郭春靜 孟凡猛 陳坤 江衛(wèi)華
摘 要:為了拓展邊值問題的基本理論,研究一類具有有限個脈沖點(diǎn)的Hilfer分?jǐn)?shù)階脈沖微分方程邊值問題解的存在性。首先,求出微分方程等價的積分方程;其次,定義恰當(dāng)?shù)腂anach空間和范數(shù),構(gòu)造合適的算子,在非線性項(xiàng)滿足不同條件的情況下,運(yùn)用Krasnoselskii不動點(diǎn)定理,分別得到此類邊值問題存在解的充分條件;最后,通過2個實(shí)例驗(yàn)證研究結(jié)果的普適性。結(jié)果表明,含有Hilfer分?jǐn)?shù)階導(dǎo)數(shù)的脈沖微分方程邊值問題的解具有存在性。運(yùn)用Krasnoselskii不動點(diǎn)定理能夠有效解決具有Hilfer分?jǐn)?shù)階脈沖微分方程邊值問題解的存在性問題,豐富了分?jǐn)?shù)階微分方程理論,為解決其他類型的脈沖分?jǐn)?shù)階微分方程邊值問題提供了借鑒與參考。
關(guān)鍵詞:解析理論;脈沖;邊值問題;Krasnoselskii不動點(diǎn)定理;解的存在性
Existence of solutions for boundary value problems of fractional impulsive differential equations with Hilfer
GUO Chunjing1,MENG Fanmeng1,CHEN Kun2,JIANG Weihua1
(1.School of Sciences, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018,China;2.Office of Academic Affairs,Shijiazhuang Peoples Medical College,Shijiazhuang,Hebei 050091,China)
Abstract:In order to extend the basic theory of boundary value problems, the existence of solutions for a class of Hilfer fractional impulsive differential equations with finite impulsive points was studied. Firstly, the integral equation equivalent to the differential equation was obtained; Secondly, appropriate Banach spaces and norms were defined, and appropriate operators were constructed. When the nonlinear term satisfies different conditions, sufficient conditions for the existence of solutions of such boundary value problems were obtained by using Krasnoselskii fixed point theorem; Finally, two examples were used to illustrate the universality of the research results. It is shown that the solution of the boundary value problem of impulsive differential equations with Hilfer fractional derivative exists. By using the Krasnoselskii fixed-point theorem, the existence of solutions for impulsive differential equation boundary value problems with Hilfer fractional order can be effectively solved, which provides some reference for solving other types of impulsive fractional differential equation boundary value problems.
Keywords:analytic theory; impulse; boundary value problem; Krasnoselskii fixed point theorem; existence of solutions
近幾十年來,分?jǐn)?shù)階微分方程受到研究者的廣泛關(guān)注。人們之所以對分?jǐn)?shù)階微分方程產(chǎn)生興趣,主要是因?yàn)榉謹(jǐn)?shù)階導(dǎo)數(shù)對于科學(xué)技術(shù)領(lǐng)域的不同過程、材料記憶以及遺傳特性描述發(fā)揮著重要作用。脈沖現(xiàn)象實(shí)際上是一種間斷、突然的變化,經(jīng)常伴隨一些物理系統(tǒng)的出現(xiàn)。脈沖微分方程廣泛應(yīng)用于力學(xué)、醫(yī)學(xué)、生態(tài)學(xué)等諸多領(lǐng)域。為了更加精確地描述這類演化過程,許多研究人員對具有脈沖條件的微分方程展開討論,參見文獻(xiàn)[1]—文獻(xiàn)[9]。在文獻(xiàn)[10]中,F(xiàn)ENG等運(yùn)用不動點(diǎn)定理研究了下列整數(shù)階脈沖微分方程邊值問題:
4 結(jié) 語
本文運(yùn)用Krasnoselskii不動點(diǎn)定理,研究了一類具有Hilfer分?jǐn)?shù)階導(dǎo)數(shù)的脈沖微分方程邊值問題,得到了這類邊值問題解的存在性,通過2個具體實(shí)例說明了結(jié)論的正確性。研究結(jié)果表明,Krasnoselskii不動點(diǎn)定理能夠有效解決具有Hilfer分?jǐn)?shù)階脈沖微分方程邊值問題解的存在性問題,推廣了具有Riemann-Liouville分?jǐn)?shù)階導(dǎo)數(shù)或者Caputo分?jǐn)?shù)階導(dǎo)數(shù)脈沖微分方程邊值問題的結(jié)果,豐富了分?jǐn)?shù)階微分方程理論,為解決其他類型的脈沖分?jǐn)?shù)階微分方程邊值問題提供了借鑒與參考。
但是本文是在非線性項(xiàng)連續(xù)的條件下考慮的脈沖邊值問題,限制條件較強(qiáng)。在今后的研究中,將會探索削弱非線性項(xiàng)滿足的條件,進(jìn)一步研究此類問題存在解的更一般化的結(jié)果。
參考文獻(xiàn)/References:
[1] TIAN Yu,GE Weigao.Applications of variational methods to boundary-value problem for impulsive differential equations[J].Proceedings of the Edinburgh Mathematical Society,2008,51(2):509-527.
