国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

采用柑橘葉片功能性氮含量無損監(jiān)測模型的調(diào)控施氮方法

2023-06-12 05:25:36劉智業(yè)凌琪涵孔發(fā)明張躍強(qiáng)石孝均
關(guān)鍵詞:施氮氮量柑橘

劉智業(yè),楊 群,凌琪涵,魏 勇,寧 強(qiáng),孔發(fā)明,張躍強(qiáng),,3,石孝均,,3,王 潔,,3

采用柑橘葉片功能性氮含量無損監(jiān)測模型的調(diào)控施氮方法

劉智業(yè)1,楊 群1,凌琪涵2,魏 勇2,寧 強(qiáng)1,孔發(fā)明1,張躍強(qiáng)1,2,3,石孝均1,2,3,王 潔1,2,3※

(1. 西南大學(xué)長江經(jīng)濟(jì)帶農(nóng)業(yè)綠色發(fā)展研究中心,重慶 400715;2. 西南大學(xué)資源環(huán)境學(xué)院,重慶 400715;3. 國家紫色土肥力與肥料效益監(jiān)測站,重慶 400716)

為實(shí)現(xiàn)柑橘氮素管理的定量化,該研究以5年生‘春見’橘橙為試驗(yàn)材料,設(shè)置不同對照施氮處理N0、N1、N2、N3(施氮量分別為0、50、100、200 g/株)和調(diào)控施氮處理Nr1、Nr2、Nr3(分別根據(jù)N1、N2、N3進(jìn)行調(diào)控),在試驗(yàn)開展的第1年利用高光譜技術(shù),分別建立柑橘果實(shí)膨大期和轉(zhuǎn)色期的葉片功能性氮含量無損監(jiān)測模型;第2年利用葉片功能性氮含量無損監(jiān)測模型與追氮量公式計(jì)算調(diào)控施氮處理的實(shí)際追氮量,比較分析對照施氮和調(diào)控施氮對柑橘果實(shí)產(chǎn)量、品質(zhì)及氮肥利用率的影響。結(jié)果表明,利用反向傳播神經(jīng)網(wǎng)絡(luò)構(gòu)建的葉片功能性氮含量模型精度較高,決定系數(shù)2為0.78(果實(shí)膨大期)和0.77(果實(shí)轉(zhuǎn)色期)。調(diào)控施氮處理Nr1和Nr3比對照施氮N1和N3分別增產(chǎn)5.49和4.43 kg/株(增幅為48%和40%);相比于N1,調(diào)控施氮處理Nr1的單果質(zhì)量和可溶性固形物含量顯著增加(<0.05),果實(shí)橫縱徑、果形指數(shù)增幅不顯著。相比于N3,調(diào)控施氮處理Nr3的氮肥偏生產(chǎn)力升高了103%;Nr1和Nr3的氮肥農(nóng)學(xué)效率分別提高了290%和364%。Nr2和N2的產(chǎn)量、品質(zhì)和氮肥利用率無顯著差異(<0.05)?;诟涕偃~片功能性氮含量無損監(jiān)測模型的調(diào)控施氮方法,能在一定程度上減少施氮不足或過量對柑橘產(chǎn)量、品質(zhì)的影響,提高氮肥偏生產(chǎn)力和農(nóng)學(xué)效率。

柑橘;高光譜;調(diào)控施氮;葉片功能性氮;無損監(jiān)測

0 引 言

隨著柑橘產(chǎn)業(yè)持續(xù)發(fā)展,中國已成為柑橘栽培面積和柑橘產(chǎn)量第一大國。影響柑橘產(chǎn)業(yè)綠色可持續(xù)發(fā)展的因素較多,明確柑橘的營養(yǎng)狀況并進(jìn)行科學(xué)施肥是保障柑橘正常生長發(fā)育、提高產(chǎn)量、改善品質(zhì)、保護(hù)生態(tài)環(huán)境的基礎(chǔ)[1]。中國柑橘主產(chǎn)區(qū)存在氮、磷、鉀投入過量及不足并存的問題[2-3]。其中,氮肥投入過量及不足的問題尤為明顯,嚴(yán)重限制了柑橘產(chǎn)業(yè)的綠色可持續(xù)發(fā)展[4]。因此,對柑橘種植生產(chǎn)進(jìn)行實(shí)時(shí)、無損、精準(zhǔn)的氮素監(jiān)測以及基于監(jiān)測結(jié)果進(jìn)行調(diào)控施氮,成為柑橘種植的現(xiàn)實(shí)需求。

近年來,高光譜遙感和數(shù)據(jù)處理技術(shù)發(fā)展迅猛,光譜技術(shù)被廣泛應(yīng)用于作物氮素營養(yǎng)診斷[5]。利用光譜技術(shù)在玉米、水稻等糧食作物[6-7]和果樹、棉花等經(jīng)濟(jì)作物[8-9]葉片和冠層氮含量無損監(jiān)測研究取得一定進(jìn)展。劉雪峰等[10]利用機(jī)載多光譜獲取果實(shí)膨大期柑橘冠層光譜圖像,提取光譜反射率利用支持向量機(jī)算法構(gòu)建冠層氮含量的無損監(jiān)測模型,精度可達(dá)0.80。易時(shí)來等[11]運(yùn)用錦橙葉片全波段光譜和偏最小二乘回歸建立葉片氮含量的預(yù)測模型,精度為0.90。MENESATTI等[12]測定果實(shí)轉(zhuǎn)色期塔羅科血橙葉片的可見/近紅外光譜反射率,建立葉片全氮含量無損監(jiān)測模型,其決定系數(shù)達(dá)0.91,光譜對柑橘葉片全氮含量有較好的估測能力。前人較多是以測得的葉片全氮含量來調(diào)整當(dāng)季氮肥用量[13],然而葉片全氮含量適宜值較寬,氮素營養(yǎng)診斷已經(jīng)開始由葉片全氮含量到表征葉片生理生化的特征參數(shù)方向發(fā)展[14-16]。

根據(jù)植物對氮素的吸收利用特性,植株體內(nèi)的氮素可以分為營養(yǎng)性氮、結(jié)構(gòu)性氮和功能性氮三大類,植物體內(nèi)三類形態(tài)氮素處于動態(tài)變化中,各組分在葉片中的含量與分布對植物葉片生理生化反應(yīng)有一定的指示作用[17-18],近年來,對葉片生理生化特性的研究也多利用光譜化學(xué)計(jì)量法來建模。AINSWORTH等[19]研究表明,利用葉片可見/近紅外光譜定量測定光合作用中最大羧化速率,模型精度2可達(dá)0.88。前人研究利用光譜技術(shù)構(gòu)建作物氮營養(yǎng)無損監(jiān)測模型、實(shí)施變量施氮能夠在一定程度上增加作物產(chǎn)量,改善品質(zhì)[20]。WANG等[21]利用高光譜技術(shù)構(gòu)建梨樹果實(shí)膨大期葉片全氮含量的無損監(jiān)測模型并變量追氮,結(jié)果表明可見/近紅外光譜技術(shù)能實(shí)現(xiàn)葉片全氮含量快速診斷并及時(shí)追施氮肥,可以在一定程度上緩解早期施氮不足或過量對梨果產(chǎn)量、品質(zhì)的影響,增產(chǎn)20%以上。李旭[22]研究表明,氮肥施用不足時(shí),影響果實(shí)膨大期和轉(zhuǎn)色期產(chǎn)量、品質(zhì)的形成,無核椪柑的產(chǎn)量減少1.0%~3.5%,可溶性固形物降低5.70%~11.51%;楊江波等[23]研究結(jié)果表明,氮肥施用過量時(shí),對塔羅科血橙增產(chǎn)效果不顯著,果實(shí)可溶性固形物含量、固酸比等增加不顯著,肥料利用率顯著降低。不少學(xué)者利用光譜技術(shù)實(shí)現(xiàn)對水稻、玉米等作物的氮營養(yǎng)診斷與變量施氮,提升作物產(chǎn)量和品質(zhì),提高氮肥利用效率[24-25]。

