国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

PLA、PGA及其共聚物在包裝領(lǐng)域應(yīng)用研究進(jìn)展

2023-03-14 12:14:50徐杰林李振廣陳仕艷王朝生烏婧王華平
包裝工程 2023年5期
關(guān)鍵詞:開環(huán)聚乳酸共聚物

徐杰林,李振廣,陳仕艷,王朝生,烏婧,王華平,d

PLA、PGA及其共聚物在包裝領(lǐng)域應(yīng)用研究進(jìn)展

徐杰林a,c,李振廣a,c,陳仕艷a,c,王朝生a,c,烏婧b,c,d,王華平a,c,d

(東華大學(xué) a.材料科學(xué)與工程學(xué)院 b.紡織產(chǎn)業(yè)關(guān)鍵技術(shù)協(xié)同創(chuàng)新中心 紡織科技創(chuàng)新中心 c.纖維改性材料國家重點(diǎn)實(shí)驗(yàn)室 d.國家先進(jìn)功能纖維創(chuàng)新中心,上海 201620)

綜述聚乳酸(PLA)、聚乙交酯(PGA)、聚乙丙交酯(PLGA)及其改性材料在包裝領(lǐng)域的研究進(jìn)展,對改性材料及制備工藝進(jìn)行展望,為PLA、PGA以及PLGA的改性與制備提供參考。簡介PLA、PGA以及PLGA的制備方法、基本性能,并總結(jié)近幾年改性材料的種類及其制備工藝。對PLA、PGA以及PLGA進(jìn)行改性,再通過溶液鑄膜、吹塑制膜等工藝制備薄膜,制備的薄膜具有優(yōu)異的抗紫外性能、阻隔性能以及抗菌性能。PLA、PGA以及PLGA具有優(yōu)異的生物降解性能,通過改性后制備的薄膜性能更加均衡,在包裝領(lǐng)域具有極大的應(yīng)用前景,對聚合物的改性方法還需進(jìn)行深入研究,制備出性能更加優(yōu)異的改性材料。

聚乳酸;聚乙交酯;聚乙丙交酯;改性;包裝

從服裝、餐飲、汽車到醫(yī)學(xué)、電子領(lǐng)域,高分子材料在現(xiàn)代生活中扮演著重要的角色[1]。尤其在包裝行業(yè)中,塑料的大量使用,給人們的生活帶來了很大的便利[2]。包裝材料大多是聚乙烯、聚對苯二甲酸乙二醇酯等石油基不可降解高分子材料,當(dāng)其使用周期結(jié)束后,被遺棄在自然環(huán)境會引發(fā)“白色污染”等一系列環(huán)境問題,其產(chǎn)生的微塑料更是對人和其他生物造成嚴(yán)重影響[3-5]。針對這些問題,開發(fā)生物可降解材料是解決該問題的策略之一[6]。

聚乳酸(PLA)是目前全球所有生物基塑料中產(chǎn)量最高的,預(yù)計(jì)到2025年,PLA的年產(chǎn)量將達(dá)到56萬t[7]。PLA的機(jī)械強(qiáng)度高,透明度好,易加工,且被美國食品和藥物管理局(Food and Drug Administration,F(xiàn)DA)批準(zhǔn)用于食品包裝,因此PLA是一種極具吸引力的綠色包裝材料,然而,PLA韌性差,很難單獨(dú)作為包裝材料使用[8-9]。聚乙交酯(PGA)與PLA具有相似的化學(xué)結(jié)構(gòu),但沒有甲基側(cè)基,因此表現(xiàn)出與聚乳酸不同的特性[10]。PGA降解速度快、力學(xué)性能以及生物相容性好、阻隔性能優(yōu)異,在醫(yī)療、包裝和可再生工業(yè)中具有重要的應(yīng)用價(jià)值,但其韌性相對較差,單獨(dú)作為包裝材料使用受到限制[11-12]。聚乙丙交酯(PLGA)是乳酸與乙醇酸的共聚物,通過控制乳酸和乙醇酸的比例,可以靈活地控制其力學(xué)性能和降解性能,使其在綠色環(huán)保的塑料工業(yè)中發(fā)揮重要作用,特別是針對需要在室溫或自然環(huán)境下快速降解的一次性包裝產(chǎn)品,其作用更為顯著,但其抗菌性能還需進(jìn)一步提升[6, 13]。

文中首先對PLA、PGA、PLGA的制備方法進(jìn)行回顧,其次,簡介了PLA、PGA、PLGA的基本性能并與傳統(tǒng)工程塑料的性能進(jìn)行比較,最后分析近年來PLA、PGA、PLGA的改性方法及其在包裝材料領(lǐng)域的應(yīng)用。以期為PLA、PGA、PLGA的改性材料制備以及其在包裝材料領(lǐng)域的應(yīng)用提供參考。

