朱 一,李曉龍,吳 喆,陶 岳,王雅杰,孫 宇,張小凱,王震宇
生物質(zhì)炭對(duì)不同植被類型土壤溫室氣體排放影響研究進(jìn)展①
朱 一,李曉龍,吳 喆,陶 岳,王雅杰,孫 宇,張小凱*,王震宇
(江南大學(xué)環(huán)境過(guò)程與污染控制研究所,環(huán)境與土木工程學(xué)院,江蘇無(wú)錫 214122)
土壤生態(tài)系統(tǒng)是溫室氣體排放的主要來(lái)源之一,降低土壤溫室氣體排放對(duì)于緩解全球變暖具有重要意義。近年來(lái),生物質(zhì)炭在改良土壤性質(zhì)、提高土壤碳匯和影響土壤溫室氣體排放方面展現(xiàn)出了巨大的潛力。因此,關(guān)于施加生物質(zhì)炭對(duì)土壤溫室氣體排放影響的研究已經(jīng)成為了環(huán)境科學(xué)和農(nóng)業(yè)生態(tài)領(lǐng)域的研究熱點(diǎn)。然而,生物質(zhì)炭對(duì)土壤溫室氣體凈排放的影響是促進(jìn)還是抑制尚無(wú)統(tǒng)一定論。不同植被類型條件下土壤溫室氣體排放也存在較大差異,故而研究添加生物質(zhì)炭對(duì)不同植被類型土壤溫室氣體排放的影響至關(guān)重要。本文綜述了添加生物質(zhì)炭對(duì)林地、農(nóng)田及設(shè)施蔬菜土壤中CO2、CH4和N2O排放的影響,探討了生物質(zhì)炭對(duì)土壤溫室氣體排放的作用機(jī)制??偨Y(jié)發(fā)現(xiàn),不同植被類型土壤添加生物質(zhì)炭將降低土壤N2O的排放,并且增加土地對(duì)CH4的吸收,而對(duì)CO2排放的影響沒(méi)有統(tǒng)一定論。結(jié)合國(guó)內(nèi)外生物質(zhì)炭在該領(lǐng)域的研究現(xiàn)狀,未來(lái)需開展生物質(zhì)炭在土壤溫室氣體減排領(lǐng)域的長(zhǎng)期系統(tǒng)研究,同時(shí)應(yīng)充分考慮使用生物質(zhì)炭可能存在的潛在環(huán)境風(fēng)險(xiǎn),以期為生物質(zhì)炭在土壤溫室氣體減排中的應(yīng)用提供可靠的科學(xué)依據(jù)。
生物質(zhì)炭;植被類型;溫室氣體;影響機(jī)理;減排
近年來(lái),隨著人們對(duì)環(huán)境問(wèn)題的廣泛關(guān)注,全球氣候變化及其對(duì)環(huán)境與人類生存帶來(lái)的影響已經(jīng)成為了學(xué)術(shù)界的研究熱點(diǎn)。根據(jù)政府間氣候變化專門委員會(huì)(IPCC)的報(bào)告,全球氣溫預(yù)計(jì)將在21世紀(jì)內(nèi)升高2 ~ 5 ℃[1]。世界氣象組織2022年的調(diào)查報(bào)告顯示,過(guò)去7年是有記錄以來(lái)最熱的7年,2021年全球溫度比工業(yè)化前水平高出約1.1 ℃[2]。為了將全球變暖導(dǎo)致的升溫控制在1.5 ~ 2 ℃以內(nèi),全球溫室氣體排放必須達(dá)到峰值,然后迅速下降。如圖1所示,我國(guó)的碳達(dá)峰時(shí)間預(yù)計(jì)出現(xiàn)在2030年,并與世界其他56個(gè)國(guó)家實(shí)現(xiàn)占全球溫室氣體排放量的60%。因此,如何減少溫室氣體排放,早日實(shí)現(xiàn)碳達(dá)峰,緩解溫室效應(yīng)已經(jīng)成為近些年來(lái)世界各個(gè)國(guó)家亟待解決的共同問(wèn)題。
圖1 已達(dá)到或承諾達(dá)到峰值碳排放量的國(guó)家數(shù)量
眾多研究表明,土壤碳庫(kù)是陸地生態(tài)系統(tǒng)中最大的碳庫(kù),其碳儲(chǔ)量達(dá)到 2.2×103~ 3×103Pg[3–4],而全球土壤有機(jī)碳封存潛力為CO22.3×109~ 5.5×109t/a[5]。因此,土壤有機(jī)碳封存量的變化將對(duì)全球溫室效應(yīng)和氣候變化產(chǎn)生重要影響。土壤有機(jī)碳的固定、積累和分解影響著全球碳循環(huán)。土壤中存儲(chǔ)的碳最初都來(lái)自大氣[6],這主要是由于植物通過(guò)光合作用將CO2轉(zhuǎn)化為有機(jī)物,有機(jī)物中的碳以根系分泌物、死根或者殘葉的形式進(jìn)入土壤,并在土壤微生物的作用下,轉(zhuǎn)變?yōu)橥寥烙袡C(jī)質(zhì)存儲(chǔ)在土壤中[6–7]。增加土壤有機(jī)碳固存不僅能為植被生長(zhǎng)及微生物活動(dòng)提供碳源,也可維持土壤良好的物理結(jié)構(gòu),促進(jìn)土壤中植物可利用態(tài)養(yǎng)分的釋放與轉(zhuǎn)化,同時(shí)也是持續(xù)減少大氣中CO2等溫室氣體含量的一個(gè)有效且可持續(xù)的措施[8]。土壤CO2排放又稱土壤呼吸,是土壤有機(jī)碳進(jìn)入大氣的主要途徑。它是陸地生態(tài)系統(tǒng)碳損失導(dǎo)致氣候變化的主要機(jī)制[9]。此外,CH4和N2O也被認(rèn)為是主要的溫室氣體,其單位質(zhì)量的全球變暖潛勢(shì)在世紀(jì)尺度上分別是CO2的25倍和198倍[10]。因此,如何通過(guò)改變土壤的物理、化學(xué)和生物性質(zhì),從而降低土壤的溫室氣體排放,對(duì)緩解全球氣候變化危機(jī)至關(guān)重要。
生物質(zhì)炭是指農(nóng)林廢棄物在限氧或無(wú)氧條件下,通過(guò)熱解轉(zhuǎn)化產(chǎn)生的含碳量豐富的固體物質(zhì)[11]。生物質(zhì)炭具有穩(wěn)定的結(jié)構(gòu)、豐富的孔隙度、巨大的比表面積、相對(duì)較高的pH等特點(diǎn)[12]。生物質(zhì)炭的制備材料來(lái)源豐富,包括農(nóng)林廢棄物[13]、生活垃圾、動(dòng)物糞便等[14–15]。將生物質(zhì)炭施加到土壤中后可以改良土壤結(jié)構(gòu),增加土壤孔隙度、降低容重、增強(qiáng)保水性能、吸附土壤中的污染物,同時(shí)還可以促進(jìn)植物根系的生長(zhǎng)以及對(duì)水分養(yǎng)料的吸收,及提高植物的抗逆性[16–18]。在全球氣候變暖的背景下,土壤固碳減排是實(shí)現(xiàn)碳中和的重要方法。研究發(fā)現(xiàn),生物質(zhì)炭穩(wěn)定性強(qiáng),可在土壤中留存幾個(gè)世紀(jì)[19–23]。由此可見,土壤中添加生物質(zhì)炭對(duì)于實(shí)現(xiàn)土壤碳封存,增加土壤碳儲(chǔ)量,實(shí)現(xiàn)碳中和具有積極促進(jìn)作用。