本研究利用高光譜技術(shù)分別在柑橘果實(shí)膨大期和果實(shí)轉(zhuǎn)色期建立葉片功能性氮無損監(jiān)測模型,通過模型監(jiān)測功能性氮含量和追氮量公式,以期準(zhǔn)確、連續(xù)對柑橘進(jìn)行調(diào)控施氮,探討調(diào)控施氮技術(shù)對柑橘產(chǎn)量、品質(zhì)的影響以及氮肥利用效率的影響。以期為實(shí)現(xiàn)柑橘葉片功能性氮含量無損監(jiān)測和調(diào)控施氮提供理論依據(jù)和技術(shù)支持。

1 材料與方法

1.1 試驗(yàn)地概況

試驗(yàn)地位于重慶市長壽區(qū)龍河鎮(zhèn)八卦村,地理位置為東經(jīng)107°13′,北緯29°59′,海拔406 m,屬中亞熱帶濕潤氣候區(qū),年平均氣溫17.7 ℃,年平均降水量1 165.2 mm,常年日照時(shí)數(shù)1 245.1 h。供試土壤為紫色土,基礎(chǔ)理化性質(zhì):pH 6.38,有機(jī)質(zhì)9.06 g/kg,全氮0.75 g/kg,全磷0.29 g/kg,全鉀26.72 g/kg。

1.2 試驗(yàn)設(shè)計(jì)

供試柑橘品種為‘春見’橘橙[×(×)]。本試驗(yàn)設(shè)置4個(gè)不同施氮處理,分別為N0(0 g/株)、N1(50 g/株)、N2(100 g/株)、N3(200 g/株),其中,N1為優(yōu)化施氮減量處理(減量50%),N2為柑橘優(yōu)化施氮處理[26],N3是農(nóng)戶常規(guī)施氮量。以N1、N2、N3為基礎(chǔ),分別設(shè)置相應(yīng)的3個(gè)調(diào)控施氮處理,即Nr1、Nr2、Nr3,調(diào)控施氮量由當(dāng)年監(jiān)測柑橘葉片功能性氮含量并結(jié)合追氮量公式[21,27](式(1))計(jì)算得出。每個(gè)處理3組重復(fù),每組重復(fù)2棵樹。氮磷鉀分別用尿素(含46% N)、過磷酸鈣(含12% P2O5)、硫酸鉀(含51% K2O)提供。肥料運(yùn)籌:分3次施用,萌芽肥(3月下旬)、果實(shí)膨大肥(7月下旬)和果實(shí)轉(zhuǎn)色肥(10月下旬)。其中,萌芽肥施氮50%,施磷20%,施鉀25%;果實(shí)膨大肥施氮20%,施磷20%,施鉀50%;果實(shí)轉(zhuǎn)色肥施氮30%,施磷60%,施鉀25%。施肥方式為沿樹冠滴水線穴施,肥料混勻后覆土。具體施肥用量和計(jì)算如表1。

式中、分別為果實(shí)膨大期和果實(shí)轉(zhuǎn)色期調(diào)控施氮處理的施氮量調(diào)整值,g/株;N實(shí)際采用該時(shí)期的柑橘葉片功能性氮含量;N標(biāo)統(tǒng)一采用該時(shí)期N2處理柑橘葉片功能性氮含量(果實(shí)膨大期:16.91 g/kg,果實(shí)轉(zhuǎn)色期:18.82 g/kg);HDL為統(tǒng)計(jì)各施氮處理平均百葉質(zhì)量:0.026 kg[28];Leaf為葉片數(shù)量,取400;%是柑橘葉片功能性氮含量占全氮含量的百分?jǐn)?shù):60%[28];F為肥料利用率,本文取30%。

表1 調(diào)控施氮與對照施氮處理氮肥施用情況

注:以優(yōu)化施氮處理(N2)兩個(gè)時(shí)期的尿素施用量43和65 g為基準(zhǔn),在此基礎(chǔ)上進(jìn)行調(diào)整值()計(jì)算得出調(diào)控施氮處理每個(gè)時(shí)期的尿素施用量;()的數(shù)字下標(biāo)分別代表優(yōu)化施氮減量處理、優(yōu)化施氮處理和常規(guī)施氮處理的對應(yīng)調(diào)控施氮處理。

Note: The urea application amount of 43 and 65 g in the two periods of optimal nitrogen application treatment (N2) was taken as the benchmark, and the urea application amount in each period of adjusted nitrogen application was calculated by using the adjusted value(). The numerical subscripts ofrepresent the corresponding adjusted N application treatments of optimal N reduction treatment, optimal N application treatment, and conventional N application treatment, respectively.

1.3 柑橘葉片光譜采集與預(yù)處理

分別在柑橘果實(shí)膨大期和果實(shí)轉(zhuǎn)色期采集當(dāng)年生春梢葉片(由上往下第2~4片葉)并測定光譜值,每棵樹按照“東南西北”4個(gè)方位隨機(jī)取16片葉,利用美國ASD FieldSpec 4便攜式地物光譜儀結(jié)合葉片夾持器測定其反射光譜,該儀器波段值為350~2 500 nm,其中350~1 000 nm光譜采樣間隔為1.4 nm,光譜分辨率為3 nm;1 000~2 500 nm光譜采樣間隔為2 nm,光譜分辨率為6.5~8.5 nm。利用植被探頭配合葉片夾持器黑色背景板采集葉片光譜(采集面積為3.14 cm2),將葉片置于葉片夾的葉室中,然后夾緊葉片以保證葉片水平且被測探的面積相同;每個(gè)葉片樣品采集正面、葉脈中部兩端對稱的兩個(gè)點(diǎn),每點(diǎn)記錄5條光譜,以求平均值作為該葉片的光譜值,再使用The Unscrambler X 10.4完成光譜數(shù)據(jù)的標(biāo)準(zhǔn)正態(tài)化變換(SNV)光譜預(yù)處理[29]。

1.4 柑橘葉片功能性氮含量的測定

葉片營養(yǎng)性氮(N)含量測定[30]:N包括硝態(tài)氮、銨態(tài)氮、酰胺以及各種氨基酸等小分子含氮化合物。硝態(tài)氮使用蘇州科銘生物技術(shù)有限公司生產(chǎn)的植物硝態(tài)氮測試盒測定。在濃酸條件下,硝酸根與水楊酸反應(yīng),生成硝基水楊酸,硝基水楊酸在堿性條件下(pH值>12)呈黃色,在一定范圍內(nèi),其顏色深淺與含量成正比,可在410 nm波長下測定吸光度,通過以下計(jì)算式計(jì)算硝態(tài)氮含量(2=0.999 7):

=(Δ?0.007 3)·(/樣總)/0.007 8

=128.2×(Δ?0.007 3)/(2)

式中為葉片中硝態(tài)氮(NO3--N)含量,mg/kg(鮮質(zhì)量);Δ樣品的吸光度減去空白的吸光度;樣總為加入的提取液體積,mL;為樣本質(zhì)量,g。