1 PLA、PGA及其共聚物的制備

1.1 PLA的制備

乳酸是合成聚乳酸的原料,可從甘蔗、玉米、小麥、木薯等富含淀粉和糖的作物中提取[14]。目前制備聚乳酸的途徑主要有乳酸直接縮聚法以及丙交酯開環(huán)聚合法,如圖1所示。直接縮聚法工藝簡單,以乳酸為聚合單體,在催化劑的作用下,乳酸單體上的羥基與羧基發(fā)生脫水縮合反應(yīng),生成PLA聚合物,但隨著反應(yīng)進(jìn)行,聚合體系的黏度隨著PLA摩爾質(zhì)量的增加而增長,使得副產(chǎn)物水難以去除,無法合成高摩爾質(zhì)量PLA。Moon等[15]通過直接縮聚法,熔融制備摩爾質(zhì)量為2′104g/mol的聚合物,隨后在105 ℃左右熱處理結(jié)晶,然后在140 ℃或150 ℃下加熱10~30 h進(jìn)一步固相縮聚,可以在較短的反應(yīng)時(shí)間內(nèi)以高收率獲得摩爾質(zhì)量超過5′105g/mol的聚乳酸。開環(huán)聚合制備PLA以丙交酯為單體,丙交酯可由聚乳酸低聚物解聚得到,通過開環(huán)聚合制備PLA可控性好、副反應(yīng)少、產(chǎn)物摩爾質(zhì)量和強(qiáng)度高,但只有純度高的丙交酯才能合成摩爾質(zhì)量高、性能優(yōu)異的PLA[16]。姚逸等[17]以丙交酯為單體,通過開環(huán)聚合法,在180 ℃反應(yīng)3 h,得到數(shù)均摩爾質(zhì)量大于1′105g/mol的聚乳酸。

圖1 PLA的制備方法

1.2 PGA的制備

乙醇酸是制備PGA的單體,它是最小的α–羥基酸,乙醇酸可從石油或可再生資源(例如甘蔗、甜菜、菠蘿)中獲得[6]。PGA可通過以下2種聚合方法制備,即乙醇酸的縮聚和乙交酯的開環(huán)聚合,如圖2所示[18]。乙醇酸直接縮聚法操作簡單,但由于PGA在其熔化溫度以上的熱穩(wěn)定性較差,因此在縮聚過程中很容易降解,只能得到較低摩爾質(zhì)量的聚合物,無法滿足加工及使用需求[19-20]。崔愛軍等[21]以乙醇酸為單體,通過直接縮聚法在190 ℃下反應(yīng)得到摩爾質(zhì)量為2′104g/mol左右的低聚物,隨后在190 ℃下繼續(xù)固相反應(yīng),最終得到摩爾質(zhì)量為7.4′104g/mol的PGA。相比之下開環(huán)聚合可對聚合反應(yīng)進(jìn)行更精確的控制,是合成高摩爾質(zhì)量PGA的主要方法,因此,在PGA的工業(yè)生產(chǎn)中通常采用乙交酯開環(huán)聚合法,但開環(huán)聚合法對乙交酯純度要求較高[22]。乙交酯開環(huán)聚合常用的催化劑有辛酸亞錫、次水楊酸鉍、氯化亞錫、乙酸鉍、二苯基溴化鉍等[18, 23-26]。Lu等[26]以二苯基溴化鉍為催化劑,通過乙交酯開環(huán)聚合法制備了摩爾質(zhì)量高達(dá)2.4′105g/mol的PGA,但與PLA相比,PGA的單體乙醇酸比乳酸昂貴,因此PGA在擴(kuò)大生產(chǎn)方面尚未取得很好的發(fā)展。

圖2 PGA的制備方法

1.3 PLGA的制備

PLGA是聚乳酸與聚乙醇酸的共聚物,其合成路線如圖3所示。PLGA可以通過乳酸與乙醇酸縮聚得到,但同樣存在摩爾質(zhì)量較低的問題,高摩爾質(zhì)量的PLGA通常是在錫類催化劑的作用下,以高純度丙交酯、乙交酯為單體,通過開環(huán)聚合制備[10]。由于聚乳酸鏈段上的甲基具有疏水作用,因此當(dāng)聚合物鏈段中引入了聚乳酸鏈段時(shí),使得PLGA比PGA更具疏水性,從而導(dǎo)致PLGA相對于PGA需要更長的降解周期[6]。

2 PLA、PGA及其共聚物的基本性能

PLA是一種硬質(zhì)熱塑性塑料,具有良好的生物相容性和降解性能,采用乳酸的L型和D型旋光異構(gòu)體,可以制備左旋聚乳酸(PLLA)、右旋聚乳酸(PDLA)和外消旋聚乳酸(PDLLA)[27]。這些立體異構(gòu)體的結(jié)晶度和降解速率不同,其中,PLLA和PDLA是可結(jié)晶的,降解緩慢,而PDLLA是無定型的,降解較快。聚乳酸的基本性能如表1所示[6,12],其基本性能與聚對苯二甲酸乙二醇酯(PET)較為接近,但與聚丙烯(PP)差異較大。聚乳酸具有極好的透明度、光澤的外觀以及高剛性,可以應(yīng)用于纖維、一次性杯子和包裝材料等領(lǐng)域。

相對于PLA材料,PGA的拉伸強(qiáng)度更高,在90~110 MPa,由于其結(jié)構(gòu)具有高度的規(guī)整性,導(dǎo)致PGA可以快速結(jié)晶,其結(jié)晶溫度約為150~180 ℃,最高結(jié)晶度可達(dá)52%,高結(jié)晶度也導(dǎo)致其韌性較差。同時(shí)PGA結(jié)構(gòu)的高度規(guī)整性使得其對氣體、水分具有較高的阻隔性,在包裝領(lǐng)域具有良好的應(yīng)用前景。PGA的降解速率過快,導(dǎo)致其貨架期較短,且PGA在大多數(shù)常見的有機(jī)溶劑中都不溶解,僅在當(dāng)摩爾質(zhì)量低于4.5′104g/mol時(shí)溶解于六氟異丙醇,使得其表征困難[12]。