基于生物質(zhì)炭在土壤固碳減排方面的潛力,近年來(lái),該研究領(lǐng)域已經(jīng)成為國(guó)內(nèi)外學(xué)者的研究焦點(diǎn)[24–27]。從圖2可以看出自2011年以來(lái)關(guān)于生物質(zhì)炭對(duì)溫室氣體排放影響的文章逐年遞增,且尤以我國(guó)的發(fā)文量最大,達(dá)到了近700篇。然而,關(guān)于添加生物質(zhì)炭促進(jìn)還是抑制土壤溫室氣體的凈排放仍然沒(méi)有統(tǒng)一的定論。并且,土壤中添加生物質(zhì)炭后,不同的植被類型會(huì)對(duì)溫室氣體的排放產(chǎn)生不同影響。本文對(duì)近年來(lái)添加生物質(zhì)炭對(duì)土壤溫室氣體排放影響的文章進(jìn)行了綜述,以期使相關(guān)研究人員對(duì)生物質(zhì)炭的利用有更加深入的認(rèn)識(shí),從而更好地促進(jìn)土壤碳匯及減少溫室氣體減排。
溫室氣體在大氣和土壤中的交換受多種因素的影響,例如植被類型、溫度、降水、氮(N)輸入和土壤性質(zhì)(例如土壤質(zhì)地、土壤pH和C/N等)。在眾多因素當(dāng)中,植被類型的變化對(duì)溫室氣體排放起關(guān)鍵作用,因?yàn)槠渥兓苯佑绊懲寥捞紖R[28]、根系密度、氮輸入[29]和管理[30]。這進(jìn)一步影響土壤溫度和土壤水分及土壤動(dòng)物和微生物等,從而影響溫室氣體排放[20]。因此,研究不同植被類型土壤中添加生物質(zhì)炭對(duì)土壤溫室氣體排放的影響,對(duì)于指導(dǎo)如何合理施用生物質(zhì)炭意義重大。
圖2 Web of Science以“biochar”和“greenhouse gas”為關(guān)鍵詞的檢索結(jié)果
森林在陸地生態(tài)系統(tǒng)碳循環(huán)中發(fā)揮著關(guān)鍵作用[31–32]。從1990年到2015年,世界森林總面積從428億公頃減少到39.9億公頃,而同期人工林面積從1 675萬(wàn)公頃增加到2.779億公頃[33]。因此,人工林的可持續(xù)經(jīng)營(yíng)對(duì)于提高林地碳匯能力、減緩全球氣候變化具有重要意義。表1總結(jié)了近5年通過(guò)添加生物質(zhì)炭對(duì)人工林地或森林土壤溫室氣體排放影響的研究。從表1可以看出,不同研究中生物質(zhì)炭施用對(duì)森林生態(tài)系統(tǒng)土壤溫室氣體排放的影響差異較大。Hawthorne等[35]在實(shí)驗(yàn)室內(nèi),將不同比例松木生物質(zhì)炭添加到森林土壤中觀察其對(duì)土壤排放溫室氣體的影響,研究發(fā)現(xiàn),添加10% 生物質(zhì)炭促進(jìn)了N2O和CO2的排放,不同添加量的生物質(zhì)炭均降低了CH4的排放。相比之下,孫贇等[42]通過(guò)實(shí)驗(yàn)室研究發(fā)現(xiàn),生物質(zhì)炭抑制了茶園土壤的N2O排放,促進(jìn)了CO2的排放。蔣夢(mèng)蝶等[44]研究發(fā)現(xiàn),添加生物質(zhì)炭同時(shí)促進(jìn)了茶園土壤的CO2和CH4排放。由此可見,在實(shí)驗(yàn)室可控條件下,即便是同一種土壤,生物質(zhì)炭對(duì)其溫室氣體排放的影響也不一致,這主要與生物質(zhì)炭的炭化溫度和制備原材料相關(guān)[35,42,44]。
表1 添加生物質(zhì)炭對(duì)人工林地土壤溫室氣體排放的影響
由于實(shí)驗(yàn)室研究是在可控條件下進(jìn)行,因此開展田間試驗(yàn)研究生物質(zhì)炭對(duì)自然條件下人工林地土壤溫室氣體的排放更具有現(xiàn)實(shí)意義。Zhou等[34]通過(guò)16個(gè)月的長(zhǎng)期監(jiān)測(cè)發(fā)現(xiàn),不同添加量的800 ℃竹炭對(duì)森林溫室氣體排放沒(méi)有顯著影響。而葛曉改等[43]經(jīng)過(guò)兩年的長(zhǎng)期定位試驗(yàn)則發(fā)現(xiàn),450 ℃的生物質(zhì)炭降低了森林土壤的CO2的排放。Ge等[38]經(jīng)過(guò)兩年的研究發(fā)現(xiàn),添加500 ℃生物質(zhì)炭減少毛竹人工林土壤的CO2排放。這些研究的差異可能與生物質(zhì)炭的性質(zhì)(由于熱解溫度的差異及制備原材料的不同所造成)、試驗(yàn)時(shí)間的長(zhǎng)短,以及森林植被和土壤類型密切相關(guān)。這些因素的不同造成了不同研究中森林土壤的持水能力、有機(jī)質(zhì)含量、pH、土壤結(jié)構(gòu)以及微生物群落的不同,也最終影響了溫室氣體的排放[24]。此外,樹木的生物量較大,其進(jìn)行光合作用所吸收的CO2量較高,甚至抵消土壤釋放的CO2量,這與其他植被覆蓋的土壤系統(tǒng)有較大差異。因此,在研究生物質(zhì)炭對(duì)森林生態(tài)系統(tǒng)碳排放的影響時(shí)應(yīng)綜合考慮生物質(zhì)炭的類型、森林植被類型、土壤性質(zhì)等因素,盡量開展長(zhǎng)期定位試驗(yàn),以便得到更加精準(zhǔn)的試驗(yàn)結(jié)果。
自古以來(lái),農(nóng)業(yè)生產(chǎn)在人類社會(huì)發(fā)展過(guò)程中扮演著必不可少的角色。為了滿足日益增長(zhǎng)的人口對(duì)糧食的需求,大量的農(nóng)藥和化肥被應(yīng)用到了農(nóng)業(yè)活動(dòng)中,這些人工合成材料生產(chǎn)及使用過(guò)程中大量溫室氣體被排放到大氣中,加劇溫室效應(yīng)。目前,據(jù)報(bào)道,約11% 進(jìn)入大氣的人為溫室氣體排放來(lái)自不同的農(nóng)業(yè)活動(dòng),這嚴(yán)重危及農(nóng)業(yè)的可持續(xù)發(fā)展[45]。而在各種溫室氣體中,78% 的N2O排放均來(lái)自農(nóng)業(yè)土壤[46–47],這主要是因?yàn)檗r(nóng)業(yè)活動(dòng)中氮肥的大量施用。此外,對(duì)于CH4來(lái)說(shuō),農(nóng)業(yè)活動(dòng)的排放量占50%[48–50],而這也主要?dú)w咎于氮肥的施用。由于3種強(qiáng)效溫室氣體的源和匯是生態(tài)系統(tǒng)中碳估算的主要組成部分,因此,將生物質(zhì)炭作為土壤改良劑應(yīng)用到農(nóng)業(yè)土壤中一方面可以改良土壤,另一方面可以作為碳匯抵消人為活動(dòng)導(dǎo)致氣候變暖的碳排放[51]。據(jù)估計(jì),由2.2 Gt的生物質(zhì)原料生產(chǎn)的生物質(zhì)炭每年可以從大氣中去除0.49 Gt的碳,這意味著將生物質(zhì)炭用作氣候變化緩解策略具有更大應(yīng)用潛力[52]。
