鄭舒丹 吳金燕 張利平 楊屈楊 李越 趙賢省 朱寧文
[摘要]間充質(zhì)干細(xì)胞源性外泌體是具有脂質(zhì)雙層結(jié)構(gòu)的納米級別囊泡樣物質(zhì),攜帶多種生物活性分子,包括脂質(zhì)、蛋白質(zhì)和核酸。這些小囊泡由多種類型細(xì)胞分泌,通過體液循環(huán)將信息傳遞給周邊細(xì)胞和遠(yuǎn)程細(xì)胞,與其他細(xì)胞進(jìn)行密切交流。目前,大量研究表明間充質(zhì)干細(xì)胞源性外泌體在促進(jìn)皮膚創(chuàng)傷修復(fù)和再生,抑制瘢痕形成過程中發(fā)揮重要作用。本文就間充質(zhì)干細(xì)胞源性外泌體在皮膚創(chuàng)傷修復(fù)和再生中的研究進(jìn)展作一綜述。
[關(guān)鍵詞]間充質(zhì)干細(xì)胞;外泌體;創(chuàng)傷和修復(fù);再生
[中圖分類號]R641? ? [文獻(xiàn)標(biāo)志碼]A? ? [文章編號]1008-6455(2023)04-0189-05
Research Progress of Mesenchymal Stem Cell-derived Exosomes in Skin Wound Repair and Regeneration
ZHENG Shudan1,2,WU Jinyan1,ZHANG Liping1,YANG Quyang1,LI Yue1,ZHAO Xiansheng1,ZHU Ningwen1
(1.Department of Dermatology,Huashan Hospital,F(xiàn)udan University,Shanghai 200040,China; 2.Department of Plastic Surgery,the Second Affiliated Hospital of Hainan Medical College,Haikou 570100,Hainan,China)
Abstract: Exosomes are nano-sized cargos with a lipid bilayer structure carrying diverse biomolecules including lipids,proteins, and nucleic acids. These small vesicles are secreted by most types of cells to communicate with eachother. Since exosomes circulate through bodily fluids, they can transfer information not only to local cells but alsoto remote cells. At present, a large number of studies have shown that mesenchymal stem cell-derived exosomes play an important role in promoting skin wound repair and regeneration and inhibiting the formation of scars. This article reviews the research progress of mesenchymal stem cell-derived exosomes in skin wound repair and regeneration.
Key words: mesenchymal stem cells; exosomes; wounding and repair; regeneration
皮膚是人體最大的組織器官,隔絕了外界中有害物質(zhì)和傷害,形成保護(hù)屏障。除了對物理、化學(xué)和生物因素的防御功能外,皮膚還可以調(diào)節(jié)機(jī)體的溫度,維持體內(nèi)環(huán)境的平衡,參與感官知覺的發(fā)生機(jī)制以及組織再生過程[1]。皮膚常因大面積燒傷、外傷或糖尿病潰瘍等多種原因?qū)е鲁霈F(xiàn)急性或者慢性創(chuàng)傷[2-3],這些不僅會(huì)使個(gè)人出現(xiàn)一系列身心健康問題,也給社會(huì)帶來巨大的經(jīng)濟(jì)負(fù)擔(dān)。
