and Antibacterial Properties of Amino Functionalized Antibacterial Carbon Quantum Dots

CUI Fang-chao1, ZHOU Shan-shan1, WANG Dang-feng1, TAN Xi-qian1, LI qiu-ying1, LI Ting-ting2, LI Jian-rong1

(1. a. College of Food Science and Engineering b. National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Liaoning Jinzhou 121013, China; 2. College of Life Science, Dalian Minzu University, Liaoning Dalian 116600, China)

The work aims to synthesize amino-functionalized antibacterial carbon quantum dots with spermine and dopamine as raw materials, to provide reference for their further application in elimination of foodborne pathogens. Spermine carbon dots, dopamine carbon dots and spermine/dopamine carbon dots (SPM–CDs, DA–CDs, SPM/DA–CDs) were synthesized by pyrolysis of spermine and dopamine. The carbon dots were characterized by transmission scanning electron microscopy, X-ray photoelectron spectroscopy, infrared spectroscopy, zeta potential, ultraviolet spectroscopy and fluorescence spectroscopy. Foodborne pathogenic bacteriaandwere selected as the test strains. The antibacterial properties of carbon dots and their precursors were studied by the micro broth dilution method. The results showed that SPM-CDs, DA-CDs and SPM/DA-CDs had good dispersion, with average particle sizes of (4.25±0.89), (3.90±0.67) and (4.0±0.96) nm, respectively. Under the irradiation of 365 nm UV lamp, the three carbon spots could emit fluorescence, and the surface had high positive charge and contained chemical bonds such as C=C, C?O, O?H; The antibacterial experiment showed that SPM/DA-CDs had significant inhibitory effect onand, and the minimum inhibitory concentration was 0.25 mg/mL and 0.5 mg/mL respectively, while SPM-CDs, DA-CDs and precursors had poor inhibitory effect on the two bacteria; SEM results showed that the carbon spots could cause the bacterial surface depression and rupture, leading to the death of bacteria. The amino functionalized antibacterial carbon dots synthesized in this work have superior antibacterial effect and are expected to be applied to the prevention and treatment of foodborne pathogens, reduce the potential safety hazards caused by pathogenic bacteria in food, and ensure food safety and human health.

carbon quantum dots; pyrolysis method; foodborne pathogenic bacteria; antibacterial; antibacterial mechanism

O613.71

A

1001-3563(2023)05-0121-09

10.19554/j.cnki.1001-3563.2023.05.016

2022?08?10

國(guó)家重點(diǎn)研發(fā)計(jì)劃課題(2019YFD0901702)

崔方超(1989—),男,博士,講師,主要研究方向?yàn)樗a(chǎn)品貯藏加工及安全控制。

李婷婷(1978—),女,博士,教授,主要研究方向?yàn)樗a(chǎn)品貯藏、加工及質(zhì)量安全控制;勵(lì)建榮(1964—),男,博士,教授,主要研究方向?yàn)樯r食品貯藏加工及食品安全。

責(zé)任編輯:曾鈺嬋

猜你喜歡
碳點(diǎn)精胺功能化
分子篩限域碳點(diǎn)材料的研究進(jìn)展
生物基環(huán)氧樹脂高性能化和功能化的研究進(jìn)展
硅硼摻雜碳點(diǎn)的制備及其在血紅蛋白傳感中的應(yīng)用
異元素?fù)诫s碳點(diǎn)的制備及其在生物成像中的應(yīng)用
腹腔注射亞精胺對(duì)小鼠卵巢組織多胺含量及代謝相關(guān)基因表達(dá)的影響
石墨烯及其功能化復(fù)合材料制備研究
外源精胺對(duì)斷奶仔豬血液精胺含量、臟器發(fā)育和生產(chǎn)性能的影響
功能化三聯(lián)吡啶衍生物的合成及其對(duì)Fe2+識(shí)別研究
生物質(zhì)碳點(diǎn)的合成及初步用于鹽酸土霉素的測(cè)定
亞精胺對(duì)誘導(dǎo)DNA凝聚行為的影響研究