與人工林地生態(tài)系統(tǒng)的研究相似,添加生物質(zhì)炭對(duì)農(nóng)田土壤溫室氣體排放影響的研究也顯示出了不同的結(jié)果。盡管大多數(shù)的研究表明向農(nóng)田土壤中施用生物質(zhì)炭可降低CH4的排放,仍有實(shí)驗(yàn)發(fā)現(xiàn)土壤中的生物質(zhì)炭增加了CH4的排放量(表2)。與林地生態(tài)系統(tǒng)相比,農(nóng)業(yè)系統(tǒng)在植被類型方面有很大差異,農(nóng)作物的生物量相對(duì)較小,通過(guò)光合作用對(duì)CO2的吸收也相對(duì)較少[67–68]。而在農(nóng)業(yè)用地中,旱作和淹水條件下,生物質(zhì)炭對(duì)溫室氣體排放的影響也各不相同。研究表明,生物質(zhì)炭在短期內(nèi)(6個(gè)月)對(duì)半干旱地區(qū)農(nóng)田土壤CO2和N2O的排放沒(méi)有顯著影響,而顯著降低了CH4的排放[55],類似的結(jié)果在Wang等[63]和Polifka等[64]的研究中也有報(bào)道。相比之下,淹水條件的水稻土壤則是農(nóng)田生態(tài)系統(tǒng)中CH4的主要排放源頭。CH4的排放是稻田中產(chǎn)甲烷菌和甲烷氧化細(xì)菌共同作用的結(jié)果,產(chǎn)甲烷菌生產(chǎn)后部分未被甲烷氧化細(xì)菌氧化的CH4從土壤中釋放[69]。稻田中九成的CH4是直接通過(guò)水稻通氣組織傳輸排放,生物質(zhì)炭輸入可抑制產(chǎn)甲烷菌的生長(zhǎng),減少CH4的產(chǎn)生,從而降低CH4的排放[61]。對(duì)于CO2而言,生物質(zhì)炭施用的影響也取決于土壤環(huán)境和微生物活性,生物質(zhì)炭的高孔隙率保護(hù)了微生物免受捕食者侵害,從而微生物總量得到提高,增加了土壤呼吸[64],因此多數(shù)研究中土壤CO2的排放量增加的現(xiàn)象與之密不可分。而Hua等[65]在研究生物質(zhì)炭對(duì)土壤碳特性的影響中發(fā)現(xiàn),生物質(zhì)炭的施用顯著降低了土壤中CO2的排放量,這主要是由于不穩(wěn)定的生物質(zhì)炭組分刺激微生物的生長(zhǎng)與活性。另一方面,累積CO2通量值的下降與研究地區(qū)農(nóng)作物生物量的增加之間存在相關(guān)性,這表明,生物質(zhì)炭促進(jìn)了作物的生長(zhǎng)進(jìn)而增加了其對(duì)CO2的吸收。例如,向?qū)嶒?yàn)土壤施加生物質(zhì)炭后,與對(duì)照相比,CO2的排放通量降低,培育的綠豆植株的生物量得到有效提高[70]。與林地土壤的研究結(jié)果一致,生物質(zhì)炭不同制備材料、熱解溫度和添加量會(huì)造成不一致的結(jié)果[71],這也就帶來(lái)了研究的不確定性。
N2O是硝化與反硝化的產(chǎn)物,當(dāng)硝化反應(yīng)占據(jù)主導(dǎo)地位時(shí),土壤N2O的排放量會(huì)相應(yīng)增加[72]。已有研究表明土壤含水量的變化是主導(dǎo)N2O轉(zhuǎn)化的因素之一[73],生物質(zhì)炭可提高土壤持水能力,促進(jìn)N2O向N2的轉(zhuǎn)化,這是土壤N2O的排放量降低的重要原因[63]。此外,含水率提高帶來(lái)的厭氧環(huán)境也增強(qiáng)了反硝化細(xì)菌的生理活性。生物質(zhì)炭對(duì)土壤中N的吸附,可以降低可用于硝化反應(yīng)的N的比例,進(jìn)而減少土壤中N2O的排放[74]。盡管如此,生物質(zhì)炭的高孔隙率導(dǎo)致土壤中O2交換量增加,干擾N2O還原酶的作用,也存在N2O排放量增加的可能。因此,基于以上研究,針對(duì)農(nóng)田土壤添加生物質(zhì)炭的研究應(yīng)該進(jìn)一步區(qū)分耕作方式和作物類型開展更加詳細(xì)的室內(nèi)及田間試驗(yàn)。同時(shí),計(jì)算作物生長(zhǎng)過(guò)程中吸收的CO2的量,并對(duì)比土壤排放量,從而更加精準(zhǔn)地計(jì)算CO2凈排放量。
表2 添加生物質(zhì)炭對(duì)農(nóng)業(yè)土壤溫室氣體排放的影響
隨著世界各地設(shè)施農(nóng)業(yè)的興起,設(shè)施蔬菜產(chǎn)業(yè)發(fā)展迅速,尤其以中國(guó)的設(shè)施蔬菜產(chǎn)業(yè)發(fā)展最快,蔬菜的播種面積和產(chǎn)量分別占世界的43% 和49%[75]。因此,設(shè)施蔬菜用地在溫室氣體減排中的作用也不容忽視。近年來(lái),國(guó)內(nèi)外學(xué)者,特別是中國(guó),針對(duì)利用生物質(zhì)炭影響設(shè)施蔬菜土壤溫室氣體排放開展了大量研究(表3)。不同于森林土壤長(zhǎng)期處在植被覆蓋的潮濕環(huán)境,以及農(nóng)業(yè)水稻土的長(zhǎng)期淹水環(huán)境,設(shè)施蔬菜土壤經(jīng)常處在干濕交替的環(huán)境中,因此其溫室氣體排放量和產(chǎn)生機(jī)理也與前兩者存在差異。
相較于林地植被和農(nóng)田作物,設(shè)施蔬菜體型較小,不同條件下生長(zhǎng)差異較為明顯,易于觀測(cè)分析。如表3所示,常研究的蔬菜類型包括萵苣、卷心菜、生菜、辣椒、菜心、莧菜、番茄、大白菜、白蘿卜、小白菜、香菜、菠菜等蔬菜。陸扣萍等[85]研究發(fā)現(xiàn),竹炭比豬骨炭對(duì)土壤中CO2與N2O排放的抑制效果更佳,并且,一次性施用20 t/hm2竹炭處理優(yōu)于分批施用處理。除此之外,他們還發(fā)現(xiàn)一次性施用豬骨炭處理明顯促進(jìn)了兩茬空心菜土壤CO2排放。由此可見,不同種類的生物質(zhì)炭對(duì)土壤溫室氣體排放的影響存在較大差異,這主要是由于豬骨生物質(zhì)炭含有較多的灰分,添加到土壤中后引入了大量的易分解有機(jī)碳,為土壤微生物生長(zhǎng)提供了碳源,進(jìn)而促進(jìn)了CO2的排放[86]。在較高溫度條件下或者木科炭化材料(如樹枝、竹子等)制備的生物質(zhì)炭灰分含量較低,碳含量較高,其固碳能力優(yōu)于禾本科植物材料(如秸稈、稻殼、花生殼等)[87]。另有研究發(fā)現(xiàn),即便生物質(zhì)炭促進(jìn)土壤中CO2的排放,其排放的CO2的含碳量也僅占生物質(zhì)炭總量的0.1% ~ 0.8%,這還不包括生物質(zhì)炭促進(jìn)蔬菜生長(zhǎng)從而促進(jìn)蔬菜對(duì)CO2的吸收量[88]。
表3 添加生物質(zhì)炭對(duì)蔬菜土壤溫室氣體排放的影響