近年來,間充質(zhì)干細(xì)胞(Mesenchymal stromal cells,MSCs)在皮膚創(chuàng)傷修復(fù)和再生方面?zhèn)涫荜P(guān)注。MSCs積極參與皮膚創(chuàng)傷修復(fù)過程,不僅分化為參與基質(zhì)合成的成纖維細(xì)胞,還釋放參與組織再生的各種因子,如抗瘢痕、抗凋亡和促進(jìn)血管生成因子。因此,一些研究已將外源性MSCs應(yīng)用于創(chuàng)傷,利用其增生的特性,對創(chuàng)傷愈合和瘢痕形成發(fā)揮有利作用[4]。但是,有多項(xiàng)研究表明MSCs本身并未參與治療過程[5]。相反,MSCs的治療效果主要依賴于體內(nèi)旁分泌信號發(fā)揮作用,釋放某些生物活性分子,增殖和分化成所需的受損組織細(xì)胞類型,從而達(dá)到創(chuàng)面的修復(fù)作用。因此,MSCs源性外泌體療法作為一種無細(xì)胞治療替代方法應(yīng)用于創(chuàng)面的修復(fù)和再生受到廣泛關(guān)注。本文就MSCs源性外泌體在皮膚創(chuàng)傷修復(fù)和再生中的研究進(jìn)展作一綜述。
1? 間充質(zhì)干細(xì)胞
1.1 MSCs的來源:MSCs是一種來源于成體的多能干細(xì)胞,幾乎存在于所有的組織器官中,能分化成多種細(xì)胞類型。目前,MSCs的最廣泛來源是骨髓源性MSCs(Bone marrow-derived MSCs,BM-MSCs)、脂肪源性MSCs(Adipose tissue-derived MSCs,AT-MSCs)和臍帶源性MSCs(Umbilical cord-derived MSCs,UC-MSCs)。MSCs的另一個(gè)重要來源是口腔組織,包括牙髓、牙根尖周炎囊腫、脫落的乳牙牙髓、牙周韌帶、牙囊祖細(xì)胞、牙齒和牙齦的根尖乳頭組織[6]。此外,還可以從羊水、骨膜和胎兒組織中分離出來[7],這些MSCs顯示表型異質(zhì)性。以及其他一些組織,如血液、肝臟、脾臟和妊娠早期、中期人類胎兒的骨髓中提取。MSCs易于體外分離和擴(kuò)增,分離后在低溫環(huán)境下冷凍保存,對其生物學(xué)活性不產(chǎn)生影響以及表達(dá)中等或低等水平的MHCI類和MHCII分子,具有低免疫原性等特點(diǎn)。
1.2 MSCs的安全性問題:盡管MSCs在皮膚創(chuàng)傷修復(fù)和再生方面取得了重大進(jìn)展,但MSCs治療的安全性和有效性一直存在爭議。例如在MSCs的制備過程中要充分了解供者的健康狀況,包括年齡、既往史、家族史等,規(guī)避這些外在的干擾因素,存儲過程要求嚴(yán)格無菌,排除醫(yī)源性導(dǎo)致的感染,以及免疫排斥和腫瘤發(fā)生等風(fēng)險(xiǎn)。相反,與MSCs治療相比,MSCs源性外泌體具有以下優(yōu)勢:①M(fèi)SCs源性外泌體與靶細(xì)胞直接結(jié)合,具有很強(qiáng)的生物學(xué)效應(yīng);②MSCs源性外泌體可以在-70℃下長期儲存和運(yùn)輸,其生物活性不易破壞[8];③濃度、劑量、途徑和使用時(shí)間易于控制;④不存在由細(xì)胞移植治療引起的免疫排斥和腫瘤發(fā)生的風(fēng)險(xiǎn)[9-10];⑤外泌體可以通過過濾進(jìn)行滅菌而進(jìn)入臨床使用[11]。因此,MSCs源性外泌體可以替代MSCs治療,在創(chuàng)傷修復(fù)與再生醫(yī)學(xué)領(lǐng)域具有良好的應(yīng)用前景和潛能。
2? MSCs源性外泌體生物學(xué)特性
外泌體的首次發(fā)現(xiàn)早在20世紀(jì)60年代[12],直至20世紀(jì)80年代后期對于外泌體的研究才有了更多發(fā)現(xiàn)。在羊網(wǎng)織紅細(xì)胞成熟的研究中,揭示了外泌體形成的機(jī)制[13]。外泌體是一些具有生物活性的分子,以微米到納米大小的細(xì)胞外囊泡(Extracellular vesicles,EVs)顆粒形式釋放。根據(jù)顆粒大小,EVs可分為外泌體(50~100 nm)、微泡(100~1 000 nm)和凋亡小體(500~5 000 nm)。外泌體的生物合成主要由細(xì)胞經(jīng)胞吞作用分泌,細(xì)胞膜先向內(nèi)出芽形成更大的細(xì)胞內(nèi)囊泡—多囊泡體(Multivesicular bodies,MVBs),隨后多囊泡體逐漸向細(xì)胞邊緣遷移并與細(xì)胞膜融合,再次向內(nèi)凹陷形成顆粒狀小囊泡—外泌體,最后通過胞吐作用被釋放到細(xì)胞外環(huán)境中。MSCs源性外泌體具有多種特異性標(biāo)記蛋白,包括膜轉(zhuǎn)運(yùn)蛋白和融合蛋白(例如鳥苷三磷酸和膜聯(lián)蛋白)、四跨膜蛋白(例如CD9、CD63和CD81)、熱休克蛋白(例如hsp60、hsp70和hsp90)、參與MVBs生物合成蛋白(如:腫瘤易感基因101蛋白和Alix蛋白),以及脂質(zhì)相關(guān)蛋白和磷脂酶。外泌體是MSCs旁分泌至關(guān)重要的生物活性囊泡,通過影響受體細(xì)胞的存活、增殖、遷移、基因表達(dá)以及重新編程靶向細(xì)胞行為來調(diào)節(jié)許多生理和病理過程[14],在皮膚創(chuàng)傷修復(fù)和再生過程中起重要作用。