[2] NIETO J J,O′REGAN D.Variational approach to impulsive differential equations[J].Nonlinear Analysis:Real World Applications,2009,10(2):680-690.
[3] ZHANG Hao,LI Zhixiang.Variational approach to impulsive differential equations with periodic boundary conditions[J].Nonlinear Analysis:Real World Applications,2010,11(1):67-78.
[4] SAKTHIVEL R,ANANDHI E R.Approximate controllability of impulsive differential equations with state-dependent delay[J].International Journal of Control,2010,83(2):387-393.
[5] XIAO J,NIETO J J.Variational approach to some damped Dirichlet nonlinear impulsive differential equations[J].Journal of the Franklin Institute,2011,348(2):369-377.
[6] FEKAN M,ZHOU Y,WANG J R.On the concept and existence of solution for impulsive fractional differential equations[J].Communications in Nonlinear Science and Numerical Simulation,2012,17(7):3050-3060.
[7] WANG J R,ZHOU Y,F(xiàn)EKAN M.On recent developments in the theory of boundary value problems for impulsive fractional differential equations[J].Computers & Mathematics with Applications,2012,64(10):3008-3020.
[8] STAMOVA I M.Mittag-Leffler stability of impulsive differential equations of fractional order[J].Quarterly of Applied Mathematics,2015,73(3):525-535.
[9] 王曉君,薛琳博,王彥朋.基于STFRFT的脈沖干擾抑制方法研究[J].河北科技大學(xué)學(xué)報,2021,42(1):15-21.
WANG Xiaojun,XUE Linbo,WANG Yanpeng.Research on impulse interference suppression method based on short time fractional Fourier transform[J].Journal of Hebei University of Science and Technology,2021,42(1):15-21.
[10]FENG Meiqiang,XIE Dongxiu.Multiple positive solutions of multi-point boundary value problem for second-order impulsive differential equations[J].Journal of Computational and Applied Mathematics,2009,223(1):438-448.
[11]LIU Z H,LU L,SZANTO I.Existence of solutions for fractional impulsive differential equations with p-Laplacian operator[J].Acta Mathematica Hungarica,2013,141(3):203-219.
[12]LIU Yansheng.Bifurcation techniques for a class of boundary value problems of fractional impulsive differential equations[J].Journal of Nonlinear Sciences and Applications,2015,8(4):340-353.
[13]WANG J R,F(xiàn)ECKAN M.A survey on impulsive fractional differential equations[J].Fractional Calculus and Applied Analysis,2016,19(4):806-831.
[14]YAN Zuomao,LU Fangxia.Approximate controllability of a multi-valued fractional impulsive stochastic partial integro-differential equation with infinite delay[J].Applied Mathematics and Computation,2017,292:425-447.
[15]DUAN Lijing,XIE Jingli.Existence results for the boundary value problems of fractional impulsive differential equations with p-Laplacian operator[J].Applied Mathematical Sciences,2021,15(3):101-111.
[16]江衛(wèi)華,李慶敏,周彩蓮.分?jǐn)?shù)階脈沖微分方程邊值問題解的存在性[J].河北科技大學(xué)學(xué)報,2016,37(6):562-574.
JIANG Weihua,LI Qingmin,ZHOU Cailian.Existence of solutions to boundary value problem of fractional differential equations with impulsive[J].Journal of Hebei University of Science and Technology,2016,37(6):562-574.
[17]SUBASHINI R,JOTHIMANI K,NISAR K S,et al.New results on nonlocal functional integro-differential equations via Hilfer fractional derivative[J].Alexandria Engineering Journal,2020,59(5):2891-2899.
[18]REDHWAN S,SHAIKH S L.Implicit fractional differential equation with nonlocal integral-multipoint boundary conditions in the frame of Hilfer fractional derivative[J].Journal of Mathematical Analysis and Modeling,2021,2(1):62-71.
[19]KAVITHA K,VIJAYAKUMAR V,UDHAYAKUMAR R,et al.Results on controllability of Hilfer fractional differential equations with infinite delay via measures of noncompactness[J].Asian Journal of Control,2022,24(3):1406-1415.
[20]HILFER R.Applications of Fractional Calculus in Physics[M].Singapore:World Scientific,2000.
[21]KILBAS A A,SRIVASTAVA H M,TRUJILLO J J.Theory and Applications of Fractional Differential Equations[M].Amsterdam:Elsevier,2006.
[22]ZHOU Yong.Basic Theory of Fractional Differential Equations[M].Hackensack:World Scientific,2014.