生物質(zhì)炭通過(guò)影響土壤通氣效率、pH和蔬菜生長(zhǎng)環(huán)境碳氮比來(lái)控制氮的轉(zhuǎn)化[89]。由表3可以看出,在對(duì)番茄、大白菜、白蘿卜、小白菜、菠菜等主要蔬菜類型的研究中發(fā)現(xiàn),土壤N2O的排放量隨生物質(zhì)炭的施加而降低的結(jié)果較為一致[80–81]。Zhang等[79]通過(guò)對(duì)種植番茄、大白菜和綠豆的蔬菜土壤研究表明,添加小麥秸稈生物質(zhì)炭顯著降低了土壤N2O的排放。對(duì)于不同作物來(lái)講,N2O排放量的減少各不相同,這表明蔬菜類型的不同也會(huì)對(duì)生物質(zhì)炭的效果產(chǎn)生影響。然而,在對(duì)栽培辣椒的土壤研究中發(fā)現(xiàn),當(dāng)生物質(zhì)炭添加量超過(guò)一定比例后,隨著生物質(zhì)炭添加量的增加N2O排放量增加[77],這主要是和生物質(zhì)炭的施用量和蔬菜類型有關(guān)。因此,應(yīng)該進(jìn)一步開展針對(duì)不同蔬菜類型如何影響土壤溫室氣體排放的相關(guān)機(jī)理研究。
與種植水稻淹水農(nóng)田環(huán)境相比,設(shè)施蔬菜培育環(huán)境土壤顆粒大團(tuán)聚體占比較高,構(gòu)成嗜甲烷細(xì)菌適宜的生長(zhǎng)環(huán)境,生物質(zhì)炭的加入改善土壤碳氮比,進(jìn)一步提高嗜甲烷菌活性,最終降低土壤中CH4的排放[90]。Jia等[78]研究發(fā)現(xiàn),玉米秸稈生物質(zhì)炭顯著降低了菜心和莧菜土壤中CH4的排放。Ibrahim等[70]發(fā)現(xiàn),花生殼和污泥生物質(zhì)炭顯著抑制了土壤中CH4的排放,他們推測(cè)這種抑制作用可能是由于產(chǎn)甲烷菌的活性被抑制所導(dǎo)致。綜上所述,在對(duì)生物質(zhì)炭影響蔬菜用地土壤溫室氣體排放量評(píng)估時(shí),有必要充分考慮生物質(zhì)炭的性質(zhì)以及其與土壤環(huán)境共同作用下的作物類型與環(huán)境差異。
土壤中添加生物質(zhì)炭對(duì)不同種類溫室氣體排放的影響機(jī)理如圖3所示。在生物質(zhì)炭影響CO2排放的機(jī)理中,其刺激土壤CO2排放主要是由于土壤中不穩(wěn)定碳的礦化或者生物質(zhì)炭向土壤中釋放的無(wú)機(jī)碳的增加[91–92]。研究表明,施加生物質(zhì)炭可以顯著提高土壤有機(jī)碳和土壤微生物生物量碳含量,這將提高微生物活性,進(jìn)而促進(jìn)土壤CO2排放[93]。低溫條件下制備的生物質(zhì)炭的無(wú)機(jī)碳組分含量更高,從而更容易被微生物利用,導(dǎo)致CO2的排放增加[94–95]。由于生物質(zhì)炭一般具有較大的吸附能力,可以吸附土壤中的CO2,降低其排放[96]。此外,生物質(zhì)炭可以通過(guò)影響土壤性質(zhì)包括含水量、孔隙率、聚集度、pH、CEC和微生物活性從而影響CO2的排放[97]。
對(duì)于CH4來(lái)講,生物質(zhì)炭影響其排放的機(jī)理主要有:①由于生物質(zhì)炭是堿性材料,施加生物質(zhì)炭通常會(huì)提高土壤pH,這將有利于產(chǎn)甲烷菌的生長(zhǎng),從而促進(jìn)CH4的排放[98];②生物質(zhì)炭的應(yīng)用可以降低土壤容重和增加土壤孔隙度,這將有利于提高土壤微生物的活性,從而有利于微生物對(duì)CH4的氧化和吸收[99]。在這兩種機(jī)理中前者作用相對(duì)較弱,生物質(zhì)炭提高土壤pH從而間接影響產(chǎn)甲烷菌的生長(zhǎng),而土壤中微生物種類繁多,生物質(zhì)炭同時(shí)也可以促進(jìn)其他微生物的活性,從而和產(chǎn)甲烷菌產(chǎn)生競(jìng)爭(zhēng)。而后者則是主要控制機(jī)理,土壤中添加生物質(zhì)炭必定會(huì)增加土壤的通氣性和孔隙度,從而造成土壤中氧氣含量的增加,而CH4的代謝途徑是有氧過(guò)程,因此大部分研究證實(shí)土壤中添加生物質(zhì)炭可減少CH4的排放。
圖3 土壤中添加生物質(zhì)炭對(duì)溫室氣體CO2(A)、CH4(B)和N2O(C)排放的影響機(jī)理
土壤中N2O的排放主要是由硝化反硝化過(guò)程決定,土壤中硝化菌和反硝化菌活性的變化直接驅(qū)動(dòng)N2O的釋放。添加生物質(zhì)炭有利于電子向土壤反硝化微生物的傳遞,促進(jìn)N2O向N2的還原,降低N2O的排放[100]。生物質(zhì)炭可以通過(guò)自身特殊的性質(zhì),大量吸附土壤中的NH4+和NO3–,減少NH3揮發(fā),或固定氮化合物,這些過(guò)程減少了可用于硝化或反硝化的無(wú)機(jī)氮源,從而限制產(chǎn)生N2O作為代謝副產(chǎn)品[101–102]。此外,生物質(zhì)炭能刺激Z的轉(zhuǎn)錄(反硝化細(xì)菌基因標(biāo)志物),這表明通過(guò)該方式生物質(zhì)炭可進(jìn)一步將N2O還原為N2來(lái)減少N2O的排放[103]。
以上作用機(jī)理的提出均是基于大量的室內(nèi)及田間試驗(yàn)研究,然而,3種溫室氣體排放的具體機(jī)理的進(jìn)一步闡明還取決于不同植被類型下土壤性質(zhì)的差異、添加的生物質(zhì)炭性質(zhì)的差異,以及試驗(yàn)時(shí)間的長(zhǎng)短。
通過(guò)對(duì)近年來(lái)各項(xiàng)相關(guān)研究的綜述可以發(fā)現(xiàn),在大部分研究中,添加生物質(zhì)炭后都可以降低土壤N2O的排放,并且增加土壤對(duì)于CH4的吸收,而對(duì)CO2的影響沒(méi)有統(tǒng)一的定論。生物質(zhì)炭作為新型環(huán)境友好材料,其具備巨大的潛力,極有可能在未來(lái)遏制全球變暖的過(guò)程中發(fā)揮不可或缺的作用。但是作為一項(xiàng)新興的技術(shù),生物質(zhì)炭的研究仍有許多的不足之處。
1)系統(tǒng)性的研究較少,一如前文所述,不同的原料和不同的制備過(guò)程都會(huì)導(dǎo)致生物質(zhì)炭的性質(zhì)有著較大的差異,而試驗(yàn)過(guò)程中不同的植被類型土壤、氣候條件、作物種類、當(dāng)?shù)氐耐寥佬再|(zhì)、土壤中微生物的種類和數(shù)量以及最為關(guān)鍵的人類活動(dòng)等影響因素眾多,同一試驗(yàn)中的變量過(guò)多,這就導(dǎo)致了如今生物質(zhì)炭的研究成果眾多,但是卻并沒(méi)有統(tǒng)一定論可以直接確定生物質(zhì)炭的具體效用。因此,今后應(yīng)開展系統(tǒng)性的研究,從原料的種類到制作過(guò)程中導(dǎo)致的生物質(zhì)炭性質(zhì)差異,從南方的溫暖濕潤(rùn)到北方的寒冷干燥中導(dǎo)致的氣候差異,再?gòu)呐璧仄皆母火埻恋氐礁咴衬幕氖復(fù)恋刂型寥佬再|(zhì)的差異等,將這些不同的變量統(tǒng)計(jì)并整理,進(jìn)行系統(tǒng)性的研究。