銨態(tài)氮、氨基酸和酰胺態(tài)氮的測定:采用改良的茚三酮溶液比色法,-氨基酸與水合茚三酮溶液一起加熱,經(jīng)氧化脫氨變成相應(yīng)的-酮酸,酮酸進(jìn)一步脫羧變成醛,水合茚三酮?jiǎng)t被還原,在弱酸環(huán)境中,還原型茚三酮、氨和另一分子水合茚三酮反應(yīng),縮合生成藍(lán)紫色物質(zhì)。根據(jù)藍(lán)紫色的深淺,在570 nm波長下測定吸光值。本實(shí)驗(yàn)中在茚三酮試劑中添加乙二醇并補(bǔ)加正丁醇和丙醇,可以克服茚三酮的不穩(wěn)定性。以亮氨酸的氮含量做標(biāo)準(zhǔn)曲線[31]。

葉片結(jié)構(gòu)性氮(SN)含量測定:參考LIU等[30]的方法。稱量約0.4 g葉片在液氮下磨碎,加1 mL磷酸鈉緩沖液(Buffer)研磨,并轉(zhuǎn)移到離心管中,重復(fù)2次。通過在4 ℃下15 000離心15 min,棄上清液。將1 mL含3%SDS的磷酸鹽緩沖液添加到沉淀中,然后在90 ℃的水中加熱5 min。將混合物以4 500 g離心10 min。重復(fù)3次,棄上清液。將沉淀用乙醇沖洗幾遍,定量濾紙過濾,將沉淀和濾紙?jiān)?0 ℃下烘干,以空白定量濾紙作為對照,凱氏法定氮。

葉片全氮(N)含量測定:稱取烘干磨碎后的葉片干樣約0.3 g,使用凱氏定氮法測定氮含量,每份樣品測定2次,取其平均值。

葉片功能性氮(N)利用式(4)計(jì)算得出[30]。

N=N?N?N(3)

式中N為葉片功能性氮含量,N為葉片全氮含量,N為葉片營養(yǎng)性氮含量,N為葉片結(jié)構(gòu)性氮含量,單位均為g/kg。

1.5 柑橘葉片功能性氮含量無損監(jiān)測模型構(gòu)建

本研究選取偏最小二乘回歸(partial least squares regression,PLSR)、支持向量機(jī)回歸(support vector machine,SVM)、反向傳播神經(jīng)網(wǎng)絡(luò)(back-propagation neural networks,BPNN)和隨機(jī)森林(random forest,RF)嘗試構(gòu)建葉片功能性氮含量無損監(jiān)測模型。PLSR集成了主成分分析和多元線性回歸的優(yōu)點(diǎn),可降低高光譜數(shù)據(jù)的維度、提高了模型的運(yùn)算效率;SVM和BPNN是機(jī)器學(xué)習(xí)的經(jīng)典方法,SVM可以通過選擇不同的核函數(shù)實(shí)現(xiàn)非線性分類或回歸任務(wù),能很好地處理高光譜中非線性問題,BPNN可以通過反向傳播算法學(xué)習(xí)復(fù)雜的特征表示,從而實(shí)現(xiàn)對高光譜數(shù)據(jù)的有效分類和回歸。隨機(jī)森林(Random Forest,RF)是一種集成學(xué)習(xí)算法,能通過隨機(jī)選擇訓(xùn)練樣本和特征來構(gòu)建決策樹,通過決策樹的集成應(yīng)用,減少過擬合、提高模型準(zhǔn)確性和穩(wěn)定性[32]。

建模樣品的選擇與劃分:利用K-fold法將整個(gè)樣本分為建模集和驗(yàn)證集兩部分,建模集和驗(yàn)證集比例為7∶3。分別利用上述建模方法構(gòu)建柑橘葉片功能性氮含量無損監(jiān)測模型。在python 3.8的Anaconda3中采用Sklearn機(jī)器學(xué)習(xí)庫并自編碼建立PLSR和RF模型,采用TensorFlow 2.0學(xué)習(xí)庫并自編碼建立BPNN和SVM模型,分別探討其建模精度[32]。

模型評價(jià)參數(shù)為決定系數(shù)(coefficient of determination,2)和均方根誤差(root-mean-square error,RMSE)。2可衡量回歸模型擬合度的統(tǒng)計(jì)量,反映自變量對因變量的解釋程度,其取值范圍為0~1,越接近1表示模型對數(shù)據(jù)的擬合越好;RMSE是衡量回歸模型預(yù)測誤差大小的統(tǒng)計(jì)量,其值越小模型精度越高[33]。

1.6 柑橘產(chǎn)量品質(zhì)測定

產(chǎn)量統(tǒng)計(jì):掛果數(shù)×平均單果質(zhì)量=產(chǎn)量(kg/株)。

品質(zhì)測定:單果質(zhì)量采用天平(精度0.01 g)測定;果實(shí)橫縱徑采用游標(biāo)卡尺測定,利用橫縱徑比值獲取果形指數(shù);果實(shí)可溶性固形物含量采用ATAGO公司的PAL-1型電子折光儀測定。

氮肥利用率測定:氮肥偏生產(chǎn)力=施氮肥所獲得的作物產(chǎn)量/化肥的投入量;氮肥農(nóng)學(xué)效率=(施氮區(qū)產(chǎn)量?空白區(qū)產(chǎn)量)/施氮量。

1.7 數(shù)據(jù)分析

柑橘葉片不同形態(tài)氮含量、果實(shí)產(chǎn)量、果實(shí)品質(zhì)及氮肥利用率使用Microsoft Office Excel 16和IBM SPSS Statistics 23統(tǒng)計(jì)分析,建模分析在Python3.8完成上編程完成,利用Origin 9.0完成科學(xué)繪圖和數(shù)據(jù)分析。

2 結(jié)果與分析

2.1 葉片功能性氮含量無損監(jiān)測建模

2.1.1 不同施氮處理葉片的高光譜特征

柑橘果實(shí)膨大期和果實(shí)轉(zhuǎn)色期不同施氮處理葉片的反射光譜如圖1所示,在可見光350~700 nm波段區(qū)域內(nèi),柑橘葉片光譜反射率隨施氮量增加而降低。果實(shí)膨大期在550 nm的綠峰處,不同施氮處理柑橘葉片光譜反射率差異較大,N0處理和N1處理的葉片光譜反射率均為0.17,N2處理葉片光譜反射率為0.15,N3處理葉片光譜反射率為0.13;而在近紅外700~1 350 nm波段區(qū)域內(nèi),柑橘葉片光譜反射率隨施氮量增加而升高,不同施氮處理間柑橘葉片光譜反射率差異較小。果實(shí)轉(zhuǎn)色期在550 nm的綠峰處,N0、N1、N2、N3處理的柑橘葉片光譜反射率分別為0.12、0.11、0.11和0.11,在近紅外700~1 350 nm波段區(qū)域內(nèi),柑橘葉片光譜反射率隨施氮量增加而升高。

2.1.2 建模方法對葉片功能性氮含量無損監(jiān)測模型的影響

將柑橘果實(shí)膨大期的231個(gè)葉片樣本數(shù)據(jù)和果實(shí)轉(zhuǎn)色期179個(gè)葉片樣本數(shù)據(jù)劃分為建模集和驗(yàn)證集。其中,柑橘果實(shí)膨大期建模集包含161個(gè)樣本,驗(yàn)證集包含70個(gè)樣本;柑橘果實(shí)轉(zhuǎn)色期建模集包含125個(gè)樣本,驗(yàn)證集包含54個(gè)樣本。具體數(shù)據(jù)如表2所示。

利用偏最小二乘回歸(PLSR)、反向傳播神經(jīng)網(wǎng)絡(luò)(BPNN)、隨機(jī)森林(RF)和支持向量機(jī)(SVM)分別構(gòu)建柑橘果實(shí)膨大期和果實(shí)轉(zhuǎn)色期葉片功能性氮含量無損監(jiān)測模型,模型2結(jié)果如表3所示。對比得出,RF建模集精度最高,但是驗(yàn)證集精度低;總體上,利用BPNN構(gòu)建葉片功能性氮含量無損監(jiān)測的擬合度最高,建模集和驗(yàn)證集結(jié)果如圖2所示。

圖1 不同施氮處理柑橘葉片反射光譜特征

表2 柑橘不同生育期葉片樣本功能性氮含量建模集和驗(yàn)證集劃分

表3 不同建模方法的柑橘葉片功能性氮含量監(jiān)測結(jié)果

注:PLSR為偏最小二乘回歸法;BPNN為反向傳播神經(jīng)網(wǎng)絡(luò);RF為隨機(jī)森林;SVM為支持向量機(jī)。2為決定系數(shù)。下同。

Note: PLSR is partial least squares regression method; BPNN, backpropagation neural network; RF is random forest; SVM is support vector machine.2is coefficient of determination. Same below.