3? 皮膚創(chuàng)傷修復(fù)過程
皮膚創(chuàng)傷修復(fù)是一個(gè)復(fù)雜的動(dòng)態(tài)過程,主要作用是恢復(fù)受損組織的結(jié)構(gòu)和功能。它是一個(gè)復(fù)雜而有序的精確調(diào)控過程,包括止血期、炎癥反應(yīng)期、細(xì)胞遷移增殖期、血管生成和基質(zhì)重塑期[15]。在影響創(chuàng)傷修復(fù)的各種因素中,血管生成占據(jù)關(guān)鍵位置,向創(chuàng)傷部位輸送營養(yǎng)和氧氣,促進(jìn)成纖維細(xì)胞增殖,膠原蛋白合成和再上皮化[9,16]。在病理情況下,破壞和延長創(chuàng)傷愈合過程會(huì)導(dǎo)致慢性、不愈合的傷口,例如糖尿病傷口[16]。糖尿病傷口愈合不良的機(jī)制目前仍不清楚,但是缺氧會(huì)造成血管生成受損,活性氧(Reactive oxygen species,ROS)產(chǎn)生和神經(jīng)病變損害,導(dǎo)致這些患者長期醫(yī)療負(fù)擔(dān)和生活質(zhì)量受損[10,17]。在創(chuàng)傷愈合方面,由于MSCs療法能夠募集細(xì)胞,釋放生長因子和蛋白質(zhì),被認(rèn)為是一種有前途的細(xì)胞基礎(chǔ)療法。它能夠加速傷口愈合,增加傷口上皮化,肉芽化組織形成,分化為皮膚的血管生成細(xì)胞和修復(fù)受損細(xì)胞。但是,因MSCs的缺點(diǎn),目前已經(jīng)專注于MSCs源性外泌體,包括細(xì)胞因子、生長因子、趨化因子和含有mRNA、蛋白質(zhì)和microRNA的細(xì)胞外囊泡,以及他們在傷口愈合過程中的作用[10]。
4? MSCs源性外泌體在皮膚創(chuàng)傷修復(fù)中的作用機(jī)制
4.1 MSCs源性外泌體通過多種信號通路促進(jìn)細(xì)胞增殖、遷移和血管生成:MSCs源性外泌體通過激活信號通路如Wnt/β-catenin、磷脂酰肌醇3-激酶(Phosphatidylinositol 3-kinase,PI3K)/蛋白質(zhì)激酶B通路(Proteinkinase B pathway,AKT)或細(xì)胞外信號調(diào)節(jié)激酶(Extracellular signal-regulatedkinase,ERK)級聯(lián),促使生長因子表達(dá)上調(diào),導(dǎo)致血管生成、細(xì)胞遷移、增殖和再上皮化過程。例如:從人脂肪源性MSCs(Human AT-MSCs,hAT-MSCs)中分離的外泌體刺激細(xì)胞增殖和遷移,通過Wnt/β-catenin信號對過氧化氫(Hydrogen peroxide,H2O2)處理的人角質(zhì)形成細(xì)胞 (Human keratinocytes,HaCaTs)凋亡起到抑制作用[18]。肺腺癌轉(zhuǎn)移相關(guān)轉(zhuǎn)錄物1(Metastasis associated lung adenocarcinoma transcript 1,MALAT1),是包含在這些外泌體中的轉(zhuǎn)錄調(diào)節(jié)因子,可以通過靶向miR-124并激活該途徑介導(dǎo)H2O2來誘導(dǎo)創(chuàng)傷愈合[19]。Zhang等[20]研究表明在人臍帶源性MSCs(Human UC-MSC,hUC-MSCs)外泌體中14-3-3ζ蛋白增強(qiáng)Hippo/Yes相關(guān)蛋白(Yippo/Yes-associated protein,YAP)通路,促進(jìn)體內(nèi)皮膚再生重塑階段Wnt/β-catenin信號傳導(dǎo)的自我調(diào)節(jié)以及在大鼠深二度燒傷模型中限制皮膚細(xì)胞的過度增殖和膠原蛋白沉積。此外,他們發(fā)現(xiàn)外泌體14-3-3ζ蛋白促進(jìn)了大腫瘤抑制因子(Large tumor suppressor,p-LATS)與YAP的緊密結(jié)合,促使YAP磷酸化。