2)缺少權(quán)威的參考值,生物質(zhì)炭對(duì)于溫室氣體排放或吸收的影響是多方面的,根據(jù)具體情況的不同,會(huì)導(dǎo)致產(chǎn)生的結(jié)果不同。在同一片土地上,能夠添加的生物質(zhì)炭的量是有上限的,然而人們對(duì)于生物質(zhì)炭能給緩解溫室效應(yīng)帶來(lái)益處的期望是無(wú)限的,所以應(yīng)當(dāng)根據(jù)地區(qū)政策及需求計(jì)算生物質(zhì)炭投入的最優(yōu)量,作為權(quán)威的參考值以供未來(lái)的研究需要。
3)長(zhǎng)期研究較少,大部分有關(guān)生物質(zhì)炭影響土壤溫室氣體排放的研究只是短期研究。由于生物質(zhì)炭技術(shù)的興起時(shí)間與研究人員時(shí)間和空間上的限制,一般有關(guān)研究只是持續(xù)了幾個(gè)月到幾年不等,很少有對(duì)添加生物質(zhì)炭的土壤的長(zhǎng)期觀測(cè),而生物質(zhì)炭不易分解、毀壞,其保存時(shí)間動(dòng)輒百年,所以需要更多長(zhǎng)時(shí)間的觀測(cè)與研究來(lái)判斷其對(duì)溫室氣體排放的影響。
4)生物質(zhì)炭對(duì)環(huán)境負(fù)面影響的研究較少,在生物質(zhì)炭的施用過(guò)程中,其本身可能攜帶一定有害物質(zhì)(如重金屬),這會(huì)對(duì)土壤環(huán)境產(chǎn)生不良影響。此外,添加到土壤中的生物質(zhì)炭存在什么樣的長(zhǎng)期風(fēng)險(xiǎn)尚不明確。因此,在利用生物質(zhì)炭時(shí)應(yīng)綜合考慮多種因素可能對(duì)環(huán)境產(chǎn)生的負(fù)面影響,開展生物質(zhì)炭對(duì)環(huán)境影響的風(fēng)險(xiǎn)評(píng)估并制定相應(yīng)的解決措施,從而確保生物質(zhì)炭的安全使用。
5)生物質(zhì)炭在制備過(guò)程中會(huì)產(chǎn)生納米級(jí)的顆粒,稱為納米生物質(zhì)炭。相比普通生物質(zhì)炭,納米生物質(zhì)炭具有更大的比表面積和更強(qiáng)的遷移能力。這種類型的生物質(zhì)炭會(huì)對(duì)土壤溫室氣體排放產(chǎn)生何種影響尚不明確,未來(lái)應(yīng)開展相關(guān)研究,明確納米生物質(zhì)炭在土壤固碳減排中的作用。
6)目前生物質(zhì)炭類土壤添加劑的成本相對(duì)較高,這大大限制了生物質(zhì)炭的推廣及應(yīng)用。今后的研究應(yīng)重點(diǎn)優(yōu)化生物質(zhì)炭的制備工藝,同時(shí)降低原材料收集成本,從而降低生物質(zhì)炭生產(chǎn)成本,促進(jìn)其商業(yè)化。
[1] Stocker T F, Qin D, Plattner G K. Sea level change//Climate change 2013—The physical science basis[M]. Cambridge: Cambridge University Press, 2014: 1137–1216.
[2] WMO. State of the global climate 2020[R]. World Meteorological Organization (WMO), 2021.
[3] Post W M, Emanuel W R, Zinke P J, et al. Soil carbon pools and world life zones[J]. Nature, 1982, 298(5870): 156–159.
[4] Schimel D S. Terrestrial ecosystems and the carbon cycle[J]. Global Change Biology, 1995, 1(1): 77–91.
[5] 周璞, 侯華麗, 張惠, 等. 碳中和背景下提升土壤碳匯能力的前景與實(shí)施建議[J]. 環(huán)境保護(hù), 2021, 49(16): 63–67.
[6] 趙鑫. 基于Meta-analysis對(duì)我國(guó)保護(hù)性耕作農(nóng)田土壤固碳減排效應(yīng)及其潛力的研究[D]. 北京: 中國(guó)農(nóng)業(yè)大學(xué), 2017.
[7] Ontl T A, Schulte L A. Soil carbon storage[J]. Nature Education Knowledge, 2012, 3(10): 35.
[8] 王樹濤, 門明新, 劉微, 等. 農(nóng)田土壤固碳作用對(duì)溫室氣體減排的影響[J]. 生態(tài)環(huán)境, 2007, 16(6): 1775–1780.
[9] Xu M, Shang H. Contribution of soil respiration to the global carbon equation[J]. Journal of Plant Physiology, 2016, 203: 16–28.
[10] Hoegh-Guldberg O, Cai R S, Poloczanska E S, et al. The Ocean//Barros V R, Field C B, Dokken D J, et al. Climate change 2014: Impacts, adaptation, and vulnerability. Part B: Regional aspects. Contribution of working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change[M]. Cambridge, UK: Cambridge University Press, 2014, 1655–1731.
[11] 張小凱, 何麗芝, 陸扣萍, 等. 生物質(zhì)炭修復(fù)重金屬及有機(jī)物污染土壤的研究進(jìn)展[J]. 土壤, 2013, 45(6): 970–977.
[12] Zhang X K, Wang H L, He L Z, et al. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants[J]. Environmental Science and Pollution Research, 2013, 20(12): 8472–8483.