2.2 調(diào)控施氮與對照施氮處理氮肥施用情況

利用柑橘葉片功能性氮含量無損監(jiān)測模型反演得出柑橘果實(shí)膨大期和果實(shí)轉(zhuǎn)色期葉片功能性氮含量,通過式(1)分別計(jì)算柑橘果實(shí)膨大期和果實(shí)轉(zhuǎn)色期調(diào)控施氮處理需追施的尿素用量,結(jié)果如表4所示。對照施氮處理N1、N2和N3的需氮量50、100和200 g,而萌芽肥、果實(shí)膨大肥和果實(shí)轉(zhuǎn)色肥用量為5∶2∶3,本試驗(yàn)氮肥為氮含量46%尿素提供,因此在果實(shí)膨大期分別施尿素量分別為22、43和87 g;根據(jù)模型得出,調(diào)控施氮處理Nr1、Nr2和Nr3的葉片功能氮含量分別為14.69、16.91和20.66 g/kg,調(diào)控施氮處理Nr1、Nr2和Nr3分別追施尿素57、43和13 g,較N1、N2、N3尿素用量相比,分別增加25 g、不變、減少74 g。在柑橘果實(shí)轉(zhuǎn)色期,對照施氮處理N1、N2和N3施尿素量分別為32、65和130 g;根據(jù)模型和測算綜合分析,調(diào)控施氮處理Nr1、Nr2和Nr3的葉片功能氮含量分別為18.60、18.82和19.73 g/kg,調(diào)控施氮處理Nr1、Nr2和Nr3分別追施尿素67、65和58 g。與對照施氮處理N1、N2、N3相比,分別增加35 g、不變、減少78 g。

注:實(shí)線為各自時(shí)期驗(yàn)證集的擬合線性方程,虛線為各自時(shí)期的1:1線。

表4 柑橘葉片功能性氮含量和施尿素量

具體施氮量如表5所示,對照施氮處理N1、N2和N3全年實(shí)際尿素施用量分別為108、217和434 g,調(diào)控施氮處理Nr1、Nr2和Nr3全年實(shí)際尿素施用量分別為178、217和288 g。N1果實(shí)膨大期和轉(zhuǎn)色期尿素使用量分別為22和32 g,調(diào)控施氮處理Nr1的果實(shí)膨大尿素施用量和果實(shí)轉(zhuǎn)色尿素施用量分別為57和67 g,Nr1的實(shí)際尿素使用量較N1多70 g。N3果實(shí)膨大期和轉(zhuǎn)色期尿素使用量分別為87和130 g,調(diào)控施氮處理Nr3的果實(shí)膨大尿素施用量和果實(shí)轉(zhuǎn)色尿素施用量分別為13和58 g,Nr3的實(shí)際尿素使用量較N3少146 g。N2為優(yōu)化施氮處理,利用柑橘葉片功能性氮含量無損檢測模型得出,Nr2功能性氮含量與N2功能性氮含量相差不大,因此N2和Nr2萌芽肥、果實(shí)膨大肥和果實(shí)轉(zhuǎn)色肥的尿素施用量均為109、43和65 g。

表5 調(diào)控施氮與對照施氮處理氮肥實(shí)際施用情況

2.3 對照施氮與調(diào)控施氮對柑橘果實(shí)產(chǎn)量的影響

在試驗(yàn)開展第2年的柑橘果實(shí)成熟期統(tǒng)計(jì)各施氮處理果實(shí)產(chǎn)量,分析施氮量對于柑橘果實(shí)產(chǎn)量的影響,結(jié)果如表6所示。隨著氮肥用量的增加,柑橘果實(shí)產(chǎn)量呈現(xiàn)先升高再降低的趨勢,相比于N0處理,各施氮處理的柑橘果實(shí)產(chǎn)量均顯著增加,其中N2處理果實(shí)產(chǎn)量最高,為17.80 kg/株,N0、N1和N3處理的產(chǎn)量分別為10.53、11.55和12.65 kg/株。調(diào)控施氮處理Nr1、Nr2和Nr3的產(chǎn)量分別為17.04、18.89和17.08 kg/株,相比于對照施氮處理N1和N3,調(diào)控施氮處理Nr1和Nr3的產(chǎn)量顯著增加,分別增產(chǎn)5.49和4.43 kg/株(增幅為48%和40%);Nr2處理和N2處理均為優(yōu)化施氮處理,果實(shí)產(chǎn)量無顯著差異。

表6 不同施氮處理對柑橘果實(shí)品質(zhì)的影響

注:在同列數(shù)據(jù)中,不同小寫字母表示差異顯著(<0.05)。下同。

Note: In each column, different lowercase letters show significant differences (<0.05). Same below.

2.4 對照施氮與調(diào)控施氮對柑橘果實(shí)品質(zhì)的影響

在柑橘果實(shí)成熟期測定各施氮處理柑橘果實(shí)橫縱徑,從而計(jì)算各施氮處理柑橘果實(shí)果形指數(shù),分析施氮量對于柑橘果實(shí)品質(zhì)的影響;調(diào)控施氮處理Nr1、Nr2和Nr3的果實(shí)橫徑、縱徑與對照施氮處理N1、N2和N3對比,均有略微增加,調(diào)控施氮處理Nr1、Nr2和Nr3的果實(shí)橫徑與對照施氮處理對比分別增加2.27、2.78和0.71 mm,縱徑分別增加6.07、0.58和2.78 mm。如表6所示,調(diào)控施氮處理Nr1和Nr3的果形指數(shù)相比于對照施氮處理均有所增加,呈現(xiàn)更飽滿的優(yōu)質(zhì)果形,調(diào)控施氮處理Nr2與對照施氮處理N2對比無顯著變化。

表6所示,對照施氮處理N1、N2和N3的單果質(zhì)量分別為202.89、238.86和242.86 g,調(diào)控施氮處理Nr1、Nr2和Nr3的單果質(zhì)量分別為256.94、252.92和267.31 g,調(diào)控施氮處理Nr1、Nr2和Nr3與對照施氮處理相比,單果質(zhì)量分別增加54.06、14.06和14.45 g。隨著施氮量的增加,柑橘果實(shí)可溶性固形物含量增加,對照施氮處理N0、N1、N2和N3的果實(shí)可溶性固形物含量分別為9.77%、10.20%、11.37%和11.65%,N2和N3處理果實(shí)可溶性固形物含量顯著高于N0和N1處理;調(diào)控施氮處理Nr1、Nr2和Nr3的果實(shí)可溶性固形物含量分別為10.97%、11.53%和11.60%,相比于對照施氮處理N1,調(diào)控施氮Nr1的果實(shí)可溶性固形物含量顯著提高,Nr2和Nr3相比于N2和N3處理無顯著變化。