PLA和PGA的共聚已經(jīng)被人們廣泛研究,PLGA是乳酸(LA)和乙醇酸(GA)的線性共聚物,可以通過調(diào)節(jié)LA和GA的比例能夠制備不同性能的PLGA[28-31]。PLGA的玻璃化轉(zhuǎn)變溫度介于PLA和PGA之間。PLGA的降解速率與乳酸、乙醇酸的比例有關(guān),這是由于乳酸的甲基會使得材料更加疏水,因此,在共聚中,隨著LA的含量增加,聚合物的親水性會越來越差,使得共聚物的水解/生物降解速率下降,同時(shí),隨著共聚物組分發(fā)生變化,共聚物的結(jié)晶度也會相應(yīng)變化,研究表明,當(dāng)LA與GA的物質(zhì)的量之比為50∶50時(shí)降解速率達(dá)到最快[10, 32]。

圖3 PLGA的制備方法

表1 PLA、PGA及其共聚物基本性能

Tab.1 Basic characteristics of PLA, PGA and their copolymer

3 PLA、PGA及其共聚物在包裝領(lǐng)域的應(yīng)用

PLA、PGA及其共聚物具有良好的降解性能,具有在包裝領(lǐng)域應(yīng)用的潛力,但PLA、PGA質(zhì)地硬脆,其共聚物抗菌性能較差,通過與其他材料共混是一種簡單且經(jīng)濟(jì)的方法。目前,常用的共混材料有增塑劑、抗菌劑、納米填料以及天然材料等,如表2所示。

表2 共混材料及共混物性能特點(diǎn)

Tab.2 Blended materials and performance characteristics of blend

改性后的材料可通過靜電紡絲、溶液鑄膜、熱壓成膜以及吹塑制膜等工藝制備薄膜,不同制膜工藝的特點(diǎn)如表3所示。

3.1 PLA的改性及在包裝領(lǐng)域的應(yīng)用

PLA材料具有較好的力學(xué)強(qiáng)度和透明性,在生產(chǎn)過程中具有低能耗、低溫室氣體排放等顯著優(yōu)勢,使其在包裝材料領(lǐng)域具有廣闊的應(yīng)用前景,但PLA質(zhì)地硬脆、抗紫外性能及阻隔性能差,極大地限制了其在包裝領(lǐng)域的應(yīng)用[39]。

研究人員通過復(fù)合改性有效提高了PLA材料的力學(xué)性能、阻隔性能以及抗菌性能,使其能夠用于包裝領(lǐng)域,如表4所示。Rigotti等[40]將不同比例聚(五亞甲基2,5–呋喃酸酯)與PLA共混,隨后通過溶液鑄膜得到透明度極好的薄膜,當(dāng)聚(五亞甲基2,5–呋喃酸酯)質(zhì)量分?jǐn)?shù)為30%時(shí),共混物的斷裂伸長率提高至200%,同時(shí),氧氣和二氧化碳?xì)怏w透過率下降至純PLA的四分之一;Swaroop等[37]在PLA中添加氧化鎂顆粒,采用吹塑工藝制備薄膜,實(shí)驗(yàn)結(jié)果表明,在添加2%的氧化鎂時(shí),所制備的薄膜相較于純PLA薄膜的拉伸強(qiáng)度和塑性分別提高了近22%和146%,添加1%的氧化鎂時(shí),氧氣和水蒸氣阻隔性能相較于純PLA薄膜分別提高了近65%和57%,且共混物對大腸桿菌有極好的抑制性,整體表現(xiàn)出優(yōu)異的力學(xué)性能、阻隔性能以及抗菌性能;Zeng等[9]將聚己內(nèi)酯、百里香酚和MIL–68(AL)與PLA共混,并通過靜電紡絲制備薄膜,體外抑菌實(shí)驗(yàn)表明,百里香酚和MIL–68(AL)的加入,有效抑制了大腸桿菌和金黃色葡萄球菌的生長,極大地提高了共混物的抗菌性能。

表3 薄膜制備工藝及其特點(diǎn)

Tab.3 Film preparation process and characteristics

改性后的PLA材料具有優(yōu)異的綜合性能,在包裝領(lǐng)域有著廣闊的應(yīng)用前景,但目前大多數(shù)復(fù)合材料的制備仍處于實(shí)驗(yàn)室階段,其后續(xù)擴(kuò)大生產(chǎn)需要研究人員的進(jìn)一步探索。

表4 PLA改性材料及制備工藝

Tab.4 PLA modified materials and preparation process

3.2 PGA的改性及應(yīng)用

在生物可降解包裝材料中,PAG是一種極具吸引力的聚合物,因?yàn)樗谀壳八猩锟山到馑芰现芯哂凶罡叩难鯕夂退魵庾韪粜?,且力學(xué)性能優(yōu)異,但由于其固有的機(jī)械脆性、濕度敏感性,以及熔點(diǎn)(225~230 ℃)與分解溫度(255 ℃)相近等缺點(diǎn),限制了其加工和在薄膜包裝領(lǐng)域的應(yīng)用[52]。

研究人員通過加入柔性材料與PGA共混,極大地改善了PGA的力學(xué)性能,如表5所示。Sun等[53]通過雙螺桿將PBAT與PGA共混,隨后通過吹塑工藝制備薄膜,并考察該薄膜對草莓的保鮮效果,實(shí)驗(yàn)表明,80%PGA/20%PBAT能有效抑制多酚氧化酶活性和H2O2含量的增加,延長草莓的保存時(shí)間;Xu等[54]將PCL與PGA共混,提高了PGA的韌性,并在共混物中添加多功能環(huán)氧聚合物(MEPs)作為活性增容劑,PCL和PGA的末端羧基/羥基都能與MEP發(fā)生原位反應(yīng),極大地提高了PGA與PCL的相容性,當(dāng)MEP質(zhì)量分?jǐn)?shù)為0.75%時(shí),PGA/PCL共混物的斷裂韌性提高了370%,抗拉強(qiáng)度提高到49.6 MPa。