[13] Zhang X K, He L Z, Sarmah A K, et al. Retention and release of diethyl phthalate in biochar-amended vegetable garden soils[J]. Journal of Soils and Sediments, 2014, 14(11): 1790–1799.
[14] Akdeniz N. A systematic review of biochar use in animal waste composting[J]. Waste Management, 2019, 88: 291–300.
[15] 石永亮. 生物質(zhì)炭特性及在水中重金屬吸附領(lǐng)域的研究進(jìn)展[J]. 能源與節(jié)能, 2021(11): 11–13, 17.
[16] Wang H L, Yang X, He L Z, et al. Using biochar for remediation of contaminated soils//Luo Y M, Tu C. Twenty years of research and development on soil pollution and remediation in China[M]. Singapore: Springer, 2018: 763–783.
[17] Zhang X K, Wells M, Niazi N K, et al. Nanobiochar- rhizosphere interactions: Implications for the remediation of heavy-metal contaminated soils[J]. Environmental Pollution, 2022, 299: 118810.
[18] 張皓鈺, 劉競(jìng), 易軍, 等. 生物質(zhì)炭短期添加對(duì)不同類型土壤水力性質(zhì)的影響[J]. 土壤, 2022, 54(2): 396–405.
[19] Ennis C J, Evans A G, Islam M, et al. Biochar: Carbon sequestration, land remediation, and impacts on soil microbiology[J]. Critical Reviews in Environmental Science and Technology, 2012, 42(22): 2311–2364.
[20] Smith P. Soil carbon sequestration and biochar as negative emission technologies[J]. Global Change Biology, 2016, 22(3): 1315–1324.
[21] 謝祖彬, 劉琦. 生物質(zhì)炭的固碳減排與合理施用[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2020, 39(4): 901–907.
[22] 柴如山, 王擎運(yùn), 葉新新, 等. 我國(guó)典型省份小麥和玉米農(nóng)田化學(xué)氮肥施用與生產(chǎn)運(yùn)輸過(guò)程的溫室氣體排放量估算[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2019, 38(3): 707–713.
[23] 史冬偉, 劉衎, 孫志華, 等. 施肥方式與施用生物質(zhì)炭對(duì)設(shè)施菜地氨排放的影響[J]. 土壤, 2022, 54(2): 255–261.
[24] Li Y F, Hu S D, Chen J H, et al. Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions: A review[J]. Journal of Soils and Sediments, 2018, 18(2): 546–563.
[25] Mukherjee A, Lal R. Biochar impacts on soil physical properties and greenhouse gas emissions[J]. Agronomy, 2013, 3(2): 313–339.
[26] van Zwieten L, Singh B, Joseph S, et al. Biochar and emissions of non-CO2greenhouse gases from soil, Biochar for environmental management//Lehmann J, Joseph S. Biochar for environmental management science and technology[M]. London: Earthscan, 2012: 227–249.
[27] Zhang C, Zeng G M, Huang D L, et al. Biochar for environmental management: Mitigating greenhouse gas emissions, contaminant treatment, and potential negative impacts[J]. Chemical Engineering Journal, 2019, 373: 902–922.
[28] Raich J W, Tufekciogul A. Vegetation and soil respiration: Correlations and controls[J]. Biogeochemistry, 2000, 48(1): 71–90.
[29] Skiba U M, Sheppard L J, MacDonald J, et al. Some key environmental variables controlling nitrous oxide emissions from agricultural and semi-natural soils in Scotland[J]. Atmospheric Environment, 1998, 32(19): 3311–3320.
[30] Flechard C, Neftel A, Jocher M, et al. Bi‐directional soil/atmosphere N2O exchange over two mown grassland systems with contrasting management practices[J]. Global Change Biology, 2005, 11(12): 2114–2127.
[31] Fang J Y, Chen A P, Peng C H, et al. Changes in forest biomass carbon storage in China between 1949 and 1998[J]. Science, 2001, 292(5525): 2320–2322.
[32] Wood T E, Cavaleri M A, Reed S C. Tropical forest carbon balance in a warmer world: A critical review spanning microbial- to ecosystem-scale processes[J]. Biological Reviews of the Cambridge Philosophical Society, 2012, 87(4): 912–927.
[33] Payn T, Carnus J M, Freer-Smith P, et al. Changes in planted forests and future global implications[J]. Forest Ecology and Management, 2015, 352: 57–67.
[34] Zhou G Y, Zhou X H, Zhang T, et al. Biochar increased soil respiration in temperate forests but had no effects in subtropical forests[J]. Forest Ecology and Management, 2017, 405: 339–349.
[35] Hawthorne I, Johnson M S, Jassal R S, et al. Application of biochar and nitrogen influences fluxes of CO2, CH4and N2O in a forest soil[J]. Journal of Environmental Management, 2017, 192: 203–214.
[36] Liao X L, Chen Y J, Ruan H H, et al. Incapability of biochar to mitigate biogas slurry induced N2O emissions: Field investigations after 7 years of biochar application in a poplar plantation[J]. Science of the Total Environment, 2021, 794: 148572.
[37] Cui J L, Glatzel S, Bruckman V J, et al. Long-term effects of biochar application on greenhouse gas production and microbial community in temperate forest soils under increasing temperature[J]. Science of the Total Environment, 2021, 767: 145021.
[38] Ge X G, Cao Y H, Zhou B Z, et al. Combined application of biochar and N increased temperature sensitivity of soil respiration but still decreased the soil CO2emissions in moso bamboo plantations[J]. Science of the Total Environment, 2020, 730: 139003.
[39] Li J B, Kwak J H, Chang S X, et al. Greenhouse gas emissions from forest soils reduced by straw biochar and nitrapyrin applications[J]. Land, 2021, 10(2): 189.
[40] Xu L, Fang H Y, Deng X, et al. Biochar application increased ecosystem carbon sequestration capacity in a Moso bamboo forest[J]. Forest Ecology and Management, 2020, 475: 118447.
[41] Lu X H, Li Y F, Wang H L, et al. Responses of soil greenhouse gas emissions to different application rates of biochar in a subtropical Chinese chestnut plantation[J]. Agricultural and Forest Meteorology, 2019, 271: 168–179.
[42] 孫赟, 何志龍, 林杉, 等. 不同生物質(zhì)炭對(duì)酸化茶園土壤N2O和CO2排放的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2017, 36(12): 2544–2552.
[43] 葛曉改, 周本智, 肖文發(fā), 等. 生物質(zhì)炭添加對(duì)毛竹林土壤呼吸動(dòng)態(tài)和溫度敏感性的影響[J]. 植物生態(tài)學(xué)報(bào), 2017, 41(11): 1177–1189.
[44] 蔣夢(mèng)蝶, 何志龍, 孫赟, 等. 尿素和生物質(zhì)炭對(duì)茶園土壤pH值及CO2和CH4排放的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2018, 37(1): 196–204.
[45] IPCC. Summary for policymakers//Shukla P R, Skea J, Buendia E C. Climate change and land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems[M]. Cambridge, UK: Cambridge University Press, 2019.
[46] IPCC. Climate change and land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems: Chapter 1: Framing and context[M]. Geneva, Switzerland: Intergovernmental Panel on Climate Change, 2019.
[47] Shakoor A, Shahzad S M, Chatterjee N, et al. Nitrous oxide emission from agricultural soils: Application of animal manure or biochar? A global meta-analysis[J]. Journal of Environmental Management, 2021, 285: 112170.