2.5 對照施氮與調(diào)控施氮對氮肥利用率的影響

調(diào)控施氮處理與對照施氮處理對氮肥偏生產(chǎn)力與氮肥農(nóng)學(xué)效率的影響如表7所示。隨著施氮量的增加,氮肥偏生產(chǎn)力降低。對照施氮處理下,N1、N2和N3的氮肥偏生產(chǎn)力分別為231.04、177.98和63.27 kg/kg,調(diào)控施氮處理Nr1、Nr2和Nr3的氮肥偏生產(chǎn)力分別為207.86、188.86和128.44 kg/kg,與對照施氮處理相比,調(diào)控施氮處理Nr1的氮肥偏生產(chǎn)力降低了10%,Nr2和Nr3分別升高了6%和103%。對照施氮處理N1、N2和N3的氮肥農(nóng)學(xué)效率分別為20.35、72.63和10.60 kg/kg,調(diào)控施氮處理Nr1、Nr2和Nr3的氮肥農(nóng)學(xué)效率分別為79.38、83.51和49.23 kg/kg,各施氮處理中,Nr2的氮肥農(nóng)學(xué)效率最高,其次是Nr1處理。相比于對照施氮處理,調(diào)控施氮處理的氮肥農(nóng)學(xué)效率均有提高,Nr1和Nr3處理相比于N1和N3處理分別提高了290%和364%,Nr2和N2差異不顯著。

表7 不同施氮處理對氮肥偏生產(chǎn)力與農(nóng)學(xué)效率的影響

3 討 論

3.1 基于高光譜技術(shù)的柑橘葉片功能性氮含量的無損監(jiān)測

對柑橘果實(shí)膨大期和果實(shí)轉(zhuǎn)色期不同施氮處理的葉片高光譜進(jìn)行綜合分析,可見光350~700 nm波段區(qū)域內(nèi),柑橘葉片光譜反射率隨施氮量增加而降低,這與WANG等[21]的研究關(guān)于梨樹葉片光譜反射率在可見光波段范圍內(nèi)隨著氮含量的增加而顯著降低的結(jié)果相同。本研究柑橘葉片光譜反射率在近紅外700~1 350 nm波段區(qū)域內(nèi),隨施氮量增加而升高,這與岳學(xué)軍等[34]在柑橘葉片近紅外波段750~1 300 nm的光譜反射率隨著氮含量的增加而提高的研究結(jié)果相同。本研究基于反向傳播神經(jīng)網(wǎng)絡(luò)(BPNN)構(gòu)建的柑橘葉片功能性氮含量無損監(jiān)測模型精度較高,兩個(gè)時(shí)期建模集和驗(yàn)證集的決定系數(shù)為0.77~0.78,與李金夢等[35]、黃雙萍等[36]研究結(jié)果一致,即運(yùn)用BPNN建立柑橘葉片氮含量無損監(jiān)測模型精度最優(yōu)。但與全東平[37]利用支持向量機(jī)(SVM)構(gòu)建柑橘葉片氮含量預(yù)測模型精度優(yōu)于BPNN的研究結(jié)果相反。

BPNN模型預(yù)測結(jié)果優(yōu)于PLSR和SVM模型,原因可能是BPNN模型能夠解釋光譜變量與葉片功能性氮含量間存在的非線性關(guān)系,而PLSR是一種線性算法,沒有考慮光譜變量中某些潛在的非線性信息[38];SVM該方法在小樣本下有較好的建模能力,然而數(shù)據(jù)集規(guī)模較大會影響核函數(shù)確定,進(jìn)而影響模型精度[39]。BPNN模型用非線性輸入輸出數(shù)據(jù)誤差逆向傳播算法訓(xùn)練多層前饋網(wǎng)絡(luò),對隨機(jī)產(chǎn)生的權(quán)值進(jìn)行優(yōu)化,提高了模型的精度、穩(wěn)定性及泛化能力[40]。

3.2 基于柑橘葉片功能性氮含量無損監(jiān)測模型的調(diào)控施氮效果

本文試驗(yàn)結(jié)果表明,隨著施氮量的增加,柑橘果實(shí)的產(chǎn)量先增加再降低;對比調(diào)控施氮與對照施氮處理的柑橘果實(shí)產(chǎn)量,調(diào)控施氮處理Nr1和Nr3顯著高于對照施氮處理N1(優(yōu)化施氮減氮處理)和N3(常規(guī)施氮處理)的產(chǎn)量,分別增產(chǎn)48%和40%。楊宇等[41]研究結(jié)果表明,利用化學(xué)方法測定柑橘葉片氮含量并調(diào)控施氮管理能增產(chǎn)4.7%,WANG等[21]利用光譜技術(shù)實(shí)現(xiàn)無損、快速的梨葉片氮含量診斷并調(diào)控施氮管理,梨果實(shí)產(chǎn)量提高27%?;诠庾V技術(shù)的營養(yǎng)診斷和調(diào)控施氮技術(shù)相較于經(jīng)驗(yàn)施氮和化學(xué)方法測定指導(dǎo)施肥,能夠更加快速、精確診斷樹體氮營養(yǎng)狀況并指導(dǎo)施肥,從而提高果樹產(chǎn)量、品質(zhì)。

在柑橘果實(shí)品質(zhì)方面,各調(diào)控施氮處理的柑橘果實(shí)橫縱徑增加不顯著,果形指數(shù)差異不顯著,這與李旭[22]對研究結(jié)果相似,即不同氮處理顯著影響樹體掛果量,對果形指數(shù)影響差異不顯著。本研究結(jié)果表明,調(diào)控施氮處理的柑橘單果質(zhì)量與對照施氮處理對比均有增加,其中Nr1增幅最大(26.6%),這與張磊等[13]基于葉片氮營養(yǎng)診斷的蘋果精準(zhǔn)施肥模型研究的結(jié)果相似,即模型施肥處理比經(jīng)驗(yàn)施肥處理單果質(zhì)量增加15.5%。本研究結(jié)果表明,隨著施氮量增加,柑橘果實(shí)可溶性固形物含量增加。相比于對照施氮處理N1,調(diào)控施氮Nr1的果實(shí)可溶性固形物含量顯著提高1.20個(gè)百分點(diǎn),Nr3相比于N3處理無顯著差異。楊江波等[23]探究不同施氮對塔羅科血橙果實(shí)可溶性固形物的影響研究結(jié)果表明,果實(shí)可溶性固形物隨施氮量增加而增加,然而過量施氮對果實(shí)可溶性固形物增加不顯著。

Nr1和Nr2的氮肥偏生產(chǎn)力對比N1和N2差異不顯著。然而相比于對照施氮處理N3,Nr3的氮肥偏生產(chǎn)力提高了103%(65.17 kg/kg),通過柑橘葉片功能性氮含量無損監(jiān)測模型并調(diào)控施氮后,能減少Nr3的施氮量、同時(shí)提高產(chǎn)量,氮肥偏生產(chǎn)力增幅較大,與趙帥翔等[42]比較不同技術(shù)的氮肥偏生產(chǎn)力結(jié)果相似,采用減氮增效配套技術(shù)后蘋果產(chǎn)量提高,施氮量降低,從而氮肥偏生產(chǎn)力普遍較高。調(diào)控施氮處理Nr1和Nr3的氮肥農(nóng)學(xué)效率分別提高了290%(59.03 kg/kg)、364%(38.63 kg/kg),與韓佳樂等[43]研究結(jié)果相似,基于生長模型和15N示蹤的優(yōu)化減氮處理能提高蘋果氮肥利用率(高于常規(guī)高氮處理84.92%~178.35%)。調(diào)控施氮能夠有效地提高氮肥利用率,本文基于柑橘葉片功能性氮含量無損監(jiān)測模型的調(diào)控施氮方法,為柑橘氮素管理提供有效的技術(shù)手段。

4 結(jié) 論

本文利用高光譜技術(shù)構(gòu)建柑橘葉片功能性氮含量無損監(jiān)測模型,結(jié)果表明:

1)反向傳播神經(jīng)網(wǎng)絡(luò)對柑橘果實(shí)膨大期和果實(shí)轉(zhuǎn)色期葉片功能性氮含量預(yù)測精度較高,兩個(gè)期2分別為0.78和0.77,RMSE分別為0.82和1.04 g/kg。

2)隨著施氮量的增加,柑橘果實(shí)的產(chǎn)量先增加再降低;調(diào)控施氮處理Nr1和Nr3(分別依據(jù)的優(yōu)化施氮減氮處理N1和常規(guī)施氮處理N3進(jìn)行調(diào)控,調(diào)控前施氮量分別為50和200 g/株)分別增產(chǎn)48%和40%。相比于對照施氮處理,調(diào)控施氮處理顯著提高單果質(zhì)量和可溶性固形物含量,但果實(shí)橫縱徑和果形指數(shù)差異不顯著。

3)調(diào)控施氮Nr3處理的氮肥偏生產(chǎn)力與對照施氮(N3)對比增加103%,調(diào)控施氮處理Nr1和Nr3的氮肥農(nóng)學(xué)效率與對照施氮處理(N1和N3)對比增加290%和364%。

基于高光譜的柑橘葉片功能性氮無損監(jiān)測模型的調(diào)控施氮方法,能在一定程度上減少萌芽期施氮不足或過量對柑橘產(chǎn)量和品質(zhì)的影響,提高氮肥偏生產(chǎn)力和農(nóng)學(xué)效率。

[1] 魯劍巍. 湖北省柑橘園土壤—植物養(yǎng)分狀況與柑橘平衡施肥技術(shù)研究[D]. 武漢:華中農(nóng)業(yè)大學(xué),2003.

LU Jianwei. Study on Soil and Plant Nutrient Status and Balanced Fertilization Technology of Citrus Orchards in Hubei[D]. Wuhan: Huazhong Agricultural University, 2003. (in Chinese with English abstract)

[2] 周鑫斌,石孝均,孫彭壽,等. 三峽重慶庫區(qū)柑橘園土壤養(yǎng)分豐缺狀況研究[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2010,16(4):817-823.

ZHOU Xinbin, SHI Xiaojun, SUN Pengshou, et al. Status of soil fertility in citrus orchards of Chongqing Sanxia Reservoir Area[J]. Plant Nutrition and Fertilizer Science, 2010, 16(4): 817-823. (in Chinese with English abstract)

[3] LI Y J, YANG M, ZHANG Z Z, et al. An ecological research on potential for zero-growth of chemical fertilizer use in citrus production in China[J]. Ekoloji, 2019, 28(107): 1049-1059.

[4] 武松偉,梁珊珊,胡承孝,等. 我國柑橘園“因土補(bǔ)肥”與化肥減施增效生態(tài)分區(qū)[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2022,41(2):9-19.

WU Songwei, LIANG Shanshan, HU Chengxiao, et al. Ecological region division of soil based supplementary fertilization and decrement fertilization in China citrus orchards[J]. Journal of Huazhong Agricultural University, 2022, 41(2): 9-19. (in Chinese with English abstract)

[5] FENG D Y, XU W H, HE Z M, et al. Advances in plant nutrition diagnosis based on remote sensing and computer application[J]. Neural Computing and Applications, 2020, 32: 16833-16842.

[6] 魏鵬飛,徐新剛,李中元,等. 基于無人機(jī)多光譜影像的夏玉米葉片氮含量遙感估測[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(8):126-133.

WEI Pengfei, XU Xingang, LI Zhongyuan, et al. Remote sensing estimation of nitrogen content in summer maize leaves based on multispectral images of UAV[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(8): 126-133. (in Chinese with English abstract)

[7] 王玉娜,李粉玲,王偉東,等. 無人機(jī)高光譜的冬小麥氮素營養(yǎng)監(jiān)測[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(22):31-39.

WANG Yuna, LI Fenling, WANG Weidong, et al. Monitoring of winter wheat nitrogen nutrition based on UAV hyperspectral images[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(22): 31-39. (in Chinese with English abstract)

[8] 洪波,張澤,張強(qiáng),等. 基于數(shù)碼圖像的棉花葉片氮含量估測研究[J]. 中國農(nóng)學(xué)通報(bào),2022,38(9):49-55.

HONG Bo, ZHANG Ze, ZHANG Qiang, et al. The nitrogen content in cotton leaves: Estimation based on digital image[J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 49-55. (in Chinese with English abstract)

[9] 吳彤,李勇,葛瑩,等. 利用Stacking集成學(xué)習(xí)估算柑橘葉片氮含量[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(13):163-171.

WU Tong, LI Yong, GE Ying, et al. Estimation of nitrogen contents in citrus leaves using Stacking ensemble learning[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(13): 163-171. (in Chinese with English abstract)

[10] 劉雪峰,呂強(qiáng),何紹蘭,等. 柑橘植株冠層氮素和光合色素含量近地遙感估測[J]. 遙感學(xué)報(bào),2015,19(6):1007-1018.

LIU Xuefeng, LYU Qiang, HE Shaolan, et al. Estimation of nitrogen and pigments content in citrus canopy by low-altitude remote sensing[J]. Journal of Remote Sensing, 2015, 19(6): 1007-1018. (in Chinese with English abstract)

[11] 易時(shí)來,鄧烈,何紹蘭,等. 錦橙葉片氮含量可見近紅外光譜模型研究[J]. 果樹學(xué)報(bào),2010,27(1):13-17.

YI Shilai, DENG Lie, HE Shaolan, et al. Research on nitrogen content of leaf of Jincheng orange cultivar using visible near infrared spectroscopy model[J]. Journal of Fruit Science, 2010, 27(1): 13-17. (in Chinese with English abstract)

[12] MENESATTI P, ANTONUCCI F, PALLOTTINO F, et al. Estimation of plant nutritional status by Vis-NIR spectrophotometric analysis on orange leaves [(L) Osbeck cv Tarocco][J]. Biosystems Engineering, 2010, 105(4): 448-454.

[13] 張磊,張宏建,孫林林,等. 基于葉片營養(yǎng)診斷的蘋果園果樹精準(zhǔn)施肥模型研究[J]. 中國土壤與肥料,2019(6):212-222.

ZHANG Lei, ZHANG Hongjian, SUN Linlin. Research on precision fertilization model in apple orchard based on leaf nutrition diagnosis[J]. Soil and Fertilizer in China, 2019(6): 212-222. (in Chinese with English abstract)

[14] ZHANG C, LIU F, KONG W, et al. Application of visible and near-infrared hyperspectral imaging to determine soluble protein content in oilseed rape leaves[J]. Sensors, 2015, 15(7): 16576-16588.

[15] MISHRA P, SHAHRIMIE M, ASAARI M, et al. Close range hyperspectral imaging of plants: A review[J]. Biosystems Engineering, 2017, 164: 49-67.

[16] BARáNKOVá B, LAZáR D, NAU? J. Analysis of the effect of chloroplast arrangement on optical properties of green tobacco leaves[J]. Remote Sensing of Environment, 2016, 174: 181-196.

[17] 楊鐵鋼. 不同品種和氮素水平下小麥高效氮素利用的生理機(jī)制研究[D]. 南京:南京農(nóng)業(yè)大學(xué),2007.

YANG Tiegang. Study on Physiological Mechanism for High Efficient Nitrogen Use in Wheat[D]. Nanjing: Nanjing Agricultural University, 2007. (in Chinese with English abstract)

[18] 張錫洲,吳沂珀,李廷軒. 不同施氮水平下不同氮利用效率小黑麥植株氮素積累分配特性[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報(bào),2014,22(2):151-158.

