盧霖 張超
本文利用Painlevé變換法構(gòu)造了廣義Benjamin-Bona-Mahony(BBM)方程的沖擊波解,同時(shí)用G′/G-展開(kāi)法構(gòu)造了方程的沖擊波解和有理解. 兩種方法的比較結(jié)果顯示,用Painlevé變換法直觀簡(jiǎn)便.
Benjamin-Bona-Mahony方程; 沖擊波解; Painlevé變換法; G′/G-展開(kāi)法
O175.29A2023.011005
收稿日期: 2022-04-24
基金項(xiàng)目: 湖南省教育廳青年項(xiàng)目(22B0886); 湖南省自然科學(xué)基金(2017JJ3044);? 湖南省自然科學(xué)基金(2018JJ2073); 湖南省教育廳重點(diǎn)項(xiàng)目(21A0576)
作者簡(jiǎn)介: 盧霖(1987-), 男, 安徽阜南人, 博士, 主要研究方向?yàn)槲⒎址匠膛c動(dòng)力系統(tǒng).
通訊作者: 張超.E-mail: flyheartzc@21cn.com
Kink solutions for the generalized Benjamin-Bona-Mahony equation constructed by Painlevés transformation method
LU Lin1,? ZHANG Chao2
(1. School of Mathematics and Statistics, Hunan First Normal University, Changsha 410205, China;
2. Provincial Key Laboratory of Geotechnical Engineering for Stability Control and Health Monitoring, Hunan University of Science and Technology, Xiangtan 411201, China)
By using the Painlevés transformation method, we construct the kink solutions for the generalized Benjamin-Bona-Mahony (BBM) equation. Meanwhile, by using the G′/G-expansion method, we construct the kink solution and rational solution for the equation. The cornparison of the two methods shows that the Painlevés transformation method is intuitive and effective.
Benjamin-Bona-Mahony equation; Kink solution; Painlevés transformation method; G′/G-expansion method
(2010 MSC 35R11, 83C15)
1 引 言
Benjamin-Bona-Mahony (BBM)方程
ut+ux+uux-uxxt=0
常被用來(lái)近似地描述某些非線性色散系統(tǒng)中長(zhǎng)波的單向傳播. BBM方程存在孤波解,孤子或孤波是色散和非線性之間微妙平衡的結(jié)果.BBM方程的精確解在數(shù)學(xué)、物理及工程應(yīng)用等領(lǐng)域有重要應(yīng)用. 已有許多方法可以構(gòu)造其精確解,如首次積分法,F(xiàn)-展開(kāi)法,改進(jìn)的擴(kuò)展tanh函數(shù)法,雅可比橢圓函數(shù)法,修正的簡(jiǎn)單方程法,李對(duì)稱(chēng)法,Painlevé展開(kāi)法,He半逆變分法,同倫擾動(dòng)法,tanh函數(shù)法,正余弦法,指數(shù)函數(shù)法,sine-Gordon展開(kāi)法,Hirota雙線性變換法等[1-28].
本文考慮廣義BBM方程
5 結(jié) 論
本文利用Painlevé變換方法構(gòu)造了廣義BBM方程(1)的沖擊波解. 利用G′/G-展開(kāi)方法,本文也構(gòu)造了方程的沖擊波解和有理解. 由于G′/G-展開(kāi)方法等價(jià)于擴(kuò)展的tanh-函數(shù)方法[28],該沖擊波解也可以用擴(kuò)展的tanh-函數(shù)方法構(gòu)造. 結(jié)果表明,利用Painlevé變換法獲得沖擊波解簡(jiǎn)便有效.
參考文獻(xiàn):
[1] Sahadevan R. Painlevé expansion and exact solution for nonlinear evolution equations [J]. Theor Math Phys, 1994, 99: 776.
[2] Martel Y, Merle F, Mizumachi T. Description of the inelastic collision of two solitary waves for the BBM equation [J]. Arch Ration Mech An, 2010, 196: 517
[3] Tao Z L. A note on thevariational approach to the Benjamin-Bona-Mahony equation using He′s semi-inverse method [J]. Int J Comput Math, 2010, 87: 1752.
[4] Abbasbandy S, Shirzadi A. The first integral method for modified Benjamin-Bona-Mahony equation [J]. Commun Nonlinear Sci, 2010, 15: 1759.