[48] Shakoor A, Shahbaz M, Farooq T H, et al. A global meta-analysis of greenhouse gases emission and crop yield under no-tillage as compared to conventional tillage[J]. The Science of the Total Environment, 2021, 750: 142299.
[49] Wang J Y, Xiong Z Q, Kuzyakov Y. Biochar stability in soil: Meta-analysis of decomposition and priming effects[J]. GCB Bioenergy, 2016, 8(3): 512–523.
[50] Xu X, Wu Z, Dong Y B, et al. Effects of nitrogen and biochar amendment on soil methane concentration profiles and diffusion in a rice-wheat annual rotation system[J]. Scientific Reports, 2016, 6(1): 1–13.
[51] Montanarella L, Lugato E. The application of biochar in the EU: Challenges and opportunities[J]. Agronomy, 2013, 3(2): 462–473.
[52] Woolf D, Amonette J E, Street-Perrott F A, et al. Sustainable biochar to mitigate global climate change[J]. Nature Communications, 2010, 1(1): 1–9.
[53] 宋敏, 蔡立群, 齊鵬, 等. 不同生物質(zhì)炭輸入水平下旱作農(nóng)田溫室氣體排放日變化研究[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2016, 24(10): 1300–1309.
[54] 陳峰, 劉娟, 鄭梅群, 等. 生物質(zhì)炭和腐殖質(zhì)對(duì)稻田土壤CH4和N2O排放的影響[J]. 水土保持學(xué)報(bào), 2022, 36(1): 368–374.
[55] 郭艷亮, 王丹丹, 鄭紀(jì)勇, 等. 生物炭添加對(duì)半干旱地區(qū)土壤溫室氣體排放的影響[J]. 環(huán)境科學(xué), 2015, 36(9): 3393–3400.
[56] Cai F, Feng Z J, Zhu L Z. Effects of biochar on CH4emission with straw application on paddy soil[J]. Journal of Soils and Sediments, 2018, 18(2): 599–609.
[57] Sriphirom P, Chidthaisong A, Yagi K, et al. Effects of biochar particle size on methane emissions from rice cultivation[J]. Journal of Renewable Materials, 2020, 8(10): 1199–1214.
[58] Singla A, Inubushi K. Effect of biochar on CH4and N2O emission from soils vegetated with paddy[J]. Paddy and Water Environment, 2014, 12(1): 239–243.
[59] Chen D, Wang C, Shen J L, et al. Response of CH4emissions to straw and biochar applications in double-rice cropping systems: Insights from observations and modeling[J]. Environmental Pollution, 2018, 235: 95–103.
[60] Wu Z, Zhang X, Dong Y B, et al. Microbial explanations for field-aged biochar mitigating greenhouse gas emissions during a rice-growing season[J]. Environmental Science and Pollution Research, 2018, 25(31): 31307–31317.
[61] Sriphirom P, Chidthaisong A, Yagi K, et al. Effects of biochar on methane emission, grain yield, and soil in rice cultivation in Thailand[J]. Carbon Management, 2021, 12(2): 109–121.
[62] Dong D, Yang M, Wang C, et al. Responses of methane emissions and rice yield to applications of biochar and straw in a paddy field[J]. Journal of Soils and Sediments, 2013, 13(8): 1450–1460.
[63] Wang X, Lu P, Yang P L, et al. Effects of fertilizer and biochar applications on the relationship among soil moisture, temperature, and N2O emissions in farmland[J]. PeerJ, 2021, 9: e11674.
[64] Polifka S, Wiedner K, Glaser B. Increased CO2fluxes from a sandy Cambisol under agricultural use in the Wendland region, Northern Germany, three years after biochar substrates application[J]. GCB Bioenergy, 2018, 10(7): 432–443.
[65] Hua L, Lu Z Q, Ma H R, et al. Effect of biochar on carbon dioxide release, organic carbon accumulation, and aggregation of soil[J]. Environmental Progress & Sustainable Energy, 2014, 33(3): 941–946.
[66] Olaniyan J O, Isimikalu T O, Raji B A, et al. An investigation of the effect of biochar application rates on CO2emissions in soils under upland rice production in southern Guinea Savannah of Nigeria[J]. Heliyon, 2020, 6(11): e05578.
[67] 耿元波, 董云社, 孟維奇. 陸地碳循環(huán)研究進(jìn)展[J]. 地理科學(xué)進(jìn)展, 2000, 19(4): 297–306.
[68] 田新程. 森林碳匯: 中國(guó)的努力[J]. 中國(guó)林業(yè), 2010(1): 8–10.
[69] Vishwakarma P, Singh M, Dubey S K. Changes in methanotrophic community composition after rice crop harvest in tropical soils[J]. Biology and Fertility of Soils, 2010, 46(5): 471–479.
[70] Ibrahim M, Li G, Khan S, et al. Biochars mitigate greenhouse gas emissions and bioaccumulation of potentially toxic elements and arsenic speciation in Phaseolus vulgaris L[J]. Environmental Science and Pollution Research, 2017, 24(24): 19524–19534.
[71] Prayogo C, Jones J E, Baeyens J, et al. Impact of biochar on mineralisation of C and N from soil and willow litter and its relationship with microbial community biomass and structure[J]. Biology and Fertility of Soils, 2014, 50(4): 695–702.
[72] 鄭翔, 劉琦, 曹敏敏, 等. 森林土壤氧化亞氮排放對(duì)氮輸入的響應(yīng)研究進(jìn)展[J]. 土壤學(xué)報(bào), 2022, 59(5): 1190–1203.
[73] 曹開勛, 趙坤, 金王飛飛, 等. 水氮互作對(duì)稻田溫室氣體排放的影響[J]. 土壤學(xué)報(bào), 2022, 59(5): 1386–1396.
[74] Cayuela M L, van Zwieten L, Singh B P, et al. Biochar’s role in mitigating soil nitrous oxide emissions: A review and meta-analysis[J]. Agriculture, Ecosystems & Environment, 2014, 191: 5–16.
[75] 中華人民共和國(guó)國(guó)家統(tǒng)計(jì)局. 中國(guó)統(tǒng)計(jì)年鑒[M]. 北京: 中國(guó)統(tǒng)計(jì)出版社, 2016.
[76] Huang R, Wang Z F, Xiao Y, et al. Increases in temperature response to CO2emissions in biochar-amended vegetable field soil[J]. Environmental Science and Pollution Research, 2022, 29(33): 50895–50905.
[77] 王月玲, 耿增超, 王強(qiáng), 等. 生物炭對(duì)塿土土壤溫室氣體及土壤理化性質(zhì)的影響[J]. 環(huán)境科學(xué), 2016, 37(9): 3634–3641.
[78] Jia J X, Li B, Chen Z Z, et al. Effects of biochar application on vegetable production and emissions of N2O and CH4[J]. Soil Science and Plant Nutrition, 2012, 58(4): 503–509.
[79] Zhang Y J, Wang H, Maucieri C, et al. Annual nitric and nitrous oxide emissions response to biochar amendment from an intensive greenhouse vegetable system in southeast China[J]. Scientia Horticulturae, 2019, 246: 879–886.
[80] Li B, Bi Z C, Xiong Z Q. Dynamic responses of nitrous oxide emission and nitrogen use efficiency to nitrogen and biochar amendment in an intensified vegetable field in southeastern China[J]. GCB Bioenergy, 2017, 9(2): 400–413.