ZHANG Xizhou, WU Xinpo, LI Tingxuan. Accumulation and distribution of nitrogen in triticale varieties with different nitrogen utilization efficiencies under different nitrogen application levels[J]. Chinese Journal of Eco-Agriculture, 2014, 22(2): 151-158. (in Chinese with English abstract)

[19] AINSWORTH E A, SERBIN S P, SKONECZKA J A, et al. Using leaf optical properties to detect ozone effects on foliar biochemistry[J]. Photosynthesis Research, 2014, 119(1/2): 65-76.

[20] 陳青春,田永超,姚霞,等. 基于冠層反射光譜的水稻追氮調(diào)控效應(yīng)研究[J]. 中國農(nóng)業(yè)科學(xué),2010,43(20):4149-4157.

CHEN Qingchun, TIAN Yongchao, YAO Xia, et al. Effects of nitrogen fertilizer top-dressing based on canopy reflectance spectra in rice[J]. Scientia Agricultura Sinica, 2010, 43(20): 4149-4157. (in Chinese with English abstract)

[21] WANG J, SHI X J, XU Y C, et al. Nitrogen management based on visible/near infrared spectroscopy in pear orchards[J]. Remote Sensing, 2021, 13: 927.

[22] 李旭. 減氮施肥對柑橘樹體氮素含量、果實(shí)品質(zhì)產(chǎn)量和氮肥利用的影響[D]. 武漢:華中農(nóng)業(yè)大學(xué),2020.

LI Xu. Effects of Reduced Nitrogen Fertilization on Nitrogen Content, Fruit Yield and Nitrogen Fertilizer Utilization of Citrus Trees[D]. Wuhan: Huazhong Agricultural University, 2020. (in Chinese with English abstract)

[23] 楊江波,張績,李俊杰,等. 三峽重慶庫區(qū)施氮水平對塔羅科血橙樹體養(yǎng)分、產(chǎn)量品質(zhì)及土壤理化性質(zhì)的影響[J]. 中國農(nóng)業(yè)科學(xué),2019,52(5):893-908.

YANG Jiangbo, ZHANG Ji, LI Junjie, et al. Effects of nitrogen application levels on nutrient, yield and quality of tarocco blood orange and soil physicochemical properties in the three gorges area of Chongqing[J]. Scientia Agricultura Sinica, 2019, 52(5): 893-908. (in Chinese with English abstract)

[24] ATA-UL-KARIM S, LIU X, LU Z, et al. Estimation of nitrogen fertilizer requirement for rice crop using critical nitrogen dilution curve[J]. Field Crops Research, 2017, 201: 32-40.

[25] 于豐華,曹英麗,許童羽,等. 基于高光譜遙感處方圖的寒地分蘗期水稻無人機(jī)精準(zhǔn)施肥[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(15):103-110.

YU Fenghua, CAO Yingli, XU Tongyu, et al. Precision fertilization by UAV for rice at tillering stage in cold region based on hyperspectral remote sensing prescription map[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 35(15): 103-110. (in Chinese with English abstract)

[26] 張福鎖. 作物施肥圖解[M]. 北京:中國農(nóng)業(yè)出版社與農(nóng)村讀物出版社,2006.

[27] LUKINA E V, FREEMAN K W, WYNN K J, et al. Nitrogen fertilization optimization algorithm based on in-season estimates of yields and plant nitrogen uptake[J]. Journal of Plant Nutrition, 2001, 24: 885-898.

[28] 楊群. 基于可見/近紅外光譜的柑橘葉片不同形態(tài)氮含量無損監(jiān)測研究[D]. 重慶:西南大學(xué),2022.

YANG Qun. Nondestructive Monitoring of Different Forms of Nitrogen Content in Citrus Leaves Based on Visible/Near Infrared Spectroscopy[D]. Chongqing: Southwest University, 2022. (in Chinese with English abstract)

[29] BI Y M, YUAN K L, XIAO W Q, et al. A local pre-processing method for near-infrared spectra, combined with spectral segmentation and standard normal variate transformation[J]. Analytica Chimica Acta, 2016, 909: 30-40.

[30] LIU T, REN T, WHITE P, et al. Storage nitrogen co-ordinates leaf expansion and photosynthetic capacity in winter oilseed rape[J]. Journal of Experimental Botany, 2018, 69(12): 2995-3007.

[31] 鄭超,夏海鳴,周佳騁,等. 茚三酮分光光度法測定水中氨氮[J]. 分析試驗(yàn)室,2015,34(3):359-361.

ZHENG Chao, XIA Haiming, ZHOU Jiapin, et al. A novel method for determination of ammonia nitrogen in water[J]. Chinese Journal of Analysis Laboratory, 2015, 34(3): 359-361. (in Chinese with English abstract

[32] LIU X F, LYU Q, HE S L, et al. Estimation of carbon and nitrogen contents in citrus canopy by low-altitude remote sensing[J]. International Journal of Agricultural and Biological Engineering, 2016, 9(5): 149-157.

[33] VERRELST J, MALENOVSKY Z, VAN D, et al. Quantifying vegetation biophysical variables from imaging spectroscopy data: A review on retrieval methods[J]. Surveys in Geophysics, 2019, 40: 589-629.

[34] 岳學(xué)軍,全東平,洪添勝,等. 基于流形學(xué)習(xí)算法的柑橘葉片氮含量光譜估測模型[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(6):244-250.

YUE Xuejun, QUAN Dongping, HONG Tiansheng, et al. Estimation model of nitrogen content for citrus leaves by spectral technology based on manifold learning algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(6): 244-250. (in Chinese with English abstract

[35] 李金夢,葉旭君,王巧男,等. 高光譜成像技術(shù)的柑橘植株葉片含氮量預(yù)測模型[J]. 光譜學(xué)與光譜分析,2014,34(1):212-216.

LI Jinmeng, YE Xujun, WANG Qiaonan, et al. Development of prediction models for determining n content in citrus leaves based on hyperspectral imaging technology[J]. Spectroscopy and Spectral Analysis, 2014, 34(1): 212-216. (in Chinese with English abstract)

[36] 黃雙萍,洪添勝,岳學(xué)軍,等. 基于高光譜的柑橘葉片氮素含量多元回歸分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(5):132-138.

HUANG Shuangping, HONG Tiansheng, YUE Xuejun, et al. Multiple regression analysis of citrus leaf nitrogen content using hyperspectral technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(5): 132-138. (in Chinese with English abstract)

[37] 全東平. 基于高光譜的柑橘葉片氮磷鉀含量檢測模型[D]. 廣州:華南農(nóng)業(yè)大學(xué),2016.

QUAN Dongping. Measurement Model of Nitrogen, Phosphorus and Potassium Content for Citrus Leaves Based on Hyperspectrum[D]. Guangzhou: South China Agricultural University, 2016. (in Chinese with English abstract)

[38] 胡越,羅東陽,花奎,等. 關(guān)于深度學(xué)習(xí)的綜述與討論[J]. 智能系統(tǒng)學(xué)報(bào),2019,14(1):1-19.

HU Yue, LUO Dongyang, HUA Kui, et al. Overview on deep learning[J]. CAAI Transactions on Intelligent Systems, 2019, 14(1): 1-19. (in Chinese with English abstract)

[39] 王霞,董永權(quán),于巧,等. 結(jié)構(gòu)化支持向量機(jī)研究綜述[J]. 計(jì)算機(jī)工程與應(yīng)用,2020,56(17):24-32.

WANG Xia, DONG Yongquan, YU Qiao, et al. Review of structural support vector machines[J]. Computer Engineering and Applications, 2020, 56(17): 24-32. (in Chinese with English abstract)

[40] 鄒德秋,王家強(qiáng),張冬冬,等. 基于光譜指數(shù)的胡楊葉片氮含量估算[J]. 森林與環(huán)境學(xué)報(bào),2022,42(6):623-630.