[5] Da I, Korkmaz A, Saka B. Cosine expansion-based differential quadrature algorithm for numerical solution of the RLW equation [J]. Numer Meth Part D E, 2010, 26: 544.
[6] Cesar A, Gómez S, Salas A H, et al. New periodic and soliton solutions for the generalized BBM and Burgers-BBM equations [J]. Appl Math Comput, 2010, 217: 1430.
[7] Wazwaz A M, Helal M A. Nonlinear variants of the BBM equation with compact and non-compact physical structures [J]. Chaos Soliton Fract, 2005, 26: 767.
[8] Johnpillai A G, Kara A H, Biswas A. Symmetry reduction, exactgroup-invariant solutions and conservation laws of the Benjamin-Bona-Mahoney equation [J]. Appl Math Lett, 2013, 26: 376.
[9] Yokus A, Sulaiman T A, Bulut H. On the analytical and numerical solutions of the Benjamin-Bona-Mahony equation [J]. Opt Quant Electron, 2018, 50: 31.
[10] Biswas A. 1-soliton solution of Benjamin-Bona-Mahoney equation with dual-power law non-linearity [J]. Commun Nonlinear Sci, 2010, 15: 2744.
[11] Painlevé P. Sur les equations differentielles du second ordre et d′ordre superieur dont l′integrale generale est uniforme [J]. Acta Math, 1902, 25: 1.
[12] Wang M, Li X, Zhang J. The G′/G-expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics [J]. Phys Lett A, 2008, 372: 417.
[13] Ayhan B, Bekir A. The G′/G-expansion method for the nonlinear lattice equations [J]. Commun Nonlinear Sci, 2012, 17: 3490.
[14] Biswas A, Sonmezoglu A, Ekici M, et al. Optical soliton perturbation with fractional temporal evolution by extended G′/G-expansion method [J]. Optik, 2018, 161: 301.
[15] Ebadi G, Biswas A. The G′/G method and topological soliton solution of the K(m,n) equation [J]. Commun Nonlinear Sci, 2011, 16: 2377.
[16] Abdou M A. The extended F-expansion method and its application for a class of nonlinear evolution equations [J]. Chaos Soliton Fract, 2007, 31: 95.
[17] Ali A H A. The modified extended tanh-function method for solving coupled MKdV and coupled Hirota-Satsuma coupled KdV equations [J]. Phys Lett A, 2007, 363: 420.
[18] Bona J, Dai M. Norm-inflation results for the BBM equation [J]. J Math Anal Appl, 2017, 446: 879.
[19] Benjamin T B, Bona J L, Mahony J J. Model equations for long waves in nonlinear dispersive systems [J]. Philos T R Soc A, 1972, 272: 47.
[20] Bhrawy A H, Abdelkawy M A, Biswas A. Cnoidal and snoidal wave solutions to coupled nonlinear wave equations by the extended Jacobi′s elliptic function method [J]. Commun Nonlinear Sci, 2013, 18: 915.
[21] Jawad A J M, Petkovic M D, Biswas A. Modified simple equation method for nonlinear evolution equations [J]. Appl Math Comput, 2010, 217: 869.
[22] Kirchgássner K. Nonlinearly resonant surface waves and homoclinic bifurcation [J]. Adv Appl Mech, 1988, 26: 135.
[23] 康麗, 孫峪懷, 廖紅梅, 等.空時(shí)分?jǐn)?shù)階mBBM方程的新精確解[J]. 四川大學(xué)學(xué)報(bào): 自然科學(xué)版, 2018, 55: 673.
[24] Wang F, Li W, Zhang H. A new extended homotopy perturbation method for nonlinear differential equations [J]. Math Comput Model, 2012, 55: 1471.
[25] Wang D S,Yin Y. Symmetry analysis and reductions of the two-dimensional generalized Benney system via geometric approach [J]. Comput Math Appl, 2016, 71: 748.
[26] Wu X H, He J H. Solitary solutions, periodic solutions and compacton-like solutions using the exp-function method [J]. Comput Math Appl, 2007, 54: 966.
[27] Zhang J. Using the simplified Hirota′s method to investigate multi-soliton solutions of the fifth-order KdV equation [J]. Int Math Forum, 2012, 7: 917.
[28] El-Wakil S A, Abdou M A, El-Shewy E K, et al. (G′/G)-expansion method equivalent to the extended tanh-function method [J]. Phys Scripta, 2010, 81: 035011.