同時(shí),miR-135a下調(diào)大腫瘤抑制因子2(Large tumor suppressor 2,LATS2)的表達(dá),增加人皮膚成纖維細(xì)胞的遷移并促進(jìn)體內(nèi)傷口愈合[21]。對于Wnt/β-catenin信號傳導(dǎo),在hUC-MSCs源性外泌體中Wnt4促進(jìn)β-catenin核易位和增強(qiáng)HaCaTs在體外的增殖和遷移活性,在大鼠皮膚燒傷模型中傷口的再上皮化起到關(guān)鍵作用[22]。β-catenin核易位促使增殖細(xì)胞核抗原(Roliferating cell nuclear antigen,PCNA)、細(xì)胞周期蛋白D3、N-鈣粘蛋白和β-catenin表達(dá)增加,而抑制E-鈣粘蛋白的表達(dá)。此外,Wnt4誘導(dǎo)β-catenin激活內(nèi)皮細(xì)胞并發(fā)揮促血管生成作用,這可能是皮膚創(chuàng)傷愈合的重要機(jī)制[23]。其他增殖標(biāo)志物,包括生長因子和遷移相關(guān)趨化因子,如血管緊張素-2(Angiotensin-2,Ang-2)[24]、細(xì)胞周期蛋白D1、細(xì)胞周期蛋白A2和C-X-C基序趨化因子12(C-X-C motif chemokine 12,CXCL12)通過hUC-MSCs源性外泌體處理后表達(dá)顯著上調(diào),促進(jìn)內(nèi)皮細(xì)胞增殖、遷移和血管生成[25]。在這項(xiàng)研究中,鐵氧化物納米顆粒標(biāo)記的外泌體顯著增加創(chuàng)傷部位外泌體的累積數(shù)量,增強(qiáng)內(nèi)皮細(xì)胞增殖、遷移和血管生成,同時(shí)由于增加CK19、PCNA和膠原蛋白的表達(dá)從而減少瘢痕形成。
創(chuàng)傷愈合過程中的另一個(gè)重要信號通路是PI3K/AKT,與Wnt/β-catenin通路平行。Yang等[26]報(bào)道hAT-MSCs源性外泌體中的miR-21通過PI3K/AKT信號通路增強(qiáng)基質(zhì)金屬蛋白酶-9 (Matrix metalloproteinases,MMP-9)表達(dá)并抑制金屬蛋白酶內(nèi)源性抑制劑1(Tissue inhibitors ofmetalloproteinase,TIMP-1),促進(jìn)HaCaTs在體外的增殖。此外,miR-126促使磷酸酶和張力蛋白同源物(Phosphatase and tensin homolog,PTEN)下調(diào),在體外通過PI3K/AKT通路刺激血管生成,有助于刺激創(chuàng)傷愈合和糖尿病大鼠體內(nèi)的血管生成[27]。該通路也被報(bào)道在體外經(jīng)過hAT-MSCs源性外泌體處理后,促進(jìn)成纖維細(xì)胞增殖和膠原蛋白沉積,從而促進(jìn)傷口愈合[28]。Yu等[29]報(bào)道通過阿托伐他?。ˋtorvastatin,ATV)處理的人BM-MSCs(Human BM-MSCs,hBM-MSCs)源性外泌體激活A(yù)KT/內(nèi)皮一氧化氮合成酶(Endothelial nitric oxide synthase,eNOS)信號通路,上調(diào)miR-211-3p,促進(jìn)內(nèi)皮細(xì)胞血管生成,加速糖尿病大鼠體內(nèi)傷口的再生。另外,除了AKT,hBM-MSCs源性外泌體還能夠激活ERK1/2信號轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活因子3(Activator of transcription 3,STAT3),促進(jìn)體外營養(yǎng)因子如細(xì)胞周期蛋白D2表達(dá)。這也刺激體外內(nèi)皮細(xì)胞的成纖維細(xì)胞生長、遷移和血管生成[30]。誘導(dǎo)間充質(zhì)基質(zhì)細(xì)胞(Induced mesenchymal stromal cell,iMSC)源性外泌體也已被證明可以刺激ERK1/2信號轉(zhuǎn)導(dǎo)從而促進(jìn)HaCaTs和人體內(nèi)真皮成纖維細(xì)胞(Human dermal fibroblasts,HDF)的增殖[31]。而且,從hBM-MSCs、hAT-MSCs和hUC-MSCs中獲得的外泌體被報(bào)道,通過誘導(dǎo)傷口愈合介導(dǎo)的生長因子可促進(jìn)HaCaT和HDF體外的增殖和遷移[32]。