由于PGA材料本身具有優(yōu)異的阻隔性能,因此對PGA的改性主要集中在提高PGA的韌性以及熱穩(wěn)定性,對PGA的其他性能,如抗菌性能還需進(jìn)一步探索。

3.3 PLGA的應(yīng)用

PLGA是應(yīng)用較廣泛的可生物降解的聚合物之一,可控降解是PLGA的一個(gè)基本特征,通過調(diào)整共聚物中LA與GA的比例來調(diào)節(jié)PLGA材料的降解時(shí)間,可使其應(yīng)用于不同保質(zhì)期限的產(chǎn)品,然而PLGA的抗菌性能較差,使得產(chǎn)品保鮮時(shí)間大大縮短[13]。

研究人員通過在PLGA基體中添加抗菌材料使其具有一定的抗菌性能,極大地促進(jìn)了其在包裝領(lǐng)域的應(yīng)用,如表6所示。常用的抗菌材料有酚類以及金屬納米材料。其中,酚類抗菌材料價(jià)格便宜,對細(xì)菌殺傷力強(qiáng),但耐熱性能較差,其抗菌機(jī)制是通過與微生物細(xì)胞膜相互作用破壞膜結(jié)構(gòu),從而使細(xì)胞內(nèi)容物損失,殺死細(xì)菌及微生物[60];相比之下,金屬納米材料的耐熱性能較好,抗菌性能優(yōu)異,但價(jià)格較為昂貴,其通過破壞細(xì)菌細(xì)胞膜、影響酶的活性、破壞蛋白質(zhì)合成、干擾DNA、RNA合成等手段殺死細(xì)菌及微生物[34]。Fortunati等[61]分別將質(zhì)量分?jǐn)?shù)為1%和7%的銀納米顆粒加入PLGA基體中,通過溶液鑄膜制備薄膜,再通過等離子體對薄膜表面進(jìn)行處理,實(shí)驗(yàn)表明抗菌納米材料共混后的材料通過等離子體表面處理,可以有效地減少細(xì)菌在銀納米顆粒和PLGA基系統(tǒng)上的黏附和生長,有效抑制了大腸桿菌以及金黃色葡萄球菌。

表5 PGA改性材料及制備工藝

Tab.5 PGA modified materials and preparation process

表6 PLGA改性材料及制備工藝

Tab.6 PLGA modified materials and preparation process

通過添加抗菌材料,彌補(bǔ)PLGA材料抗菌性能較差的缺陷,結(jié)合PLGA材料可控降解的特性,使得PLGA材料成為包裝領(lǐng)域中極具前景的材料之一。

4 結(jié)語

環(huán)境問題是關(guān)系到人類生存的重大問題,烯烴類、聚酯類等不可降解塑料包裝的大量使用在方便人們生活的同時(shí)也給環(huán)境造成了巨大的危害。研究和發(fā)展綠色可降解包裝材料可有效降低包裝材料廢棄后對環(huán)境造成的污染,PLA、PGA以及PLGA具有優(yōu)異的生物降解性能和力學(xué)性能,在包裝領(lǐng)域具有廣闊的應(yīng)用前景,但用來完全替代傳統(tǒng)塑料包裝材料,仍需要克服PLA、PGA和PLGA材料本身存在的一些問題。

PLA、PGA存在韌性差的問題,可以通過物理共混改性來解決,但是物理共混存在兩相之間的相容性問題,相容性較差會導(dǎo)致相分離,從而導(dǎo)致共混物性能變差,通過添加相容劑可增強(qiáng)兩相之間的相容性,但相容劑的添加使得生產(chǎn)成本上升,工藝更加復(fù)雜,因此,探究相容性更好的增韌材料,開發(fā)性價(jià)比高的相容劑將會是未來的研究方向。

制備抗菌性能優(yōu)異的PLA、PGA、PLGA包裝材料是未來研究的熱點(diǎn),通過合成更加高效、環(huán)保的抗菌材料,使得抗菌改性的共混物具備優(yōu)異的抗菌性能,延長產(chǎn)品的保質(zhì)期限。

內(nèi)裝產(chǎn)品的不同,對包裝材料的需求也存在差異,單一功能的可降解包裝材料的使用會受到限制,因此,研制多功能的復(fù)合包裝材料更加具有實(shí)用意義。

[1] ZHU Yun-qing, ROMAIN C, WILLIAMS C K. Sustainable Polymers from Renewable Resources[J]. Nature, 2016, 540(7633): 354-362.

[2] 陳婕, 梅林玉. 聚乳酸/茶多酚復(fù)合包裝膜的制備及性能[J]. 包裝工程, 2021, 42(23): 100-108.

CHEN Jie, MEI Lin-yu. Preparation and Properties of Polylactic Acid/Tea Polyphenol Composite Packaging Film[J]. Packaging Engineering, 2021, 42(23): 100-108.

[3] CHEN J, WU J, SHERRELL P C, et al. How to Build a Microplastics-Free Environment: Strategies for Microplastics Degradation and Plastics Recycling[J]. Advanced Science, 2022, 9(6): 2103764.

[4] ZHOU D, CHEN J, WU J, et al. Biodegradation and Catalytic-Chemical Degradation Strategies to Mitigate Microplastic Pollution[J]. Sustainable Materials and Technologies, 2021, 28: 00251.

[5] 方文康. 新時(shí)代的綠色包裝材料發(fā)展[J]. 上海包裝, 2018(6): 46-48.