[81] Zhang Q Q, Zhang X, Duan P P, et al. The effect of long- term biochar amendment on N2O emissions: Experiments with N15-O18isotopes combined with specific inhibition approaches[J]. Science of the Total Environment, 2021, 769: 144533.
[82] Wang J, Chen Z, Xiong Z, et al. Effects of biochar amendment on greenhouse gas emissions, net ecosystem carbon budget and properties of an acidic soil under intensive vegetable production[J]. Soil Use and Management, 2015, 31(3): 375–383.
[83] Yi Q, Tang S H, Fan X L, et al. Effects of nitrogen application rate, nitrogen synergist and biochar on nitrous oxide emissions from vegetable field in South China[J]. PLoS One, 2017, 12(4): e0175325.
[84] Bovsun M A, Castaldi S, Nesterova O V, et al. Effect of biochar on soil CO2fluxes from agricultural field experiments in Russian far east[J]. Agronomy, 2021, 11(8): 1559.
[85] 陸扣萍, 郭茜, 胡國(guó)濤, 等. 竹炭和豬炭對(duì)空心菜-小青菜輪作土壤N2O和CO2排放的影響[J]. 環(huán)境科學(xué)學(xué)報(bào), 2017, 37(4): 1547–1554.
[86] 張繼寧, 周勝, 孫會(huì)峰, 等. 生物質(zhì)炭在我國(guó)蔬菜地應(yīng)用的研究現(xiàn)狀與展望[J]. 農(nóng)業(yè)現(xiàn)代化研究, 2018, 39(4): 543–550.
[87] Zhang J N, Lü F, Luo C H, et al. Humification characterization of biochar and its potential as a composting amendment[J]. Journal of Environmental Sciences, 2014, 26(2): 390–397.
[88] Luo Y, Durenkamp M, De Nobili M, et al. Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH[J]. Soil Biology and Biochemistry, 2011, 43(11): 2304–2314.
[89] Zhang A F, Cui L Q, Pan G X, et al. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China[J]. Agriculture, Ecosystems & Environment, 2010, 139(4): 469–475.
[90] Huang W, Zhao Y J, Wu J T, et al. Effects of different influent C/N ratios on the performance of various earthworm eco-filter systems: Nutrient removal and greenhouse gas emission[J]. World Journal of Microbiology and Biotechnology, 2014, 30(1): 109–118.
[91] Smith J L, Collins H P, Bailey V L. The effect of young biochar on soil respiration[J]. Soil Biology and Biochemistry, 2010, 42(12): 2345–2347.
[92] Zimmerman A R, Gao B, Ahn M Y. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils[J]. Soil Biology and Biochemistry, 2011, 43(6): 1169–1179.
[93] Liu S W, Zhang Y J, Zong Y J, et al. Response of soil carbon dioxide fluxes, soil organic carbon and microbial biomass carbon to biochar amendment: A meta-analysis[J]. GCB Bioenergy, 2016, 8(2): 392–406.
[94] Hale S E, Lehmann J, Rutherford D, et al. Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars[J]. Environmental Science & Technology, 2012, 46(5): 2830–2838.
[95] Novak J M, Busscher W J, Watts D W, et al. Short-term CO2mineralization after additions of biochar and switchgrass to a typic kandiudult[J]. Geoderma, 2010, 154(3/4): 281–288.
[96] Liang B Q, Lehmann J, Sohi S P, et al. Black carbon affects the cycling of non-black carbon in soil[J]. Organic Geochemistry, 2010, 41(2): 206–213.
[97] Jones D L, Murphy D V, Khalid M, et al. Short-term biochar-induced increase in soil CO2release is both biotically and abiotically mediated[J]. Soil Biology and Biochemistry, 2011, 43(8): 1723–1731.
[98] Jeffery S, Verheijen F G A, Kammann C, et al. Biochar effects on methane emissions from soils: A meta-analysis[J]. Soil Biology and Biochemistry, 2016, 101: 251–258.
[99] Brassard P, Godbout S, Raghavan V. Soil biochar amendment as a climate change mitigation tool: Key parameters and mechanisms involved[J]. Journal of Environmental Management, 2016, 181: 484–497.
[100] Cayuela M L, Sánchez-Monedero M A, Roig A, et al. Biochar and denitrification in soils: When, how much and why does biochar reduce N2O emissions?[J]. Scientific Reports, 2013, 3(1): 1–7.
[101] Clough T, Condron L, Kammann C, et al. A review of biochar and soil nitrogen dynamics[J]. Agronomy, 2013, 3(2): 275–293.
[102] van Zwieten L, Kimber S, Morris S, et al. Influence of biochars on flux of N2O and CO2from ferrosol[J]. Soil Research, 2010, 48(7): 555.
[103] Xu H J, Wang X H, Li H, et al. Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape[J]. Environmental Science & Technology, 2014, 48(16): 9391–939
Effects of Adding Biochar on Greenhouse Gas Emissions from Soils of Different Vegetation Types
ZHU Yi, LI Xiaolong, WU Zhe, TAO Yue, WANG Yajie, SUN Yu, ZHANG Xiaokai*, WANG Zhenyu
(Institute of Environmental Process and Pollution Control, School of Environment and Civil Engineer, Jiangnan University, Wuxi, Jiangsu 214122, China)
Soil ecosystems are one of the main sources of greenhouse gas emissions, hence, reducing soil greenhouse gas emissions is of great significance for alleviating global warming. In recent years, biochar has shown great potential in improving soil properties, enhancing soil carbon sinks and affecting soil greenhouse gas (GHG) emissions. Therefore, the study on the effect of biochar application on soil greenhouse gas emissions has become a research hotspot in the fields of environmental science and agroecology. However, there is no consensus on whether the effect of biochar on net GHG emissions from soil is promoting or suppressing. There are also great differences in soil GHG emissions from different vegetation types, so it is very important to study the effect of biochar addition on GHG emissions from different vegetation types. In this review, the effects of biochar addition on CO2, CH4and N2O emissions from forest land, farmland and facility vegetable soils were reviewed, and the mechanism of biochar effects on soil GHG emissions was discussed. It was concluded that the addition of biochar to soils of different vegetation types would reduce soil N2O emissions and increase land absorption of CH4, while there was no unified conclusion on the effects on CO2emissions. Combined with the research status of biochar in this field, it is necessary to carry out long-term systematic research in the field of soil GHG emission reduction in the future, which is aim to provide a reliable scientific basis for the application of biochar in soil GHG emission reduction.
Biochar; Vegetation types; Greenhouse gas; Mechanism; Emission reduction
S154.1
A
10.13758/j.cnki.tr.2023.02.002
朱一, 李曉龍, 吳喆, 等. 生物質(zhì)炭對(duì)不同植被類型土壤溫室氣體排放影響研究進(jìn)展. 土壤, 2023, 55(2): 234–244.
國(guó)家自然科學(xué)基金青年科學(xué)基金項(xiàng)目(42107245)和中國(guó)博士后科學(xué)基金項(xiàng)目(2021M701455)資助。
(xiaokai.zhang@jiangnan.edu.cn)
朱一(1999—),男,江蘇鹽城人,碩士研究生,主要從事生物質(zhì)炭的環(huán)境功能及環(huán)境風(fēng)險(xiǎn)評(píng)估研究。E-mail: 6211405100@stu. jiangnan.edu.cn