例如,作為血管內(nèi)皮生長因子A(Vascular endothelial growth factor A,VEGF-A)、成纖維細(xì)胞生長因子2(Fibroblast growth factor 2,F(xiàn)GF-2)、肝細(xì)胞生長因子(Hepatocyte growth factor,HGF)和血小板衍生生長因子BB(Platelet-derived growth factor BB,PDGF-BB),可激活A(yù)KT、ERK和STAT3信號傳導(dǎo)[7]。對于ERK蛋白,Wang等[33]報(bào)道,hAT-MSCs源性外泌體通過激活ERK/絲裂原活化蛋白激酶(Mitogen-activated protein kinase,MAPK)途徑增加皮膚真皮成纖維細(xì)胞基質(zhì)金屬蛋白酶3(Matrix metalloproteinases,MMP3)的表達(dá),導(dǎo)致MMP3轉(zhuǎn)化成TIMP1,這也利于細(xì)胞外基質(zhì)重塑。這些外泌體還減少了瘢痕的大小并通過在體內(nèi)阻止成纖維細(xì)胞分化為肌成纖維細(xì)胞,增加轉(zhuǎn)化生長因子-β3(Transforming growth factor,TGF-β3)轉(zhuǎn)化成轉(zhuǎn)化生長因子-β1(Transforming growth factor,TGF-β1)的比例來增加小鼠傷口中膠原蛋白Ⅲ與膠原蛋白Ⅰ的比例。
4.2 MSCs源性外泌體通過多種信號通路減少瘢痕形成:與創(chuàng)傷修復(fù)相關(guān)的另一個(gè)重要問題是瘢痕形成。在創(chuàng)傷愈合過程中,皮膚瘢痕的形成涉及細(xì)胞與細(xì)胞外基質(zhì)(Extracellular matrix,ECM)分子信號間相互作用的復(fù)雜序列協(xié)調(diào)。瘢痕組織的特點(diǎn)是ECM成分的過度沉積和缺乏皮膚附屬物,如毛囊和汗腺。ECM重塑,尤其是膠原蛋白的合成和降解,對于瘢痕的形成非常重要。此外,成纖維細(xì)胞—肌成纖維細(xì)胞的轉(zhuǎn)化在這個(gè)過程中至關(guān)重要。為了應(yīng)對皮膚損傷,真皮成纖維細(xì)胞轉(zhuǎn)化為肌成纖維細(xì)胞,增強(qiáng)細(xì)胞收縮能力和促進(jìn)α-平滑肌肌動(dòng)蛋白(α-smooth muscle actin,α-SMA)的表達(dá)。多項(xiàng)研究表明,TGF-β1/Smad信號通路參與膠原蛋白形成和成纖維細(xì)胞—肌成纖維細(xì)胞的轉(zhuǎn)化[33]。有趣的是,無瘢痕愈合發(fā)生在胚胎發(fā)育的早中期階段。因此,在胎兒創(chuàng)傷組織中,Ⅲ型膠原蛋白轉(zhuǎn)化成Ⅰ型膠原蛋白的比例增高,相應(yīng)的TGF-β3轉(zhuǎn)化TGF-β1的比例也增高,促使金屬蛋白酶內(nèi)源性抑制劑(Tissue inhibitors of metalloproteinases,TIMPs)對基質(zhì)金屬蛋白酶(Matrix metalloproteinases,MMP)的抑制作用減弱。
關(guān)于無瘢痕傷口愈合,一些研究已經(jīng)關(guān)注到TGF-β/Smad信號通路的作用。例如,Jiang等[34]表明hBM-MSCs源性外泌體在體外促進(jìn)HaCaT和HDF生長并加速體內(nèi)無瘢痕創(chuàng)傷修復(fù)。他們研究發(fā)現(xiàn)TGF-β1、Smad2、Smad3和Smad4表達(dá)明顯下調(diào),而TGF-β3和Smad7表達(dá)明顯上調(diào)。此外,在小鼠皮膚創(chuàng)傷模型中hUC-MSCs源性外泌體可減少體內(nèi)瘢痕形成和肌成纖維細(xì)胞累積。Zhang等[35]報(bào)道這些含有特定microRNA的外泌體,例如miR-21、miR-23a、miR-125b和miR-145通過抑制TGF-β2/Smad2信號通路轉(zhuǎn)化,在抑制肌成纖維細(xì)胞的形成中起關(guān)鍵作用。對于這一點(diǎn),Jiang等[36]研究表明腫瘤壞死因子誘導(dǎo)基因6(Tumor necrosis factor-inducible gene 6,TSG-6)過表達(dá)的hBM-MSCs源性外泌體可有效改善瘢痕組織病理損傷,減少炎癥因子分泌和小鼠皮膚創(chuàng)傷模型中的體內(nèi)膠原蛋白的沉積,同時(shí)抑制瘢痕組織TGFβ1、p-Smad2、p-Smad3的表達(dá)。