FANG Wen-kang. The Development of Green Packaging Materials in the New Era[J]. Shanghai Packaging, 2018(6): 46-48.

[6] JEM K J, TAN B. The Development and Challenges of Poly (Lactic Acid) and Poly (Glycolic Acid)[J]. Advanced Industrial and Engineering Polymer Research, 2020, 3(2): 60-70.

[7] SUN C, WEI S, TAN H, et al. Progress in Upcycling Polylactic Acid Waste as an Alternative Carbon Source: A review[J]. Chemical Engineering Journal, 2022, 446: 136881.

[8] ZHANG M, BIESOLD G M, CHOI W, et al. Recent Advances in Polymers and Polymer Composites for Food Packaging[J]. Materials Today, 2022, 53: 134-161.

[9] ZENG J, JI Q, LIU X, et al. Electrospun Polylactic Acid/Poly (Ε-Caprolactone) Fibrous Encapsulated Thymol/MIL-68(Al) as a Food Packaging Material[J]. Journal of Materials Research and Technology, 2022, 18: 5032-5044.

[10] SAMANTARAY P K, LITTLE A, HADDLETON D M, et al. Poly(Glycolic Acid) (PGA): A Versatile Building Block Expanding High Performance and Sustainable Bioplastic Applications[J]. Green Chemistry, 2020, 22(13): 4055-4081.

[11] BUDAK K, SOGUT O, AYDEMIR SEZER U. A Review on Synthesisand Biomedical Applications of Polyglycolic Acid[J]. Journal of Polymer Research, 2020, 27(8): 1-19.

[12] LOW Y J, ANDRIYANA A, ANG B C, et al. Bioresorbable and Degradable Behaviors of PGA: Current state and Future Prospects[J]. Polymer Engineering & Science, 2020, 60(11): 2657-2675.

[13] ZHAO Duo-yi, ZHU Tong-tong, LI Jie, et al. Poly(Lactic-Co-Glycolic Acid)-Based Composite Bone- Substitute Materials[J]. Bioactive Materials, 2021, 6(2): 346-360.

[14] SID S, MOR R S, KISHORE A, et al. Bio-Sourced Polymers as Alternatives to Conventional Food Packaging Materials: A Review[J]. Trends in Food Science & Technology, 2021, 115: 87-104.

[15] MOON S I, LEE C W, TANIGUCHI I, et al. Melt/Solid Polycondensation of L-Lactic Acid: an Alternative Route to Poly (L-Lactic Acid) with High Molecular Weight[J]. Polymer, 2001, 42(11): 5059-5062.

[16] 辛穎,王天成,金書含,等. 聚乳酸市場現(xiàn)狀及合成技術(shù)進(jìn)展[J]. 現(xiàn)代化工, 2020, 40(S1): 71-74.

XIN Ying, WANG Tian-cheng, JIN Shu-han, et al. Present Market Situation and Synthesis Technology Advances of PLA[J]. Modern Chemical Industry, 2020, 40(S1): 71-74.

[17] 姚逸, 王超軍, 劉勤, 等. 高分子量聚L–乳酸合成研究[J]. 廣東化工, 2022, 49(14): 44-46.

YAO Yi, WANG Chao-jun, LIU Qin, et al. Synthesis of High Molecular Weight Poly(l-lactic acid)[J]. Guangdong Chemical Industry, 2022, 49(14): 44-46.

[18] 吳桂寶, 崔愛軍, 陳群, 等. 高壓下開環(huán)聚合制備聚羥基乙酸的工藝研究[J]. 高分子通報(bào), 2013(3): 55-60.

WU Gui-bao, CUI Ai-jun, CHEN Qun, et al. Process Study on Ring-Opening Polymerization of Polyglycolic Acid under High Pressure[J]. Chinese Polymer Bulletin, 2013(3): 55-60.

[19] 房鑫卿, 肖敏, 王拴緊, 等. 高分子量聚乙交酯的合成及表征[J]. 高分子材料科學(xué)與工程, 2012, 28(1): 1-4.

FANG Xin-qing, XIAO Min, WANG Shuan-jin, et al. Synthesis and Characterization of High Molecular Weight Polyglycolide[J]. Polymer Materials Science & Engineering, 2012, 28(1): 1-4.

[20] AYYOOB M, LEE D H, KIM J H, et al. Synthesis of Poly(Glycolic Acids) Via Solution Polycondensation and Investigation of Their Thermal Degradation Behaviors[J]. Fibers and Polymers, 2017, 18(3): 407-415.

[21] 崔愛軍, 陸衛(wèi)良, 王澤云, 等. 熔融/固相縮聚法合成聚乙醇酸及其性能表征[J]. 高分子通報(bào), 2013(2): 73-78.

CUI Ai-jun, LU Wei-liang, WANG Ze-yun, et al. Research on the Synthesis and Property of Poly(Glycolic) Acid via Melt/Solid Polycondensation[J]. Chinese Polymer Bulletin, 2013(2): 73-78.

[22] GAUTIER E, FUERTES P, CASSAGNAU P, et al. Synthesis and Rheology of Biodegradable Poly(Glycolic Acid) Prepared by Melt Ring-Opening Polymerization of Glycolide[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2009, 47(5): 1440-1449.

[23] 魯康偉, 尹芳華, 崔愛軍, 等. 乙酸鉍催化乙交酯開環(huán)聚合的工藝[J]. 化工進(jìn)展, 2014, 33(2): 395-399.

LU Kang-wei, YIN Fang-hua, CUI Ai-jun, et al. Process Research on Ring-Opening Polymerization of Glycolide by Bismuth(Ⅲ) Acetate[J]. Chemical Industry and Engineering Progress, 2014, 33(2): 395-399.