ZOU Deqiu, WANG Jiaqiang, ZHANG Dongdong, et al. Estimation of nitrogen content in Populus euphratica leaves based on spectral index[J]. Journal of Forestry and Environment, 2022, 42(6): 623-630. (in Chinese with English abstract)

[41] 楊宇,鄧正春,彭永勝,等. 柑橘葉片營養(yǎng)診斷施肥技術(shù)研究[J]. 湖南農(nóng)業(yè)科學(xué),2013(15):183-184.

YANG Yu, DENG Zhengchun, PENG Yongsheng, et al. Study on nutrient diagnostic fertilization of citrus leaves[J]. Hunan Agricultural Sciences, 2013(15): 183-184. (in Chinese with English abstract)

[42] 趙帥翔,張衛(wèi)峰,姜遠(yuǎn)茂,等. 黃土高原蘋果過量施氮因素分析[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2017,23(2):484-491.

ZHAO Shuaixiang, ZHANG Weifeng, JIANG Yuanmao, et al. Factor analysis of excessive nitrogen application in apples on Loess Plateau[J]. Plant Nutrition and Fertilizer Science, 2017, 23(2): 484-491. (in Chinese with English abstract)

[43] 韓佳樂,馮濤,朱志軍,等. 生長模型和15N示蹤評價(jià)施肥處理對蘋果樹氮肥利用的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(15):96-104.

HAN Jiale, FENG Tao, ZHU Zhijun, et al. Evaluating the effects of fertilization treatments on the nitrogen use efficiency of apple trees using allometric model and15N tracer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(15): 96-104. (in Chinese with English abstract)

Adjusted nitrogen application using non-destructive monitoring model of citrus leaf functional nitrogen content

LIU Zhiye1, YANG Qun1, LING Qihan2, WEI Yong2, NING Qiang1, KONG Faming1, ZHANG Yueqiang1,2,3, SHI Xiaojun1,2,3, WANG Jie1,2,3※

(1.400715,; 2400715,; 3,400716,)

The concentration and distribution of functional nitrogen (N) in citrus leaves can be significant indicators for the formation and transportation of fruit assimilation. A non-destructive monitoring model can be used for the functional nitrogen concentration in the leaves. The N application can also be adjusted to quantify the citrus nitrogen using hyperspectral technology. The five-year ‘Chunjian’ orange was taken as the experimental material in the Changshou District of Chongqing in China. The control treatments of nitrogen application with the different gradients were set: N0, N1, N2, and N3(Nitrogen application qualities were 0, 50, 100, and 200 g/plant, respectively). The adjusted nitrogen treatments were named Nr1, Nr2,and Nr3, according to the non-destructive monitoring model for the functional nitrogen concentration in the citrus leaf. In the first year of the experiment, the leaves of the spring shoot (the second to fourth leaves from the top to the bottom) were collected at the fruit expansion and color-changed period, respectively. Sixteen leaves were randomly selected from each tree, according to the four directions of “south, east, north, west”, where the spectral values were determined simultaneously. A non-destructive monitoring model was then established for the functional nitrogen concentration in the citrus fruit leaves at the fruit expansion and color-changed period by the hyperspectral technique. In the second year, the leaf functional nitrogen concentration (LFNC) model and topdressing formula were used to calculate the actual nitrogen application ratio. The fertilizer of the actual nitrogen application ratio was applied in the adjusted N application treatments at the fruit expansion and color-changed period. A comparison was made to clarify the effects of control and adjusted nitrogen application on the yield, fruit quality, and nitrogen use efficiency. The results show that the LFNC model performed the higher accuracy using the back propagation neural network, where the2were 0.78 (fruit expansion period) and 0.77 (fruit color-changed period). The Nr1and Nr3treatments increased the yield by 5.49, and 4.43 kg/ plant with the rate of increments of 48% and 40%, respectively, compared with the N1and N3. Compared with the N1, the single fruit weight and soluble solid content of the citrus increased significantly by the adjusted N treatment Nr1. However, there was no change in the transverse and longitudinal diameter of the citrus fruits and fruit shape index between the control and adjusted N treatments. The partial factor productivity of applied (PFP-N) of adjusted N application treatments with the Nr1was 10% lower than that of the control with the N1. There was only a little change in the fruit shape index and soluble solids of Nr3. Specifically, the single fruit weight increased compared with the N3. compared with the N3. The agronomic efficiency of the Nr2and Nr3increased by 290% and 364%, compared with the N1and N3, respectively. There was no significant difference in the yield, quality, and nitrogen use efficiency between the Nr2and N2. In conclusion, the adjusted nitrogen application using the non-destructive monitoring model of the citrus leaf functional nitrogen concentration can be expected to reduce the effects of insufficient or excessive nitrogen application on the citrus yield and quality, in order to improve the nitrogen partial productivity and agronomic efficiency. The finding can provide the theoretical basis and technical support to realize the non-destructive monitoring of functional nitrogen concentration in the citrus leaves and adjusted nitrogen application.

citrus; hyperspectral; adjusted nitrogen application; leaf functional nitrogen concentration; non-destructive monitoring

2023-01-26

2023-03-29

國家自然科學(xué)基金項(xiàng)目(31801932)

劉智業(yè),研究方向?yàn)橹参锕庾V監(jiān)測。Email:lzy20000124@126.com

王潔,博士,講師,研究方向?yàn)榛诮剡b感技術(shù)的植物營養(yǎng)無損診斷、果樹養(yǎng)分資源管理、智慧農(nóng)業(yè)系統(tǒng)。Email:mutouyu@swu.edu.cn

10.11975/j.issn.1002-6819.202301083

S666

A

1002-6819(2023)-07-0167-09

劉智業(yè),楊群,凌琪涵,等. 采用柑橘葉片功能性氮含量無損監(jiān)測模型的調(diào)控施氮方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2023,39(7):167-175. doi:10.11975/j.issn.1002-6819.202301083 http://www.tcsae.org

LIU Zhiye, YANG Qun, LING Qihan, et al. Adjusted nitrogen application using non-destructive monitoring model of citrus leaf functional nitrogen content[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(7): 167-175. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.202301083 http://www.tcsae.org

猜你喜歡
施氮氮量柑橘
不同施氮水平對春玉米光合參數(shù)及產(chǎn)量的影響
吃柑橘何來黃疸——認(rèn)識橘黃病
施氮水平對冬小麥冠層氨揮發(fā)的影響
柑橘大實(shí)蠅綜合治理
“五及時(shí)”柑橘凍害恢復(fù)技術(shù)
浙江柑橘(2016年4期)2016-03-11 20:12:59
柑橘實(shí)蠅防治一法
均勻施氮利于玉米根系生長及產(chǎn)量形成
高、中、低產(chǎn)田水稻適宜施氮量和氮肥利用率的研究
不同地力水平下超級稻高產(chǎn)高效適宜施氮量及其機(jī)理的研究
施氮量與栽插密度對超級早稻中早22產(chǎn)量的影響
磐石市| 广平县| 淮安市| 青浦区| 离岛区| 丘北县| 六安市| 伊宁县| 汝城县| 乌兰浩特市| 芒康县| 沭阳县| 雷波县| 彩票| 右玉县| 容城县| 林西县| 兖州市| 犍为县| 招远市| 莱州市| 乳山市| 文成县| 东宁县| 桂东县| 瓦房店市| 专栏| 陇南市| 临沧市| 瑞金市| 准格尔旗| 连平县| 龙胜| 山东省| 芮城县| 饶平县| 庄浪县| 安平县| 化德县| 忻州市| 秦皇岛市|