還發(fā)現(xiàn)Smad2/3磷酸化顯著減少成纖維細(xì)胞[14]。Dalirfardouei等[37]報(bào)道人月經(jīng)血間充質(zhì)干細(xì)胞(Human menstrual MSCs,hMen-MSCs)源性外泌體降低膠原蛋白Ⅰ/Ⅲ的比例,減少糖尿病小鼠模型中的瘢痕形成,促進(jìn)體內(nèi)傷口閉合、血管生成和再上皮化。hAT-MSCs源性外泌體也發(fā)揮了相同的作用,通過增加體外N-cadherin、cyclin-1、PCNA 和膠原蛋白Ⅰ/Ⅲ基因表達(dá),在體內(nèi)傷口愈合早期階段促進(jìn)膠原蛋白Ⅰ和Ⅲ的產(chǎn)生,在晚期階段抑制膠原蛋白表達(dá)以減少疤痕形成[38]。此外,人類羊膜上皮細(xì)胞(Human amniotic epithelial cell,hAEC)源性外泌體顯著增強(qiáng)成纖維細(xì)胞體外增殖和遷移能力,通過刺激MMP-1的表達(dá),在這些細(xì)胞中顯著下調(diào)膠原蛋白Ⅰ和膠原蛋白Ⅲ表達(dá)。經(jīng)過對體內(nèi)傷口測定表明,在傷口愈合過程外泌體治療促進(jìn)膠原纖維的整齊排列[39]。另外,被報(bào)道參與傷口愈合過程的其他信號通路是聚ADP核糖聚合酶1(Poly ADP ribose polymerase 1,PARP 1)/凋亡誘導(dǎo)因子(Apoptosis-inducing factor,AIF)凋亡通路和Notch信號通路。PARP 1/AIF凋亡通路經(jīng)hUC-MSCs源性外泌體處理后在體外通過抑制AIF核易位和上調(diào)PARP-1抑制HaCaT細(xì)胞凋亡,而在體內(nèi)增強(qiáng)表皮再上皮化和真皮血管生成[40]。體內(nèi)研究表明,人胎兒真皮間充質(zhì)基質(zhì)細(xì)胞(Human fetal dermalmesenchymal stromal cell,hFD-MSCs)源性外泌體通過激活Notch信號通路在小鼠全層皮膚創(chuàng)傷模型中可以加速傷口愈合[41]。
5? 展望
MSCs源性外泌體具有創(chuàng)傷修復(fù)和組織細(xì)胞再生特性,它們作為一種新興的潛在無細(xì)胞治療方式,克服目前干細(xì)胞療法的固有局限性,在皮膚創(chuàng)傷修復(fù)和再生中發(fā)揮重要作用。相比MSCs,其治療安全性更高。皮膚創(chuàng)傷修復(fù)和再生,是一個(gè)動(dòng)態(tài)且多種細(xì)胞相互作用的復(fù)雜過程,包括刺激成纖維細(xì)胞和角質(zhì)形成細(xì)胞的遷移和增殖,促進(jìn)血管生成和膠原蛋白合成。目前,被報(bào)道最多的信號通路包括Wnt/β-catenin、PI3K/AKT、ERK和TGF-β/Smad信號通路。但是,對于MSCs源性外泌體在創(chuàng)傷修復(fù)和再生中發(fā)揮的作用機(jī)制及具體成分目前有待進(jìn)一步研究,相信隨著研究的不斷進(jìn)展,其來源、提取、分離和保存等技術(shù)的不斷改良,MSCs源性外泌體將來會(huì)為皮膚創(chuàng)傷修復(fù)和再生提供新的方向,將更好地應(yīng)用于臨床。
[參考文獻(xiàn)]
[1]Oualla-bachiri W,F(xiàn)ernandez-gonzalez A,Quinones-vico M I,et al.From grafts to human bioengineered vascularized skin substitutes[J].Int J Mol Sci,2020,21(21):8197.
[2]Zhang Y,Yan J,Li Z,et al.Exosomes derived from human umbilical cord mesenchymal stem cells alleviate psoriasis-like skin inflammation[J].J Interferon Cytokine Res,2022,42(1):8-18.
[3]Casado-diaz A,Quesada-gomez J M,Dorado G,et al.Extracellular vesicles derived from mesenchymal stem cells (MSC) in regenerative medicine: applications in skin wound healing[J].Front Bioeng Biotechnol,2020,8:146.