[24] 徐紀(jì)剛, 陳功林, 韓國義, 等. 聚乙交酯的合成[J]. 合成纖維工業(yè), 2006, 29(3): 10-12.

XU Ji-gang, CHEN Gong-lin, HAN Guo-yi, et al. Synthesis of Polyglycollide[J]. China Synthetic Fiber Industry, 2006, 29(3): 10-12.

[25] ALTAY E, JANG Y J, KUA Xiang-qi, et al. Synthesis, Microstructure, and Properties of High-Molar-Mass Polyglycolide Copolymers with Isolated Methyl Defects[J]. Biomacromolecules, 2021, 22(6): 2532-2543.

[26] LU Y, SCHMIDT C, BEUERMANN S. Fast Synthesis of High-Molecular-Weight Polyglycolide Using Diphenyl Bismuth Bromide as Catalyst[J]. Macromolecular Chemistry and Physics, 2015, 216(4): 395-399.

[27] 劉文濤, 徐冠樺, 段瑞俠, 等. 聚乳酸改性與應(yīng)用研究綜述[J]. 包裝學(xué)報(bào), 2021, 13(2): 3-13.

LIU Wen-tao, XU Guan-hua, DUAN Rui-xia, et al. Review on Modification and Application of Polylactic Acid[J]. Packaging Journal, 2021, 13(2): 3-13.

[28] LI Jian, ROTHSTEIN S N, LITTLE S R, et al. The Effect of Monomer Order on the Hydrolysis of Biodegradable Poly(lactic-co-glycolic acid) Repeating Sequence Copolymers[J]. Journal of the American Chemical Society, 2012, 134(39): 16352-16359.

[29] ZHENG Y, YU C, BAO Y, et al. Temperature-Dependent Crystal Structure and Structural Evolution of Poly(Glycolide-Co-Lactide) Induced by Comonomeric Defect Inclusion/Exclusion[J]. Polymer, 2021, 227: 123867.

[30] WEIDNER S M, KRICHELDORF H R, SCHELIGA F. Ring-Expansion Copolymerization of l-Lactide and Glycolide[J]. Macromolecular Chemistry and Physics, 2021, 222(3): 2000307.

[31] DOBHAL A, SRIVASTAV A, DANDEKAR P, et al. Influence of Lactide vs Glycolide Composition of Poly (Lactic-Co-Glycolic Acid) Polymers on Encapsulation of Hydrophobic Molecules: Molecular Dynamics and formulation Studies[J]. J Mater Sci Mater Med, 2021, 32(10): 1-18.

[32] GILDING D K, REED A M. Biodegradable Polymers for Use in Surgery-Polyglycolic/Poly (Actic Acid) Homo-and Copolymers: 1[J]. Polymer, 1979, 20(12): 1459-1464.

[33] TAN J, ZHANG T, WANG F, et al. One-Pot and Industrial Manufacturing of Cardanol-Based Polyoxyethylene Ether Carboxylates as Efficient and Improved Migration Resistance Plasticizers for PVC[J]. Journal of Cleaner Production, 2022, 375: 133943.

[34] 徐連春, 尚劍, 孫曄, 等. 銀納米顆粒及載銀抗菌涂層的研究與進(jìn)展[J]. 中國組織工程研究, 2016, 20(25): 3793-3800.

XU Lian-chun, SHANG Jian, SUN Ye, et al. Silver Nanoparticles and Anti-Bacterial Silver Coating:research and Development[J]. Chinese Journal of Tissue Engineering Research, 2016, 20(25): 3793-3800.

[35] 賀新福, 張小琴, 王迪, 等. 碳納米管/聚合物基導(dǎo)熱復(fù)合材料研究進(jìn)展[J]. 化工進(jìn)展, 2018, 37(8): 3038-3044.

HE Xin-fu, ZHANG Xiao-qin, WANG Di, et al. Research Progress in Heat Conductive CNTS/Polymer Composites[J]. Chemical Industry and Engineering Progress, 2018, 37(8): 3038-3044.

[36] GHOLAMPOUR A, OZBAKKALOGLU T. A Review of Natural Fiber Composites: Properties, Modification and Processing Techniques, Characterization, Applications[J]. Journal of Materials Science, 2020, 55(3): 829-892.

[37] SWAROOP C, SHUKLA M. Development of Blown Polylactic Acid-MgO Nanocomposite Films for Food Packaging[J]. Composites Part A: Applied Science and Manufacturing, 2019, 124: 105482.

[38] 佟克偉, 王潮忱. 擠出中空吹塑成型工藝中若干技術(shù)問題的分析與研究[J]. 現(xiàn)代工業(yè)經(jīng)濟(jì)和信息化, 2020, 10(8): 130-131.

TONG Ke-wei, WANG Chao-chen. Analysis and Research on some Technical Problems in Hollow Blow Molding Process[J]. Modern Industrial Economy and Informationization, 2020, 10(8): 130-131.

[39] RAJESHKUMAR G, ARVINDH SESHADRI S, DEVNANI G L, et al. Environment Friendly, Renewable and Sustainable Poly Lactic Acid (PLA) Based Natural Fiber Reinforced Composites-A Comprehensive Review[J]. Journal of Cleaner Production, 2021, 310: 127483.

[40] RIGOTTI D, SOCCIO M, DORIGATO A, et al. Novel Biobased Polylactic Acid/Poly(pentamethylene 2,5-furanoate) Blends for Sustainable Food Packaging[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(41): 13742-13750.

[41] SHI C, ZHOU A, FANG D, et al. Oregano Essential Oil/β-Cyclodextrin Inclusion Compound Polylactic Acid/Polycaprolactone Electrospun Nanofibers for Active Food Packaging[J]. Chemical Engineering Journal, 2022, 445: 136746.

[42] SALAZAR R, SALAS-GOMEZ V, ALVARADO A A, et al. Preparation, Characterization and Evaluation of Antibacterial Properties of Polylactide-Polyethylene Glycol-Chitosan Active Composite Films[J]. Polymers, 2022, 14(11): 2266.

[43] IGLESIAS-MONTES M L, SOCCIO M, SIRACUSA V, et al. Chitin Nanocomposite Based on Plasticized Poly(lactic acid)/Poly(3-hydroxybutyrate) (PLA/PHB) Blends as Fully Biodegradable Packaging Materials[J]. Polymers, 2022, 14(15): 3177.

[44] CVEK M, PAUL U C, ZIA J, et al. Biodegradable Films of PLA/PPC and Curcumin as Packaging Materials and Smart Indicators of Food Spoilage[J]. ACS Applied Materials & Interfaces, 2022, 14(12): 14654-14667.

[45] YU Fu-you, FEI Xiang, HE Yun-qing, et al. Poly(lactic acid)-Based Composite Film Reinforced with Acetylated Cellulose Nanocrystals and ZnO Nanoparticles for Active Food Packaging[J]. International Journal of Biological Macromolecules, 2021, 186: 770-779.

[46] WANG Li, XU Jing-ge, ZHANG Meng-meng, et al. Preservation of Soy Protein-Based Meat Analogues by Using PLA/PBAT Antimicrobial Packaging Film[J]. Food Chemistry, 2022, 380: 132022.

[47] SINGH A A, SHARMA S, SRIVASTAVA M, et al. Modulating the Properties of Polylactic Acid for Packaging Applications Using Biobased Plasticizers and Naturally Obtained Fillers[J]. International Journal of Biological Macromolecules, 2020, 153: 1165-1175.

[48] ROY S, RHIM J W. Preparation of Bioactive Functional Poly(lactic acid)/Curcumin Composite Film for Food Packaging Application[J]. International Journal of Biological Macromolecules, 2020, 162: 1780-1789.

[49] KIM Y, KIM J S, LEE S Y, et al. Exploration of Hybrid Nanocarbon Composite with Polylactic Acid for Packaging Applications[J]. International Journal of Biological Macromolecules, 2020, 144: 135-142.

[50] ZHOU Xiao-ming, YANG Ren-dang, WANG Bin, et al. Development and Characterization of Bilayer Films Based on Pea Starch/Polylactic Acid and Use in the Cherry Tomatoes Packaging[J]. Carbohydrate Polymers, 2019, 222: 114912.

[51] PAPADOPOULOU E L, PAUL U C, TRAN T N, et al. Sustainable Active Food Packaging from Poly(lactic acid) and Cocoa Bean Shells[J]. ACS Applied Materials & Interfaces, 2019, 11(34): 31317-31327.

[52] ELLINGFORD C, SAMANTARAY P K, FARRIS S, et al. Reactive Extrusion of Biodegradable PGA/PBAT Blends to Enhance Flexibility and Gas Barrier Properties[J]. Journal of Applied Polymer Science, 2021, 139(6): 51617.

[53] SUN Y, HUANG Y, WANG X Y, et al. Kinetic Analysis of PGA/PBAT Plastic Films for Strawberry Fruit Preservation Quality and Enzyme Activity[J]. Journal of Food Composition and Analysis, 2022, 108: 104439.

[54] XU Peng-wu, TAN Shuai, NIU De-yu, et al. Highly Toughened Sustainable Green Polyglycolic Acid/ Polycaprolactone Blends with Balanced Strength: Morphology Evolution, Interfacial Compatibilization, and Mechanism[J]. ACS Applied Polymer Materials, 2022, 4(8): 5772-5780.

[55] SAMANTARAY P K, ELLINGFORD C, FARRIS S, et al. Electron Beam-Mediated Cross-Linking of Blown Film-Extruded Biodegradable PGA/PBAT Blends Toward High Toughness and Low Oxygen Permeation[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(3): 1267-1276.

[56] YANG Fan, ZHANG Cai-li, MA Zhi-rui, et al. In Situ Formation of Microfibrillar PBAT in PGA Films: An Effective Way to Robust Barrier and Mechanical Properties for Fully Biodegradable Packaging Films[J]. ACS Omega, 2022, 7(24): 21280-21290.

[57] WANG Rong, SUN Xiao-jie, CHEN Lan-lan, et al. Morphological and Mechanical Properties of Biodegradable Poly(Glycolic Acid)/Poly(Butylene Adipate-Co-Terephthalate) Blends with in Situ Compatibilization[J]. RSC Advances, 2021, 11(3): 1241-1249.

[58] SHEN J, WANG K, MA Z, et al. Biodegradable Blends of Poly (Butylene Adipate-Co-Terephthalate) and Polyglycolic Acid with Enhanced Mechanical, Rheological and Barrier Performances[J]. Journal of Applied Polymer Science, 2021, 138(43): 51285.

[59] WU H, WANG C, NING Z, et al. Ultra-Toughened Poly (Glycolic Acid)-Based Blends with Controllable Hydrolysis Behavior Fabricated Via Reactive Compatibilization[J]. European Polymer Journal, 2022, 181: 111661.

[60] 張杰, 黨斌, 楊希娟. 植物多酚的生理活性、抑菌機(jī)理及其在食品保鮮中的應(yīng)用研究進(jìn)展[J]. 食品工業(yè)科技, 2022, 43(24): 460-468.