[4]Rosca A M,Tutuianu R,Titorencu I D,et al.Mesenchymal stromal cells derived exosomes as tools for chronic wound healing therapy[J].Rom J Morphol Embryol,2018,59(3):655-662.
[5]Toma C,Wagner W R,Bowry S,et al.Fate of culture-expanded mesenchymal stem cells in the microvasculature: in vivo observations of cell kinetics[J].Circ Res,2009,104(3):398-402.
[6]Spagnuolo G,Codispoti B,Marrelli M,et al.Commitment of oral-derived stem cells in dental and maxillofacial applications[J].Dent J (Basel),2018,6(4):72.
[7]Hoang D H,Nguyen T D,Nguyen H P,et al.Differential wound healing capacity of mesenchymal stem cell-derived exosomes originated from bone marrow, adipose tissue and umbilical cord under serum- and xeno-free condition[J].Front Mol Biosci,2020,7:119.
[8]Zhao B,Zhang Y,Han S,et al.Exosomes derived from human amniotic epithelial cells accelerate wound healing and inhibit scar formation[J].J Mol Histol,2017,48(2):121-132.
[9]Yu M,Liu W,Li J,et al.Exosomes derived from atorvastatin-pretreated MSC accelerate diabetic wound repair by enhancing angiogenesis via AKT/eNOS pathway[J].Stem Cell Res Ther,2020,11(1):350.
[10]An T,Chen Y,Tu Y,et al.Mesenchymal stromal cell-derived extracellular vesicles in the treatment of diabetic foot ulcers: application and challenges[J].Stem Cell Rev Rep,2021,17(2):369-378.
[11]Lai P,Chen X,Guo L,et al.A potent immunomodulatory role of exosomes derived from mesenchymal stromal cells in preventing cGVHD[J].J Hematol Oncol,2018,11(1):135.
[12]Bonucci E.Fine structure of early cartilage calcification[J].J Ultrastruct Res,1967,20(1):33-50.
[13]Pan B T,Teng K,Wu C,et al.Electron microscopic evidence for externalization of the transferrin receptor in? vesicular form in sheep reticulocytes[J].J Cell Biol,1985,101(3):942-948.
[14]Hu J,Chen Y,Huang Y,et al.Human umbilical cord mesenchymal stem cell-derived exosomes suppress dermal fibroblasts-myofibroblats transition via inhibiting the TGF-beta1/Smad 2/3 signaling pathway[J].Exp Mol Pathol,2020,115:104468.
[15]Gao S,Chen T,Hao Y,et al.Exosomal miR-135a derived from human amnion mesenchymal stem cells promotes cutaneous wound healing in rats and fibroblast migration by directly inhibiting LATS2 expression[J].Stem Cell Res Ther,2020,11(1):56.
[16]Liu J,Yan Z,Yang F,et al.Exosomes derived from human umbilical cord mesenchymal stem cells accelerate cutaneous wound healing by enhancing angiogenesis through delivering angiopoietin-2[J].Stem Cell Rev Rep,2021,17(2):305-317.
[17]Wang C,Wang M,Xu T,et al.Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting? chronic diabetic wound healing and complete skin regeneration[J].Theranostics,2019,9(1):65-76.
[18]Ma T,F(xiàn)u B,Yang X,et al.Adipose mesenchymal stem cell-derived exosomes promote cell proliferation, migration, and inhibit cell apoptosis via Wnt/beta-catenin signaling in cutaneous wound healing[J].J Cell Biochem,2019,120(6):10847-10854.
[19]He L,Zhu C,Jia J,et al.ADSC-Exos containing MALAT1 promotes wound healing by targeting miR-124 through activating Wnt/beta-catenin pathway[J].Biosci Rep,2020,40(5):BSR20192549.
[20]Zhang B,Shi Y,Gong A,et al.HucMSC exosome-delivered 14-3-3zeta orchestrates self-control of the wnt response via modulation of yap during cutaneous regeneration[J].Stem Cells,2016,34(10):2485-2500.
[21]Gao S,Chen T,Hao Y,et al.Exosomal miR-135a derived from human amnion mesenchymal stem cells promotes cutaneous wound healing in rats and fibroblast migration by directly inhibiting LATS2 expression[J].Stem Cell Res Ther,2020,11(1):56.
[22]Zhang B,Wang M,Gong A,et al.HucMSC-exosome mediated-wnt4 signaling is required for cutaneous wound healing[J].Stem Cells,2015,33(7):2158-2168.
[23]Zhang B,Wu X,Zhang X,et al.Human umbilical cord mesenchymal stem cell exosomes enhance angiogenesis through the Wnt4/beta-catenin pathway[J].Stem Cells Transl Med,2015,4(5):513-522.
[24]Liu J,Yan Z,Yang F,et al.Exosomes derived from human umbilical cord mesenchymal stem cells accelerate cutaneous wound healing by enhancing angiogenesis through delivering angiopoietin-2[J].Stem Cell Rev Rep,2021,17(2):305-317.
[25]Li X,Wang Y,Shi L,et al.Magnetic targeting enhances the cutaneous wound healing effects of human mesenchymal stem cell-derived iron oxide exosomes[J].J Nanobiotechnology,2020,18(1):113.
[26]Yang C,Luo L,Bai X,et al.Highly-expressed micoRNA-21 in adipose derived stem cell exosomes can enhance the migration and proliferation of the HaCaT cells by increasing the MMP-9 expression through the PI3K/AKT pathway[J].Arch Biochem Biophys,2020,681:108259.
[27]Ding J,Wang X,Chen B,et al.Exosomes derived from human bone marrow mesenchymal stem cells stimulated by deferoxamine accelerate cutaneous wound healing by promoting angiogenesis[J].Biomed Res Int,2019,2019:9742765.
[28]Zhang W,Bai X,Zhao B,et al.Cell-free therapy based on adipose tissue stem cell-derived exosomes promotes wound healing via the PI3K/Akt signaling pathway[J].Exp Cell Res,2018,370(2):333-342.
[29]Yu M,Liu W,Li J,et al.Exosomes derived from atorvastatin-pretreated MSC accelerate diabetic wound repair by enhancing angiogenesis via AKT/eNOS pathway[J].Stem Cell Res Ther,2020,11(1):350.
[30]Shabbir A,Cox A,Rodriguez-Menocal L,et al.Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro[J].Stem Cells Dev,2015,24(14):1635-1647.
[31]Kim S,Lee S K,Kim H,et al.Exosomes secreted from induced pluripotent stem cell-derived mesenchymal stem cells accelerate skin cell proliferation[J].Int J Mol Sci,2018,19(10):3119.
[32]Choi E W,Seo M K,Woo E Y,et al.Exosomes from human adipose-derived stem cells promote proliferation and migration of skin fibroblasts[J].Exp Dermatol,2018,27(10):1170-1172.
[33]Wang L,Hu L,Zhou X,et al.Exosomes secreted by human adipose mesenchymal stem cells promote scarless cutaneous repair by regulating extracellular matrix remodelling[J].Sci Rep,2017,7(1):13321.
[34]Jiang T,Wang Z,Sun J,et al.Human bone marrow mesenchymal stem cell-derived exosomes stimulate cutaneous wound healing mediates through TGF-beta/Smad signaling pathway[J].Stem Cell Res Ther,2020,11(1):198.
[35]Zhang Y,Xue C,Yang C,et al.Umbilical cord-derived mesenchymal stem cell-derived exosomal micrornas suppress? myofibroblast differentiation by inhibiting the transforming growth factor-beta/SMAD2 pathway during wound healing[J].Stem Cells Transl Med,2016,5(10):1425-1439.
[36]Jiang L,Zhang Y,Liu T,et al.Exosomes derived from TSG-6 modified mesenchymal stromal cells attenuate scar formation during wound healing[J].Biochimie,2020,177:40-49.
[37]Dalirfardouei R,Jamialahmadi K,Jafarian A H,et al.Promising effects of exosomes isolated from menstrual blood-derived mesenchymal stem cell on wound-healing process in diabetic mouse model[J].J Tissue Eng Regen Med,2019,13(4):555-568.
[38]Hu L,Wang J,Zhou X,et al.Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts[J].Sci Rep,2016,6:32993.
[39]Zhao B,Zhang Y,Han S,et al.Exosomes derived from human amniotic epithelial cells accelerate wound healing and inhibit scar formation[J].J Mol Histol,2017,48(2):121-132.
[40]Wang B,Zhang Y,Han X,et al.MSC-derived exosomes attenuate cell death through suppressing AIF nucleus translocation and enhance cutaneous wound healing[J].Stem Cell Res Ther,2020,11(1):174.
[41]Wang X,Jiao Y,Pan Y,et al.Fetal dermal mesenchymal stem cell-derived exosomes accelerate cutaneous wound healing by activating notch signaling[J].Stem Cells Int,2019,2019:2402916.
[收稿日期]2022-03-02
本文引用格式:鄭舒丹,吳金燕,張利平,等.間充質(zhì)干細(xì)胞源性外泌體在皮膚創(chuàng)傷修復(fù)和再生中的研究進(jìn)展[J].中國美容醫(yī)學(xué),2023,32(4):189-193.