ZHANG Jie, DANG Bin, YANG Xi-juan. Research Progress on Physiological Activity, Antibacterial Mechanism of Plant Polyphenols and Its Application in Food Preservation[J]. Science and Technology of Food Industry, 2022, 43(24): 460-468.

[61] FORTUNATI E, MATTIOLI S, VISAI L, et al. Combined Effects of Ag Nanoparticles and Oxygen Plasma Treatment on PLGA Morphological, Chemical, and Antibacterial Properties[J]. Biomacromolecules, 2013, 14(3): 626-636.

[62] SAHINER M, ARI B, RAM M K, et al. Nitrogen Doped Carbon-Dot Embedded Poly(lactic acid-co-glycolic acid) Composite Films for Po-tential Use in Food Packing Industry and Wound Dressing[J]. Journal of Composites Science, 2022, 6(9): 260.

[63] BISWAL A K, SAHA S. Controllable Fabrication of Biodegradable Janus and Multi-Layered Particles with Hierarchically Porous Structure[J]. Journal of Colloid and Interface Science, 2020, 566: 120-134.

[64] BISWAL A K, SAHA S. New Insight into the Mechanism of Formati-on of Dual Actives Loaded Multilayered Polymeric Particles and Their Application in Food Preservation[J]. Journal of Applied Polymer Science, 2019, 136(40): 48009.

[65] KEMME M, HEINZEL-WIELAND R. Quantitative Assessment of Antimicrobial Activity of PLGA Films Loaded with 4-Hexylresorcinol[J]. Journal of Functional Biomaterials, 2018, 9(1): 4.

Research Progress of PLA, PGA and Their Copolymers in Packaging Applications

XU Jie-lina,c, LI Zhen-guanga,c,CHEN Shi-yana,c,WANG Chao-shenga,c,WU Jingb,c,d,WANG Hua-pinga,c,d

(a. College of Materials Science and Engineering b. Co-Innovation Center for Textile Industry, Innovation Center for Textile Science and Technology c. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials d.National Innovation Center for Fiber with Advanced Function, Donghua University, Shanghai 201620, China)

The work aims to introduce the research progress of PLA, PGA and PLGA in packaging, to provide an outlook on the modified materials and preparation process, and to provide a reference for modification and preparation of PLA, PGA and PLGA. The preparation methods and basic properties of PLA, PGA and PLGA were introduced. The types of modified materials and their preparation processes in recent years were summarized. PLA, PGA and PLGA were modified, then the composite films were prepared with excellent UV resistance, barrier properties and antibacterial properties by solution casting and blown film making processes. PLA, PGA and PLGA have excellent biodegradable properties, and the films prepared by modification have more balanced properties, which have great prospects for application in packaging. In-depth research on polymer modification materials and methods is still needed to prepare composites with better performance.

polylactic acid; polyglycolide; poly (lactic-co-glycolic acid); modified; packaging

TB484

A

1001-3563(2023)05-0008-10

10.19554/j.cnki.1001-3563.2023.05.002

2022?10?15

上海市科委原創(chuàng)探索項(xiàng)目(21ZR1480000);盛虹·應(yīng)急保障與公共安全用纖維材料及制品科研攻關(guān)項(xiàng)目(2021–fx010211);微塑料中央高校交叉重點(diǎn)項(xiàng)目(2232021A–02)

徐杰林(1996—),男,博士生,主要研究方向?yàn)樯锟山到飧叻肿硬牧稀?/p>

烏婧(1984—),女,博士,副教授,主要研究方向?yàn)樯锘?、生物可降解纖維及材料。

責(zé)任編輯:曾鈺嬋

猜你喜歡
開環(huán)聚乳酸共聚物
兩嵌段共聚物軟受限自組裝行為研究
轉(zhuǎn)速開環(huán)恒壓頻比的交流調(diào)速系統(tǒng)的分析與仿真研究
電子測試(2018年1期)2018-04-18 11:52:24
一種溫和環(huán)醚開環(huán)成雙酯的新方法
聚乳酸的阻燃改性研究進(jìn)展
中國塑料(2015年3期)2015-11-27 03:41:38
可生物降解聚乳酸發(fā)泡材料研究進(jìn)展
中國塑料(2015年6期)2015-11-13 03:02:42
基于開環(huán)補(bǔ)償?shù)娘w機(jī)偏航角控制系統(tǒng)設(shè)計(jì)及仿真
雙親嵌段共聚物PSt-b-P(St-alt-MA)-b-PAA的自組裝行為
聚乳酸/植物纖維全生物降解復(fù)合材料的研究進(jìn)展
中國塑料(2015年8期)2015-10-14 01:10:41
聚乳酸擴(kuò)鏈改性及其擠出發(fā)泡的研究
中國塑料(2015年4期)2015-10-14 01:09:19
DADMAC-AA兩性共聚物的合成及應(yīng)用
绩溪县| 新乐市| 乌兰察布市| 保山市| 佛教| 蒙自县| 罗山县| 富阳市| 札达县| 宁海县| 博爱县| 广河县| 仪征市| 邵阳市| 贺兰县| 中卫市| 镇康县| 蒙自县| 姚安县| 民勤县| 营口市| 廊坊市| 库尔勒市| 达拉特旗| 二手房| 北川| 四会市| 巢湖市| 河曲县| 田东县| 祁门县| 察雅县| 瑞昌市| 綦江县| 双鸭山市| 福泉市| 左权县| 济宁市| 吴川市| 林州市| 阜宁县|